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Our goal is to investigate the existence of the positive solutions, the existence of a nonnegative
equilibrium, and the convergence of a positive solution to a nonnegative equilibrium of the fuzzy
difference equation xn+1 = (1 −∑k−1

j=0 xn−j)(1 − e−Axn), k ∈ {2, 3, . . .}, n = 0, 1, . . . , where A and the
initial values x−k+1, x−k+2, . . . , x0 belong in a class of fuzzy numbers.

1. Introduction

Fuzzy difference equations are approached by many authors, from a different view.
In [1], the authors developed the stability results for the fuzzy difference equation

un+1 = f(n, un), un0 = u0, (1.1)

in terms of the stability of the trivial solution of the ordinary difference equation

zn+1 = g(n, zn), zn0 = z0, (1.2)

where f(n, u) is continuous in u for each n, and un, f ∈ En for each n ≥ n0, where En = {u :
R

n → [0, 1]} such that u satisfies the following:

(i) u is normal;

(ii) u is fuzzy convex;

(iii) u is upper semicontinuous;

(iv) [u]0 = {x ∈ R
n : u(x) > 0} is compact,

and g(n, r) is a continuous and nondecreasing function in r for each n.
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In [2], the authors studied the second-order, linear, constant coefficient fuzzy
difference equation of the form

y(k + 2) + ay(k + 1) + by(k) = g(k; l1, l2, . . . , lm) (1.3)

for k = 0, 1, 2, . . . , where y(k) is the unknown function of k and a, b are real constants
with b /= 0. g(k; l1, l2, . . . , lm) is a known function of k and m parameters l1, l2, . . . , lm, which
is continuous in k. The initial conditions are fuzzy sets.

In [3] the authors considered the associated fuzzy system

un+1 = f̂(un), (1.4)

of the deterministic system

xn+1 = f(xn), (1.5)

where f̂ is the Zadeh’s extensions of a continuous function f : Rn → R
n. Equations (1.4) and

(1.5) have the same real constants coefficient and real equilibriums.
In this paper, we consider the fuzzy difference equation

xn+1 =

⎛

⎝1 −
k−1∑

j=0

xn−j

⎞

⎠
(
1 − e−Axn

)
, n = 0, 1, . . . , k ∈ {2, 3, . . .}, (1.6)

where A and the initial values are in a class of fuzzy numbers (see Preliminaries). This
equation is motivated by the corresponding ordinary difference equation which is posed in
[4]. Moreover, (1.6) is a special case of an epidemic model (see [5–8]) and was studied in [9]
by Zhang and Shi and in [10] by Stević.

In [11]we have, already, investigated the behavior of the solutions of a related system
of two parametric ordinary difference equations, of the form

yn+1 =

⎛

⎝1 −
k−1∑

j=0

zn−j

⎞

⎠
(
1 − e−Byn

)
, zn+1 =

⎛

⎝1 −
k−1∑

j=0

yn−j

⎞

⎠
(
1 − e−Czn

)
, n ≥ 0, (1.7)

where B, C are positive real numbers and the initial values y−k+1, y−k+2, . . . , y0,
z−k+1, z−k+2, . . . , z0, k ∈ {2, 3, . . .}, are positive real numbers, which satisfy some additional
conditions.

We note that, the behavior of the fuzzy difference equation is not always the same
with the corresponding ordinary difference equation. For instance, in paper [12] the fuzzy
difference equation

xn = max
{

A0

xn−k
,
A1

xn−m

}

, n = 0, 1, . . . , (1.8)
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where k,m are positive integers, A0, A1, and the initial values xi, i ∈ {−d,−d + 1, . . . ,−1}, d =
max{k,m} are in a class of fuzzy numbers, under some conditions has unbounded solutions,
something that does not happen in the case of the corresponding ordinary difference equation
(1.8), where k,m are positive integers and A0, A1, and the initial values xi, i ∈ {−d,−d +
1, . . . ,−1}, d = max{k,m} are positive real numbers.

Finally we note that in recent years there has been a considerable interest in the study
of the existence of some specific classes of solutions of difference equations such as nontrivial,
nonoscillatory, monotone, positive. Various methods have been developed by the experts. For
partial review of the theory of difference equations and their applications see, for example,
[4, 10, 13–27] and the references therein.

2. Preliminaries

For a set B, we denote by B the closure of B.
We denote by E the set of functions A such that,

A : R+ = (0,∞) −→ [0, 1], (2.1)

where A satisfies the following conditions:

(i) A is normal, that is, there exists an x0 ∈ R
+ such that A(x0) = 1;

(ii) A is fuzzy convex, that is for x, y ∈ R
+, 0 ≤ λ ≤ 1;

A
(
λx + (1 − λ)y

) ≥ min
{
A(x), A

(
y
)}

; (2.2)

(iii) A is upper semicontinuous

(iv) The support of A, suppA = {x : A(x) > 0} is compact.

Obviously, set E is a class of fuzzy numbers. In this paper, all the fuzzy numbers we use are
elements of E. From above (i)–(iv) and Theorems 3.1.5 and 3.1.8 of [28] the a-cuts of the fuzzy
number A ∈ E,

[A]a = {x ∈ R
+ : A(x) ≥ a}, a ∈ (0, 1] (2.3)

are closed intervals. Obviously, suppA =
⋃

a∈(0,1][A]a.
We say that a fuzzy number A is positive if suppA ⊂ (0,∞).
To prove our main results, we need the following theorem (see [29]).

Theorem 2.1 (see [29]). LetA ∈ E, such that [A]a = [Al,a,Ar,a], a ∈ (0, 1]. ThenAl,a,Ar,a can be
regarded as functions on (0, 1] which satisfy

(i) Al,a is nondecreasing and left continuous;

(ii) Ar,a is nonincreasing and left continuous;

(iii) Al,1 ≤ Ar,1.
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Conversely, for any functions La, Ra defined in (0, 1] which satisfy (i)–(iii) in above and
∪a∈(0,1][La, Ra] is compact, there exists a unique A ∈ E such that [A]a = [La, Ra], a ∈ (0, 1].

We need the following arithmetic operations on closed intervals:

(i) [a, b] + [c, d] = [a + c, b + d], a, b, c, d positive real numbers,

(ii) [a, b] − [c, d] = [a − d, b − c], a, b, c, d positive real numbers,

(iii) [a, b] · [c, d] = [a · c, b · d], a, b, c, d positive real numbers.

In this paper, we use the following arithmetic operations on fuzzy numbers based on closed
intervals arithmetic (see [30]). Let A,B be positive fuzzy numbers which belong to E with

[A]a = [Al,a,Ar,a], [B]a = [Bl,a, Br,a], a ∈ (0, 1]. (2.4)

(i) A + B is a positive fuzzy number which belongs to E, with

[A + B]a = [A]a + [B]a, a ∈ (0, 1]; (2.5)

(ii) A − B is a positive fuzzy number which belongs to E, with

[A − B]a = [A]a − [B]a, a ∈ (0, 1] (2.6)

if supp(A − B) ⊂ (0,∞);

(iii) AB is a positive fuzzy number which belongs to E, with

[AB]a = [A]a · [B]a, a ∈ (0, 1]. (2.7)

We note that the subtraction “−” we use, is different than Hukuhara difference (see [31, 32]).
Using Extension Principle (see [28, 30, 33]) for a positive fuzzy number A ∈ E such

that (2.4) holds, we have

[
e−A

]

a
=
[
e−Ar,a , e−Al,a

]
, a ∈ (0, 1]. (2.8)

Let A,B be positive fuzzy numbers which belong to E such that (2.4) holds. We
consider the following metric (see [29, 32]):

D(A,B) = sup max{|Al,a − Bl,a|, |Ar,a − Br,a|}, (2.9)

where sup is taken for all a ∈ (0, 1].
We say xn is a positive solution of (1.6) if xn is a sequence of positive fuzzy numbers

which satisfies (1.6).
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We say that a positive fuzzy number x is a positive equilibrium for (1.6) if

x = (1 − kx)
(
1 − e−Ax

)
, k ∈ {2, 3, . . .}. (2.10)

Let xn be a sequence of positive fuzzy numbers and x is a positive fuzzy number.
Suppose that

[xn]a = [Ln,a, Rn,a], a ∈ (0, 1], n = −k + 1,−k + 2, . . . ,

[x]a = [La, Ra], a ∈ (0, 1]
(2.11)

are satisfied. We say that xn nearly converges to x with respect to D as n → ∞ if for every
δ > 0 there exists a measurable set T , T ⊂ (0, 1] of measure less than δ such that

limDT (xn, x) = 0, as n −→ ∞, (2.12)

where

DT (xn, x) = sup
a∈(0,1]−T

{max{|Ln,a − La|, |Rn,a − Ra|}}. (2.13)

If T = ∅, we say that xn converges to x with respect to D as n → ∞.
Let E be the set of positive fuzzy numbers. From Theorem 2.1 we have that Al,a, Bl,a

(resp., Ar,a, Br,a) are increasing (resp., decreasing) functions on (0, 1]. Therefore, using the
condition (iv) of the definition of the fuzzy numbers there exist the Lebesque integrals

∫

J

|Al,a − Bl,a|da,
∫

J

|Ar,a − Br,a|da, (2.14)

where J = (0, 1]. We define the function D1 : E × E → R+ such that

D1(A,B) = max

{∫

J

|Al,a − Bl,a|da,
∫

J

|Ar,a − Br,a|da
}

. (2.15)

If D1(A,B) = 0 we have that there exists a measurable set T of measure zero such that

Al,a = Bl,a Ar,a = Br,a ∀a ∈ (0, 1] − T. (2.16)

We consider however, two fuzzy numbers A,B to be equivalent if there exists a measurable
set T of measure zero such that (2.16) hold and if we do not distinguish between equivalent
of fuzzy numbers then E becomes a metric space with metric D1.

We say that a sequence of positive fuzzy numbers xn converges to a positive fuzzy
number x with respect to D1 as n → ∞ if

lim D1(xn, x) = 0, as n −→ ∞. (2.17)
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3. Study of the Fuzzy Difference Equation (1.6)

In order to prove our main results, we need the following Propositions A, B, C, which can be
found in [11]. For readers convenience, we cite them below without their proofs.

Proposition A (see [11]). Consider system (1.7)where the constants B,C are positive real numbers.
Let (yn, zn) be a solution of (1.7) with initial values y−j , z−j , j = 0, 1, . . . , k − 1, k ∈ {2, 3, . . .}. Then
the following statements are true.

(i) Suppose that

1 −
k−1∑

j=0

y−j > 0, 1 −
k−1∑

j=0

z−j > 0, (3.1)

0 < B ≤ 1, 0 < C ≤ 1, (3.2)

y0 = min
{
y−j , j = 0, 1, . . . , k − 1

}
> 0, z0 = min

{
z−j , j = 0, 1, . . . , k − 1

}
> 0, (3.3)

hold. Then yn, zn > 0, n = 1, 2, . . .

(ii) Suppose that

0 < B < k ln
(

k

k − 1

)

, 0 < C < k ln
(

k

k − 1

)

, (3.4)

0 < y−j , z−j <
1
k
, j = 0, 1, . . . , k − 1, (3.5)

hold. Then

0 < yn <
1
k
, 0 < zn <

1
k
, n = 1, 2, . . . (3.6)

Proposition B (see [11]). Consider the system of algebraic equations

y = (1 − kz)
(
1 − e−By

)
,

z =
(
1 − ky

)(
1 − e−Cz

)
, y, z ∈

[

0,
1
k

)

, k ∈ {2, 3, . . .}.
(3.7)

Then the following statements are true.

(i) If (3.2) holds, the system (3.7) has a unique nonnegative solution (0, 0).

(ii) Suppose that

0 < B < k ln
(

k

k − 1

)

, 1 < C < k ln
(

k

k − 1

)

, B < C (3.8)
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hold; then there are only two nonnegative equilibriums (x, y) of system (3.7), such that
x y = 0, which are (0, 0), (0, z1), z1,∈ (0, 1/k), z1 = 1 − e−Cz1 .

Proposition C (see [11]). Consider system (1.7). Let (yn, zn) be a solution of (1.7). Then the
following statements are true.

(i) If (3.2) and either (3.1) and (3.3) or (3.5) are satisfied, then for the solution (yn, zn) of
system (1.7) we have that

0 < yn < Bny0, 0 < zn < Cnz0, n = 1, 2, . . . (3.9)

holds and obviously (yn, zn) tends to the unique zero equilibrium (0, 0) of (1.7) as n → ∞.

(ii) Suppose that (3.5), the first relation of (3.2) and the second relation of (3.8) are satisfied.
Then (yn, zn) tends to the nonnegative equilibrium (0, z1), 0 < z1 < 1/k of (1.7) as
n → ∞.

First we study the existence and the uniqueness of the positive solutions of the fuzzy
difference equation (1.6).

Proposition 3.1. Consider the fuzzy difference equation (1.6), where A is a positive fuzzy number
such that

[A]a = [Al,a,Ar,a] ⊂
⋃

a∈(0,1]
[Al,a,Ar,a] ⊂ [M,N] ⊂ (0,∞), a ∈ (0, 1]. (3.10)

Let x−k+1, x−k+2, . . . , x0 be fuzzy numbers and L−j , R−j , j = 0, 1, . . . , k − 1 positive real numbers such
that

[
x−j
]
a
=
[
L−j,a, R−j,a

] ⊂
⋃

a∈(0,1]

[
L−j,a, R−j,a

] ⊂ [L−j , R−j
] ⊂ (0,∞),

j = 0, 1, . . . , k − 1, a ∈ (0, 1], k ∈ {2, 3, . . .}.
(3.11)

Then the following statements are true.

(i) Suppose that

1 −
k−1∑

j=0

R−j > 0, (3.12)

M > 0, N ≤ 1, (3.13)

L0,a = min
{
L−j,a

}
> 0, R0,a = min

{
R−j,a

}
> 0, j = 0, 1, . . . , k − 1, a ∈ (0, 1], (3.14)

hold. Then there exists a unique positive solution xn of the fuzzy difference equation (1.6)
with initial values x−k+1, x−k+2, . . . , x0.
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(ii) Suppose that

M > 0, N < k ln
(

k

k − 1

)

, (3.15)

[
L−j, R−j

] ⊂
(

0,
1
k

)

, j = 0, 1, . . . , k − 1, (3.16)

hold. Then there exists a unique positive solution xn of the fuzzy difference equation (1.6)
with initial values x−k+1, x−k+2, . . . , x0.

Proof. We consider the family of systems of parametric ordinary difference equations for a ∈
(0, 1] and n ≥ 0,

Ln+1,a =

⎛

⎝1 −
k−1∑

j=0

Rn−j,a

⎞

⎠
(
1 − e−Al,aLn,a

)
, Rn+1,a =

⎛

⎝1 −
k−1∑

j=0

Ln−j,a

⎞

⎠
(
1 − e−Ar,aRn,a

)
. (3.17)

(i) From (3.11) and (3.14), we can consider that

L0 = min
{
L−j
}
> 0, R0 = min

{
R−j

}
> 0, j = 0, 1, . . . , k − 1. (3.18)

Using relations (3.10)–(3.13), (3.18), and Proposition A, we get that the system of ordinary
difference equations

Ln+1 =

⎛

⎝1 −
k−1∑

j=0

Rn−j

⎞

⎠
(
1 − e−MLn

)
, Rn+1 =

⎛

⎝1 −
k−1∑

j=0

Ln−j

⎞

⎠
(
1 − e−NRn

)
, n ≥ 0, (3.19)

with initial values (L−j , R−j), j = 0, 1, . . . , k − 1, has a positive solution (Ln, Rn) and so

1 −
k−1∑

j=0

Rn−j > 0, Ln > 0, n ≥ 1. (3.20)

In addition, from (3.10)–(3.14) and Proposition A, we have that (3.17) has a positive
solution (Ln,a, Rn·a), a ∈ (0, 1], with initial values (L−j,a, R−j,a), j = 0, 1, . . . , k−1. We prove that
(Ln,a, Rn·a), a ∈ (0, 1] determines a sequence of positive fuzzy numbers.

Since x−j , j = 0, 1, . . . , k − 1 and A are positive fuzzy numbers, from Theorem 2.1 we
have that R−j,a, L−j,a, j = 0, 1, . . . , k − 1, and Al,a,Ar,a, a ∈ (0, 1], are left continues and so from
(3.17), we get that L1,a, R1,a, a ∈ (0, 1] are left continuous as well.

In addition, for any a1, a2 ∈ (0, 1], a1 ≤ a2, we have

0 < Al,a1 ≤ Al,a2 ≤ Ar,a2 ≤ Ar,a1

0 < L−j,a1 ≤ L−j,a2 ≤ R−j,a2 ≤ R−j,a1 , j = 0, 1, . . . , k − 1,
(3.21)
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and so from (3.10)–(3.13), and (3.17)

L1,a1 ≤ L1,a2 ≤ R1,a2 ≤ R1,a1 . (3.22)

Moreover, from (3.10)–(3.13), (3.17), and (3.19), we get

0 < L1 < L1,a ≤ R1,a < R1, a ∈ (0, 1]. (3.23)

Therefore, from Theorem 2.1 relations (3.22), (3.23), and since L1,a, R1,a are left continuous,
we have that L1,a, R1,a determine a positive fuzzy number x1 such that

[x1]a = [L1,a, R1,a] ⊂
⋃

a∈(0,1]
[L1,a, R1,a] ⊂ [L1, R1], a ∈ (0, 1]. (3.24)

Since L−j,a, R−j,a, j = −1, 0, 1, . . . , k−1 are left continuous from (3.17) andworking inductively,
we get that Ln,a, Rn,a, n = 2, 3, . . . , a ∈ (0, 1] are also left continuous. In addition, using (3.10),
(3.11), (3.13), (3.17), (3.20), (3.21), (3.22), and working inductively, we get for any a1, a2 ∈
(0, 1], a1 ≤ a2 and n = 2, 3, . . .

Ln,a1 ≤ Ln,a2 ≤ Rn,a2 ≤ Rn,a1 . (3.25)

Finally, using (3.10), (3.11), (3.13), (3.17), (3.19), (3.20), (3.23), and working inductively, we
get for n = 2, 3, . . .

0 < Ln < Ln,a ≤ Rn,a < Rn, a ∈ (0, 1], (3.26)

where (Ln, Rn) is the solution of (3.19).
Therefore, since Ln,a, Rn,a, n = 1, 2, . . . , a ∈ (0, 1] are left continuous and (3.22), (3.23),

(3.25), (3.26) are satisfied, from Theorem 2.1, we get that the positive solution (Ln,a, Rn,a),
n = 1, 2, . . . , a ∈ (0, 1], of (3.17), with initial values L−j,a, R−j,a, j = 0, 1, . . . , k−1, a ∈ (0, 1], k ∈
{2, 3, . . .} satisfying (3.11), (3.12), (3.14), determines a sequence of positive fuzzy numbers xn,
such that

[xn]a = [Ln,a, Rn,a] ⊂
⋃

a∈(0,1]
[Ln,a, Rn,a] ⊂ [Ln, Rn], n ≥ 1, a ∈ (0, 1]. (3.27)

We claim that xn is a solution of (1.6)with initial values x−j , j = 0, 1, . . . , k−1, such that
(3.11), (3.12), and (3.14) hold. From (3.17) and (3.27)we have for all a ∈ (0, 1]

[xn+1]a = [Ln+1,a, Rn+1,a]

=

⎡

⎣

⎛

⎝1 −
k−1∑

j=0

Rn−j,a

⎞

⎠
(
1 − e−Al,aLn,a

)
,

⎛

⎝1 −
k−1∑

j=0

Ln−j,a

⎞

⎠
(
1 − e−Ar,aRn,a

)
⎤

⎦.
(3.28)
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In addition, from (3.10), (3.23), and (3.26), we get

1 − e−Al,aLn,a > 0, a ∈ (0, 1], n ≥ 1 (3.29)

and so from (3.17), (3.23), and (3.26)

1 −
k−1∑

j=0

Rn−j,a > 0, n ≥ 1. (3.30)

Therefore, using (3.28) and arithmetic multiplication on closed intervals

[xn+1]a =

⎡

⎣1 −
k−1∑

j=0

Rn−j,a, 1 −
k−1∑

j=0

Ln−j,a

⎤

⎦
[
1 − e−Al,aLn,a , 1 − e−Ar,aRn,a

]
. (3.31)

Using arithmetic operations on positive fuzzy numbers and (2.8)we have

[xn+1]a =

⎛

⎝1 −
k−1∑

j=0

[
xn−j

]
a

⎞

⎠
(
1 − e−[Axn]a

)
=

⎡

⎣

⎛

⎝1 −
k−1∑

j=0

xn−j

⎞

⎠
(
1 − e−Axn

)
⎤

⎦

a

(3.32)

and thus, our claim is true.
Finally, suppose that there exists another solution xn = [Ln,a, Rn,a]a of the fuzzy

difference equation (1.6)with initial values x−j , j = 0, 1, . . . , k−1, such that (3.10)–(3.14) hold.
Then using the uniqueness of the solutions of the system (3.17) and arithmetic operations on
positive fuzzy numbers and (2.8), we can easily prove that

[xn+1]a =

⎡

⎣

⎛

⎝1 −
k−1∑

j=0

xn−j

⎞

⎠
(
1 − e−Axn

)
⎤

⎦

a

=

⎡

⎣

⎛

⎝1 −
k−1∑

j=0

Rn−j,a

⎞

⎠
(
1 − e−Al,aLn,a

)
,

⎛

⎝1 −
k−1∑

j=0

Ln−j,a

⎞

⎠
(
1 − e−Ar,aRn,a

)
⎤

⎦

= [Ln+1,a, Rn+1,a] = [xn+1]a, n ≥ 1, a ∈ (0, 1],

(3.33)

and so we have that xn is the unique positive solution of the fuzzy difference equation
(1.6) with initial values x−j , j = 0, 1, . . . , k − 1, such that (3.11), (3.12), and (3.14) hold. This
completes the proof of statement (i).
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(ii) From (3.10), (3.15), (3.16), and Proposition A, we get that system (3.19)with initial
values (L−j , R−j), j = 0, 1, . . . , k − 1 has a positive solution (Ln, Rn) such that (3.20) and

[Ln, Rn] ⊂
(

0,
1
k

)

, n ≥ 1, k ∈ {2, 3, . . .}, (3.34)

hold.
From (3.10), (3.11), (3.15), (3.16), and Proposition A, we have that (3.17) has a positive

solution (Ln,a, Rn·a), a ∈ (0, 1], with initial values (L−j,a, R−j,a), j = 0, 1, . . . , k − 1, such that

0 < Ln,a, Rn,a <
1
k
, n ≥ 1, a ∈ (0, 1]. (3.35)

We prove that (Ln,a, Rn·a), a ∈ (0, 1] determines a sequence of positive fuzzy numbers.
From (3.10), (3.11), (3.15)–(3.17), (3.19), and (3.20), we get that (3.23) holds. Moreover,

arguing as in statement (i), we can easily prove that L1,a, R1,a determine a positive fuzzy
number x1 such that (3.24) holds.

As in statement (i), using (3.10), (3.11), (3.15)–(3.17), (3.24), Theorem 2.1 and working
inductively, we get that the positive solution (Ln,a, Rn,a), n = 1, 2, . . . , a ∈ (0, 1], of (3.17),
determines a sequence of positive fuzzy numbers xn, such that (3.27) holds.

Finally, arguing as in statement (i) we have that xn is the unique positive solution of
the fuzzy difference equation (1.6) with initial values x−j , j = 0, 1, . . . , k − 1, such that (3.10),
(3.11), (3.15) and (3.16) hold. This completes the proof of the proposition.

In the next proposition we study the existence of nonnegative equilibriums of the
fuzzy difference equation (1.6).

Proposition 3.2. Consider the fuzzy difference equation (1.6) where A is a positive fuzzy number
such that (3.10) holds and the initial values x−j , j = 0, 1, . . . , k − 1 are positive fuzzy numbers. Then
the following statements are true.

(i) If

Al,a > 0, Ar,a ≤ 1, a ∈ (0, 1], (3.36)

then zero is the unique nonnegative equilibrium of the fuzzy difference equation (1.6).

(ii) If

Al,a > 0, 1 < Ar,a < k ln
(

k

k − 1

)

, a ∈ (0, 1], k = 2, 3, . . . , (3.37)

then zero and x where

[x]a = [0, Ra], a ∈ (0, 1], (3.38)

0 < Ra = 1 − e−Ar,aRa <
1
k
, a ∈ (0, 1], (3.39)
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are the only nonnegative equilibriums of the fuzzy difference equation (1.6), such that (2.11)
and LaRa = 0 hold.

Proof. We consider the fuzzy equation

x = (1 − kx)
(
1 − e−Ax

)
, k ∈ {2, 3, . . .}, (3.40)

where A is a positive fuzzy number such that (3.10) holds. Suppose that x, is a solution of
(3.40) such that

[x]a = [xl,a, xr,a], 0 ≤ xl,a, xr,a <
1
k
, a ∈ (0, 1], k ∈ {2, 3, . . .}. (3.41)

Then using arithmetic operations on fuzzy numbers and (2.8), (3.10), we can easily prove
that (xl,a, xr,a) satisfies the family of parametric algebraic systems

xl,a = (1 − kxr,a)
(
1 − e−Al,axl,a

)
,

xr,a = (1 − kxl,a)
(
1 − e−Ar,axr,a

)
, a ∈ (0, 1].

(3.42)

(i) If (3.36) holds then from (3.10), (3.41), (3.42), and statement (i) of Proposition B,
we get that

xl,a = xr,a = 0, for any a ∈ (0, 1]. (3.43)

This completes the proof of statement (i).

(ii) If (3.37) and (3.41) hold then from (3.10) and statement (ii) of Proposition B, we get
that system (3.42) has only two solutions, which are

(xl,a, xr,a) = (0, 0), a ∈ (0, 1], (3.44)

(xl,a, xr,a) = (0, Ra), a ∈ (0, 1], (3.45)

where Ra, a ∈ (0, 1], is the unique function which satisfies (3.39).

Using (3.41) and (3.44) we have that zero is a solution of the fuzzy equation (3.40).
To continue, we have to prove that [0, Ra], a ∈ (0, 1], determines a fuzzy number,

where Ra, satisfies (3.39). From (3.39), we get

eAr,a =
1

(1 − Ra)1/Ra
. (3.46)
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We consider the function

K(x) =
1

(1 − x)1/x
, 0 < x <

1
k
; (3.47)

then

K′(x) =
1

x2(1 − x)1/x

(

ln(1 − x) +
x

1 − x

)

. (3.48)

We can easily prove that

G(x) = ln(1 − x) +
x

1 − x
(3.49)

is an increasing and positive function for 0 < x < 1 and so using (3.48), we get thatK(x) is an
increasing function for 0 < x < 1/k. Since Ar,a is a positive, decreasing function with respect
to a, a ∈ (0, 1], we get that

eAr,a2 ≤ eAr,a1 , for a1, a2 ∈ (0, 1], with a1 ≤ a2, (3.50)

and so from (3.46)

1

(1 − Ra2)
1/Ra2

≤ 1

(1 − Ra1)
1/Ra1

, (3.51)

which means that

Ra2 ≤ Ra1 , for a1, a2 ∈ (0, 1], with a1 ≤ a2, (3.52)

sinceK(x) is an increasing function. From (3.52) it is obvious that Ra is a decreasing function
with respect to a, a ∈ (0, 1].

In addition, since K(x) is a continuous and increasing function, we have that K−1(x)
is also a continuous and increasing function. Moreover,Ar,a is a left continuous function with
respect to a, a ∈ (0, 1].

Therefore,

K−1
(
eAr,a

)
= K−1(K(Ra)) = Ra (3.53)

is a left continues function with respect to a, a ∈ (0, 1].
Finally, from (3.39)we have that

⋃

a∈(0,1]
[0, Ra] ⊂

[

0,
1
k

]

, k ∈ {2, 3, . . .}. (3.54)
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From Theorem 2.1, (3.39), (3.52), (3.54), and sinceRa is a left continuous functionwith respect
to a, a ∈ (0, 1], we have that [0, Ra], a ∈ (0, 1] determines a fuzzy number x such that (3.38)
holds. Therefore, from (3.45) x is a solution of the fuzzy equation (3.40). This completes the
proof of the proposition.

In the last proposition we study the asymptotic behavior of the positive solutions of
the fuzzy difference equation (1.6).

Proposition 3.3. Consider the fuzzy difference equation (1.6) where A is a positive fuzzy number
such that (3.10) holds. Let x−j , j = 0, 1, . . . , k − 1 be the initial values such that (3.11) holds. Then the
following statements are true.

(i) Suppose that

M > 0, N < 1 (3.55)

and either (3.12) and (3.14) or (3.16) are satisfied. Then every positive solution of the fuzzy
difference equation (1.6) tends to the zero equilibrium as n → ∞.

(ii) Suppose that

0 < M < Al,a ≤ 1 < Ar,a < N < k ln
(

k

k − 1

)

, a ∈ (0, 1], (3.56)

and (3.16) are satisfied. Then every positive solution of the fuzzy difference equation (1.6)
nearly converges to the nonnegative equilibrium x with respect to D as n → ∞ and
converges to x with respect to D1 as n → ∞, where x was defined by (3.38) and (3.39).

Proof. (i) Since (3.55) and either (3.12) and (3.14) or (3.16) are satisfied, from Proposition 3.1
the fuzzy difference equation (1.6) has unique positive solution xn, such that (3.27) holds.

In addition, (3.10) and (3.55) imply that (3.36) holds. So, from statement (i) of
Proposition 3.2, zero is the unique nonnegative equilibrium of the fuzzy difference equation
(1.6).

From the analogous relation of (3.9) of Proposition C and using (3.10), (3.11), we get

0 < Rn,a < An
r,aR0,a < NnR0, for any a ∈ (0, 1], n = 1, 2, . . . , (3.57)

and since

0 < limD(xn, 0) = lim sup{max{|Ln,a − 0|, |Rn,a − 0|}} = lim sup{Rn,a}, (3.58)

where n → ∞ and sup is taken for all a ∈ (0, 1], from (3.55) and (3.57), we get

limD(xn, 0) = 0, n −→ ∞. (3.59)

This completes the proof of statement (i).
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(ii) Since from (3.56), we have that (3.15) and (3.37) are fulfilled, we get from (3.16)
and statement (ii) of Propositions 3.1 and 3.2 that the fuzzy difference equation (1.6) has
unique positive solution xn such that (3.27) holds, and a nonnegative equilibrium x, such
that (3.38) and (3.39) hold. Since (Ln,a, Rn,a) is a positive solution of system (3.17), from (3.11),
(3.16), (3.56), and Proposition C we have that

lim
n→∞

Ln,a = 0, lim
n→∞

Rn,a = Ra, a ∈ (0, 1]. (3.60)

Using (3.60) and arguing as in Proposition 2 of [34], we can prove that the positive solution
xn of (1.6) nearly converges to xwith respect toD as n → ∞ and converges to xwith respect
to D1 as n → ∞. Thus, the proof of the proposition is completed.

To illustrate our results we give some examples in which the conditions of our
propositions hold.

Example 3.4. Consider the fuzzy equation (1.6) for k = 2

xn+1 = (1 − xn − xn−1)
(
1 − e−Axn

)
, n = 0, 1, . . . , (3.61)

where A is a fuzzy number such that

A(x) =

⎧
⎨

⎩

10x − 5, 0.5 ≤ x ≤ 0.6,

−5x + 4, 0.6 ≤ x ≤ 0.8.
(3.62)

We take the initial values x−1, x0 such that

x−1(x) =

⎧
⎪⎨

⎪⎩

10x − 2, 0.2 ≤ x ≤ 0.3

−10
3
x + 2, 0.3 ≤ x ≤ 0.6,

x0(x) =

⎧
⎪⎨

⎪⎩

10x − 1, 0.1 ≤ x ≤ 0.2,

−20
3
x +

7
3
, 0.2 ≤ x ≤ 0.35.

(3.63)

From (3.62), we get

[A]a =
[
a + 5
10

,
4 − a

5

]

, a ∈ (0, 1] (3.64)

and so

⋃

a∈(0,1]
[A]a ⊂ [0.2, 0.8]. (3.65)
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Moreover from (3.63) we take

[x−1]a =
[
a + 2
10

,
6 − 3a
10

]

, [x0]a =
[
a + 1
10

,
7 − 3a
20

]

(3.66)

and so

⋃

a∈(0,1]
[x−1]a ⊂ [0.2, 0.6],

⋃

a∈(0,1]
[x0]a ⊂ [0.1, 0.35]. (3.67)

Therefore the conditions (3.10)–(3.14) are satisfied. So from statement (i) of Proposition 3.1
the solution xn of (3.61) with initial values x−1, x0 is positive and unique. In addition it is
obvious that (3.36) are satisfied. Then from the statement (i) of Proposition 3.2 we have that
zero is the unique nonnegative equilibrium of (3.61). Finally from Proposition 3.3 the unique
positive solution xn of (3.61)with initial values x−1, x0 tends to the zero equilibrium of (3.61)
as n → ∞.

Example 3.5. Consider the fuzzy equation (3.61)where A is a fuzzy number such that

A(x) =

⎧
⎪⎨

⎪⎩

5x − 4, 0.8 ≤ x ≤ 1,

−10
3
x +

13
3
, 1 ≤ x ≤ 1.3.

(3.68)

We take the initial values x−1, x0 such that

x−1(x) =

⎧
⎨

⎩

10x − 1, 0.1 ≤ x ≤ 0.2,

−5x + 2, 0.2 ≤ x ≤ 0.4,

x0(x) =

⎧
⎪⎨

⎪⎩

20
3
x − 1, 0.15 ≤ x ≤ 0.3,

−20
3
x + 3, 0.3 ≤ x ≤ 0.45.

(3.69)

From (3.68), we get

[A]a =
[
a + 4
5

,
13 − 3a

10

]

, a ∈ (0, 1] (3.70)

and so

⋃

a∈(0,1]
[A]a ⊂ [0.8, 1.3]. (3.71)
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Moreover from (3.69) we take

[x−1]a =
[
a + 1
10

,
2 − a

5

]

, [x0]a =
[
3(a + 1)

20
,
3(3 − a)

20

]

(3.72)

and so

⋃

a∈(0,1]
[x−1]a ⊂ [0.1, 0.4],

⋃

a∈(0,1]
[x0]a ⊂

[
3
20

,
9
20

]

. (3.73)

Therefore the conditions (3.15), (3.16) are satisfied. So from statement (ii) of Proposition 3.1
the solution xn of (3.61)with initial values x−1, x0 is positive and unique.

Example 3.6. We consider equation (3.61) where the fuzzy number A is given as follows

A(x) =

⎧
⎨

⎩

20x − 23, 1.15 ≤ x ≤ 1.2,

−10x + 13, 1.2 ≤ x ≤ 1.3.
(3.74)

Then from (3.74), we get

[A]a =
[
a + 23
20

,
13 − a

10

]

, a ∈ (0, 1]. (3.75)

Then it is obvious that (3.37) are satisfied. Then from the statement (ii) of Proposition 3.2 we
have that zero and x where [x]a = [0, Ra], a ∈ (0, 1], 0 < Ra = 1 − e(13−a)/10Ra < 1/2, a ∈ (0, 1]
are the only nonnegative equilibriums of the fuzzy difference equation (3.61), such that (2.11)
and LaRa = 0 hold.

Example 3.7. We consider the fuzzy difference equation (3.61)where A is given by (3.62). Let
x−1, x0 be the fuzzy numbers given by (3.69). Then since (3.15), (3.16), and (3.36) hold from
Propositions 3.1, 3.2 and 3.3 the unique positive solution xn of (3.61) with initial values x−1,
x0 tends to the zero equilibrium of (3.61) as n → ∞.

Example 3.8. Consider the fuzzy difference equation (3.61)where the fuzzy numberA is given
by

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

10x − 9, 0.9 ≤ x ≤ 1,

1, 1 ≤ x ≤ 1.2,

−10x + 13, 1.2 ≤ x ≤ 1.3.

(3.76)

Then from (3.76), we get

[A]a =
[
a + 9
10

,
13 − a

10

]

, a ∈ (0, 1]. (3.77)
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Then it is obvious that relations (3.37) are satisfied. So from the statement (ii) of
Proposition 3.2 we have that zero and x where [x]a = [0, Ra], a ∈ (0, 1], 0 < Ra =
1−e((13−a)/10)Ra < 1/2, a ∈ (0, 1] are the only nonnegative equilibriums of the fuzzy difference
equation (3.61), such that (2.11) and LaRa = 0 hold. Let x−1, x0 be the fuzzy numbers defined
in (3.69). Then from the statement (ii) of Proposition 3.1 and statement (ii) of Proposition 3.3
we have that the unique positive solution xn of (3.61) with initial values x−1, x0 nearly
converges to the nonnegative equilibrium x with respect to D as n → ∞ and converges
to x with respect to D1 as n → ∞.

4. Conclusions

In this paper, we considered the fuzzy difference equation (1.6), where A and the initial
values x−k+1, . . . , x0 are positive fuzzy numbers. The corresponding ordinary difference
equation (1.6) is a special case of an epidemic model. The combine of difference equations
and Fuzzy Logic is an extra motivation for studying this equation. Amathematical modelling
of a real world phenomenon, very often, leads to a difference equation and on the other hand,
Fuzzy Logic can handle uncertainness, imprecision or vagueness related to the experimental
input-output data.

The main results of this paper are the following. Firstly, under some conditions on A
and initial values we found positive solutions and nonnegative equilibriums and then we
studied the convergence of the positive solutions to the nonnegative equilibrium of the fuzzy
difference equations (1.6). We note that, in order to study the fuzzy difference equation (1.6),
we used the results concerning the behavior of the solutions of the related system of two
parametric ordinary difference equations (1.7) (see [11]).
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