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A nonautonomous SIR epidemic model with age structure is studied. Using integro-differential
equation and a fixed point theorem, we prove the existence and uniqueness of a positive solution
to this model. We conclude our results and discuss some problems to this model in the future. We
simulate our analyzed results.

1. Introduction

Age structure of a population affects the dynamics of disease transmission. Traditional
transmission dynamics of certain diseases cannot be correctly described by the traditional
epidemic models with no age-dependence. A simplemodel was first proposed by Lotka and
Von Foerster [1, 2], where the birth and the death processes were independent of the total
population size and so the limitation of the resources was not taken into account. To overcome
this deficiency, Gurtin and MacCamy [3], in their pioneering work considered a nonlinear
age-dependent model, where birth and death rates were function of the total population.
Various age-structured epidemic models have been investigated by many authors, and a
number of papers have been published on finding the threshold conditions for the disease to
become endemic, describing the stability of steady-state solutions, and analyzing the global
behavior of these age-structured epidemic models (see [4-7]). We may find that the epidemic
models that most authors discussed mainly include S-I-R that is, the total population of a
country or a district was subdivided into two or three compartments containing susceptibles,
infectives, or immunes; it was assumed that there is no latent class, so a person who catches
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the disease becomes infectious instantaneously. The basic SIR age-structured epidemic model
is like the following equations:

0s(a,t) N os(a,t)

ot oa

oi(a,t) N 0i(a,t)
ot oa

-Ma, t,i)s(a,t) - p(a)s(a, t),

= Ma,t,i)s(a,t) — u(a)i(a,t) —y(a)i(a,t),

D 2D @it - warant

(1.1)
50~ p@pands,  i0n=r0n-0

s(a,0) = so(a) € L1(0,+0),  i(a,0) =ip(a) € L1(0, +0),

7(0,a) = ro(a) € L1 (0, +o0).

The non-autonomous phenomenon is so prevalent and all pervasive in the real life
that modelling biological proceeding under non-autonomous environment should be more
realistic than autonomous situation. The non-autonomous phenomenon is so prevalent in the
real life that many epidemiological problems can be modeled by non-autonomous systems
of nonlinear differential equations [8-11], which should be more realistic than autonomous
differential equations. In one case, the incidence of many infectious diseases fluctuates over
time and often exhibits periodic behavior. The basic SIR model is formulated by

d
d_f = B(t) - u(t)S - a(H)SI,
% = a(t)SI - u(t)I - y(t)I, (12)

R 1 pR

These works were mainly concerned with finding threshold conditions for the disease to
become endemic and describing the stability of steady-state solutions, often under the
assumption that the population has reached its steady state and the diseases do not affect
the death rate of the population.

However, all of the models which are not mixed age structure and non-autonomous
are only concluding age structure or non-autonomous. Birth rate or input function is
dependent on age or dependent on time ¢ in these models cited therein. In fact, birth rate
or input function is dependent not only on age a and time t but also on the total population
P(t). We know the resource is limited. As recognized by authors, there was only one paper
[3, 12] related them. In [3, 12], their model are two dimensions about epidemic dynamics.
The population is increasing year after year. The birth rate is a decrease function until the
population attend certain level such as Logistic growth rate. At the same time, the death rate
should be dependent on the total population P(t). We can consider now more realistic and
complex models in which the epidemic acts in a different way on infected, susceptible and
recovered (immune). We consider a well-known expression for the force of infection which is
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justified in the literature. We choose as L!(R;) the natural space for the solution because the
total population is finite.

This paper is organized as follows: Section 2 introduces a non-autonomous SIR model
with age structure. In Section 3, existence and uniqueness of a solution for an epidemic model
with different mortality rates on any finite time-interval is obtained. In Section 4, we conclude
our results and discuss the defect of our model.

2. The Model Formulation

This section describes the basic model we are going to analyze in this paper. The
population is divided into three subclasses: susceptible, infected, and recovered. Where
S(a,t),1(a,t),R(a,t) denote the associated density functions with these respective epidemi-
ological age-structured classes. Let p;(a,t,P(t)), i = 1,2,3, be the age-specific mortality
of the susceptible, the infective and the recovered individuals at time t, respectively. We
assume that the disease affects the death rate, so we have uy(a,t, P(t)) > pui(a,t, P(t)), and
ua(a, t,P(t)) > ps(a,t, P(t)). We assume that all new born are susceptible whose birth process
is described by

s(0,1) = I;wﬂ(a, t, P(t))s(a, t)da, 2.1)

where f is the birth rate. We also suppose that the initial age distributions are given by
so, o, and rp. And the age-specific recovery rate, y, is independent of the time. Then the joint
dynamics of the age-structured epidemiological model for the transmission of SIR can be
written as

0s(a,t) N os(a,t)
ot oa
Oi(a,t) N Oi(a,t)
ot 0a

ar(ai' D, arg(;,’ h_ y(a)i(a,t) - ps(a,t, P(t))r(a,t),

-AMa, t,i)s(a,t) — pi(a,t,P(t))s(a,t),

= Ma,t,i)s(a,t) — pa(a,t, P(t))i(a,t) —y(a)i(a,t),

(2.2)
s(0,t) = Iwﬁ(a, t,P(t))p(a,t)da, i(0,t) =7r(0,t) =0,
0
s(a,0) = so(a) € L1(0, +0), i(a,0) = ig(a) € L1(0, +o0),

r(0,a) = ro(a) € L1 (0, +c0).

We supposes s(a, t),i(a,t), and r(a,t) belong to W1(0, +o0). So, s(a,t),i(a,t), and r(a,t) —
0,as a — +oo. It is logical to satisfy the biological meaning. The horizontal transmission of
the disease occurs according to the following law:

AMa,t,i) = J‘WJK(a, a)i(t,a)da', (2.3)
0
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where K(a,d') is the rate at which an infective individual of age a’ comes into a disease
transmitting contact with a susceptible individual of age a. Summing the equations of (2.2),
we obtain the following problem for the population density P(a,t) = S(a,t) + E(a,t) +1(a,t).

[*e] [oe] [oe]

i(a,t)da + f r(a, t)da. (2.4)

0

P(t) = S(t) + I(t) + R(t) = f s(a,t)da + f

0 0

In this paper, we prove the existence and uniqueness of a nonnegative solution of
the model (2.2) on any finite time-interval. Our results are based on a process of the age-
dependent problem for the susceptible the infected and the removed, and then a fixed point
method. To study existence and uniqueness of a solution for an epidemic model with different
mortality rates, we need the following hypotheses. Given T > 0, we denote I := [0,T] and we
suppose that

(H,) fori=1,2,3, pi(a,t, P) is a nonnegative measurable function such that the mapping
I'|= ui(L,l +u, P) belongs to LiOC(RJ,) for almost all (u, P) € R,. Moreover, there
exists a constant C1(T) > 0 such that for all P, P’ € R,

|ui(a,t,P) = pi(a,t,P)| <Ci(T)|P-P'|, ae. (at)€R,xI. (2.5)

With the notation fiy = pp — p1, Ha = po — 3, there exists another constant C;(T) > 0,
j =2,3, such that

|fii(a,t, P)| < Cj(T)log(|P| +e), ae. (at)eR,xI, i=2,3. (2.6)

(H») p(a,t, P) is a nonnegative measurable function which has compact support on the
variable a and such that for all P, P’ € R,

|B(a,t,P) - B(a,t,P")| < Cu(T)|P-P'|, ae. (at)€RxI, (2.7)

where C4(T) > 0 is another constant which depends only on T. Moreover, there
exists a constant Cs5(T) > 0 such that for all P € R,

|B(a,t,P)| < C5(T)log(|P| +e), ae. (at)€R,xI. (2.8)

(H3) ¢o = (so,10,10) € (LY(R,))% has a compact support.

(Hy) y(a) € L*(R,) has compact support and is a nonnegative function. We set y,, =
ess supae(o,w)y(a).

(Hs) K(a,a') € L*(R, x R;) has a compact support and is a nonnegative function. We
have K, = ess supae(ofm)K(a, a).

To simplify the calculation of estimates, we perform the change

i(a,t) =p(a,t)-s(at)—-r(at),
(2.9)

H1 = o — Y1, Ho = po — Y3.
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We obtain that the following system is analogous to (2.2).

op(a, op(a, . .
Pf; ) + Péﬁ; D =—is(a,t) + por(a,t) — uo(a, t, P(t))p(a,t),

0s(a, 0s(a, .
S(ai H + Sé‘; H =-A(a,t,p—s—r)s(at) - pi(a,t P(t)i(a,t),

ar(ai' H) + aréc;, H) =y(a)[p(at) —r(at)] - (us(a,t, P(t)) +y(a))r(a,t),

(2.10)
p(0,t) =5(0,t) = J‘o P(a,t,P(t))p(a,t), 7(0,t) =0,

p(a,0) =sp(a) € L1(0,+0), s(a,0) = ip(a) € L1 (0, +o0),

r(0,a) = ro(a) € L1(0,+00),
where
po(a) = (po(a), so(a), ro(a)) = (so(a) +ro(a) +io(a), so(a), ro(a)), ae, a€(0,+w). (211)
For biological reasons, we are interested in nonnegative solutions, so we consider that
p(a,t) > s(a,t), p(a,t) >r(a,t). (2.12)
And we will look for solutions to (2.10) belonging to the following space:

Vi={per=(L(L'(R))) I pr(a) 2 pa(a,t) 20,

(2.13)
pi(a,t) > ps(a,t) 20, ae, (at) € R, x1}
endowed with the norm
|p|1 = eSSStu? e_ktIP(’/ t) 17 (214)
€

where k is a positive constant which will be chosen later and | - |; denotes the usual norm in

LY(R,) thatis, [p(, )11 = llpr(, B)ller + [lp2( Ol + lpaC, )1
Namely, by a solution to (2.10), we mean a function

p(/) = (P(/ '),S(','),T(', )) € ‘// (215)
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such that

Dp = —ji1s(a, t) + fior(a, t) — pa(a, t, P(t))p(a,t),

Ds =-\(a,t,p-s—-r)s(a,t)—m(at,Pt))i(a,t),
Dr =y(a)[p(a,t) - r(a,t)] - (us(a,t, P(t)) +y(a))r(a,t),

limp(a,t+h) = IO p(a,t, P(t))p(a,t)da, (2.16)

tlino1 s(a,t+h) = J‘ P(a,t,P(t))p(a,t)da,
-0 0
t11m0+r(a,t+ h) =0,

p(a,t),s(a,t),r(a,t) — 0, when a — +oo.

In order to prove the existence of solution of (2.10), adding y(a) in both sides of (2.16)
in technical style, we have

Dp = —pis(a,t) + pior(a, t) + y(a)p(a,t) — (u2(a,t, P(t)) +y(a))p(a,t), (2.17)

where Dp, Ds, and Dr denote the directional derivatives of p, s and r, respectively, that is,

pla+h,t+h)-p(at)

. (2.18)

Dp(a,t) = ;1113})

Generally, p will not be differentiable everywhere; of course,when this occurs, Dp = 0p/0a +
Op/0t, Ds = 0s/0a + 0s/0t and Dr = Or/0a + Or /ot.

3. Existence of a Solution to the System

If we assume that p = (p, s, ) is smooth along the characteristics a = t + ¢ (except perhaps for
a zero-measure set of ¢), considering

B, = fo P(a,t,P(t))p(a,t)da, (3.1)
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where P(t) = gwp(a, t)da, and integrating equalities of (2.16) along the line, we obtain the
following ODS

(po(a—t)mi(a,tt,p)

+Jtrl(a,t,0,p) [flu(a-o0,t-0,P(t-0))s(a-o,t-0)
0

+iy(a-o,t—0,P(t-0))r(a-o,t—0)|do, a>t,
p(at) = - pa (t—0))r( )] (32)
B, (t - a)mi(a,t,a,p)
+J mi(at,op)[m(a-o,t—o0,P(t-0))s(a-o,t-0)
0
+i(a-o,t-0,P(t-o0))r(a-o,t-o0)|do, a<t
Integrating (2.7) along a =t + ¢, we also get p(a, t) for technical need
po(a— i‘)yz‘l1 (a,t,t,p)
t
+I mi(at,0,p)[f1(a-o,t-0,P(t-0)) xs(a-o,t-0)
0
+ip(a-o0,t—0,P(t-o0))r(a-o,t-0)
+y(a-o)p(a-o,t-o0)]do, a>t,
p(a,t) = : (3.3)
B,(t - a)x|(a,t,a,p)
+J i (at,0,p)[f1(a-o0,t-0,P(t-0)) xs(a-o,t-0)
0
+ix(a—-o,t-0,P(t-o0))r(a—-o,t-o0)
L +y(a-o)pla-o,t-o0)]do, a<t.
Integrating the second equation of (2.16) along a =t + ¢, we have
so(a—-t)m(a,t,t,p), a>t,
s(a,t) = ( ) (3.4)
B,(t-a)m(a,t,a,p), a<t.
Integrating the third equation of (2.16) along a = t + ¢, we obtain
rrO(a - t).7['3((1, t/ t/ ,0)
t
+j ms(a,t,0,p)y(a-0o)(pla-o,t-0)-s(a—o,t-0))do, a>t,
r(a,t) = 1 ’ (3.5)

By(t- )7} (a,t,a,p)

+I ms(a,t,op)y(a—o)(pla—-o,t—0)-s(a-o,t-0))do, a<t,
0
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where
mi(at,x,p) = expf pa(a—s,t—s,P(t-s))ds,
0

m(at,x,p) = expf (m(a-s,t—=s,P(t-s))+A(a-o,t—0o,p-s—r))ds,
0
(3.6)

m3(a,t,x,p) = exp fx(yl(a —s,t—s,P(t-s))+y(a-o0))ds,
0

xi(at,x,p) =exp Ix(yz(a —s,t—s,P(t-s)) +y(a-o0))ds.
0

We can easily see that solving (2.16) is equivalent to finding a solution to (3.2), (3.4)
and (3.5) or (3.3), (3.4), and (3.5) (see [3]). So, in the sequel, we restrict our attention to these
integral equations.

Let us consider r = log(|po|1 + e) with py, and w > 0 fixed. Consider the set

Crw={peVI|p,t)|, <exp(re™) ae tel}. (3.7)

The following result provides some useful estimates.

Lemma 3.1. Suppose (H1)-(Hs), and let p := (p,s,r), p' :== (p',8,7") € Crp,a € Ry, and t € I.
Then for x < minf{a, t},

(i)
|i(a,t,x;p)| <1, i=1,2,3. (3.8)
(ii) AM(T) > O such that
P, |B,(H)| < M(T) ae.tel. (3.9)
(iii) 3C;(T) > 0, such that
Ci(T
|7i(a,t,x; p) —mi(a,t,x;p)| < ]li ) lp —p'|Vekt, i=1,3 j=6,7. (3.10)

(iv) 3C(T, K) > 0, such that

C(T,Ky)

P lp—p'| e (3.11)

|2 (a,t,x;p) —ma(a,t,x;p")| <
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Proof. Firstly, note that (3.8) and (3.9) are immediate. On the other hand,
|7i(a,t, x;p) - mi(a,t, x; p)|
< J |pita—s,t—s,P(t—s)) —pi(a—s,t—s,P(t-s))|ds
0
< C]-(T)’[0 |P(t-s)-P'(t-s)|ds
t
= Cj(T)L |P(s) — P'(s)|ds

t
=G0 Ips,) s, s

Ci(T) ) . .
< > |p—p|vekt, i=13j=6,7,
(3.12)
|m2(a,t,x;p) = m2(a,t, x; p)|
SJ |pi(a—s,t—s,P(t-s))—m(a—s,t—s,P(t—s))|ds
0
+I [Ma-st-s;p-s—r)-Aa-s,t—sp -5 —1")|ds
0
SCl(T)J‘ |P(t—s)—P’(t—s)|ds+C(T,KOo)I lp—¢'|.ds
0 0
t X
= C1(T)f eMe ™ |p(s,) —p’(s,-)|L1ds+C(T,Km)f eMe|p—p'|, ds
t-x 0
Cy(T) ) C(T,Ky) )
R e e T
We set C1x = C1(T) + C(T, K,), and then
. . Cix ) kt
|m2(at,x;p) w2 (a,t, x;p)| < == |p = ¢ ve™ (3.13)
]

Lemma 3.2. Suppose (H1)—(Hs), if p = (p, s, r) € V satisfies (3.2), (3.4), and (3.5), or (3.3), (3.4),
and (3.5), then there exists a constant w > 0, depending only on T and Yy, such that p € C,, with
Cr defined in (3.7).
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Proof. Suppose that p = (p, s, r) € V satisfies the above assumptions. Considering (3.2), (3.4)
and (3.5), or (3.3), (3.4), and (3.5), thanks to (3.7) and an obvious change of variables in the
integrals, we have forall t € I,

|p(t/')|1
= lpat ) + lle2t )| + st )|l

= f po(a—t)mi(a,t,t;p)da
t

+ watﬂl(a, t,o;p)|p1(a—o,t—0,P(t—0))s(a—o,t-0)
tJo

+ (a-o,t-0,P(t-0))r(a-o,t-o0)|doda

t
+ J‘ B,(t - a)mi(a,t,a;p)da
0

+ Jt fuﬂ1(a, t,o;p)[pi(a-o,t—0,P(t-0))s(a-o,t-0)
0o

+ (a-o,t—0,P(t-0))r(a-o,t—o0)|doda
®© t ©
+ J‘ so(a—t)m(a,t,t;p)da+ f B,(t — a)m(a,t, a;p)da + j ro(a—t)ms(a,t, tp)da
t 0 t
o pt
+J f y(a-o)ms(a,t,o;p) x [pla—o,t—0)—s(a—o,t—0)|doda
t Jo
t pa
+J‘ f y(a-o)ms(a,t,o;p) x [pla—o,t—0)—s(a—o,t-0)|doda
0o
= f po(a—t)mi(a,t,t;p)da
t
t poo
+ J‘ J. m(a+t-o,t,t-o;p)|p(a 0,P(0))s(a o)+ (a0, P(0))r(a,c)|dado
0/ t-o
t
+ J B, (t - a)m (a,t,a;p)da
0
t at-o
+J‘ f m(a+t-o,t,t-o;p)|p(a 0,P(0))s(a o)+ piz(a,o,P(0))r(a,o)|dado
0o
t
+ f B,(t - a)m(a,t,a;p)da
0

+ It J‘Oo y(a)ms(a+t—o,t,t—0;p)[p(a o) -s(a o0)|dado
0/ t-o

+ It J-t_"y(a)ara(a +t-o,t,t-0;p) x [p(a,0) - s(a,0)]dado
0/ 0
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) t poo
Sf |p0(a—t)|da+ff |/ (a, 0, P(0))s(a,0)|dado
t 0Jo
t poo
+f f |fi2(a, 0, P(0))r(a,0)|dado
0J o
t t roo
+2I |Bp(t—a)|da+f f ly(a)p(a,0) —s(a,0)|dado
0 0Jo

t t
< pola-1)|, +ﬁ1f0||s<-, o) ldo +ﬁ1fo||r<a, o)lndo
t t t
+ ZL log(|P| +e)||p(-, 0)|| . do + Yoojo lpC ol + YmIOIIS(-,G) |1 do

t t
<|poa-p], +(2+ m)j log (1P| + &) |p( 0)||, 1o + (77, + 1) f I o)l do
0 0
t
+ Ir(@ o)l do
0

t
< lpa=l, + @2+ 210 +7i,+70) [ 0PI+ )lpC, o) do.

(3.14)

We use the Gronwall’s inequality, and then

t
lpt, )|, < |pol, exp wfo log(|P| + e)du, (3.15)

where w = 2 + 2y, + f; + 4, and pii(a,t, P(t)) <p, i=1,2.
Let us consider the map p = (p1,p2,p3) € V — F(p) = (Fi(p), F2(p), F3(p)) € V, where
F(p) is defined by

po(a—t)mi(a,t,t;p)

t
+I0Jr1 (a,t,0;p)[f1(a-o0,t—0) x F2(p)(a—o0,t—0)

+Hz x F3(p)(a—o,t-0)]do, t<a,
Fi(p)(a,t) = 3 (3.16)
B,(t—a)mi(a,t, a;p)

+fax1(a, t,o;p)[i(a—-o,t—0) x F2(p)(a—o0,t-0)
0

{ +H2 x F3(p)(a—o,t-0)]do, t>a,
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and also F;(p) can be equal to

po(a -t (a,t,t;p)

+J‘t.n'11 (a,t,0;p) [a(a—-o0,t —0) x F(p)(a-o0,t-0)

' +i2 x F3(p)(a—-o0,t-0)]do, t<a,
Fi(p)(a,t) = 3 (3.17)
B,(t - a)m{ (a,t,a;p)

+J‘ayr11 (a,t,0;p) [a(a—o0,t—0) x Fo(p)(a—o,t-0)

’ +ip x F3(p)(a—o,t - 0)]do, t>a,

—t ,ttp), t ,
Fz<p)<a,t>={s°(a imiatdie), 65 (318)

B,(t - a)m(a,t,a;p), t>a,
(10(a—t)ms(a,t,t;p)

+fty(a —-o)ms(a,t,o;p)(pr(a-o,t—0)-F(p)(a-o,t—0))do, t<a,
Fs(p)(a,t) = 3 0

IZY(a - o)s(a,t,o;p)

x(p1(a—o,t—0) - F(p)(a-o,t-0))do, t>a,
(3.19)
where p(t) = [ p1(a, t)da. O

Lemma 3.3. With the assumptions of Lemma 3.2, we have F : V. — V.

Proof. In this proof we denote, for abbreviation,

y
Te(x,y) = exp <—J- pk(a—s,t—s;P(t- s))ds), k=1,2,
y
®;(x,y) =exp (—f Ma-st-s;p-s- r)ds), (3.20)

y
D, (x,y) = exp(—f y(a—st-s;p-s —r)ds).

If p € V, then P(t) € L*(I). Then p(a,t, P(t)), pii(a, t, P(t)) € L*(R: xI),i=1,2, by (2.5) and
(2.7). Hence, F is clearly measurable in a and essentially bounded on I.

By (3.18), Fa(p)(a,t) > 0,a.e. (a,t) € R, xI. So, we only need to show that Fi(p)(a,t) >
Fy(p)(a,t), Fi(p)(a,t) > F3(p)(a,t), ae. (a,t) € Ry x I, F3(p) > 0, and Fi(p) >0, a.e. (a,t) €
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R. x I. We assume that a > t (the discussion for a < t is similar). Using (3.11) and (3.19) and
substituting F, and F3 into F; we get

Fl(P)(art) - F2(P)(a/t)
=po(a-t)ym(a,tt,p)—so(a—t)m(a,t,t,p)

+ Itﬂl (a,t,0,p)(1(a—-o,t—0,P(t-0))F(p)(a—o,t-0) (3.21)
0

+ a(a-o,t-0,P(t-0))Fs(p)(a-o0,t-0))do

=:po(a—t)m (a,t,t,p)—so(a—t)m(attp)+A+B.

Now, we proceed to estimate these quantities to see that F; > F,. By the mean value theorem,
there exists t; € (0, t), such that

t
A= j mi(a,t,0,p)pi(a—o,t—0,P(t-0))F(p)(a-o,t-o0)do
0

t R (3.22)
= j mi(a,t,0,p)pi(a—-o,t—0,P(t-0))so(a-t)m(a—-o,t-o,t-o0,p)do
0

=so(a—t)m(a,t,t,p)(1-T(0, H)¥ (0, 1),
where
t
B = f mi(a,t,0,p)pr(a—o,t—0,P(t-0))F3(p)(a-o,t-o0)do
0

t
= f mi(a,t,0,p)px(a—o,t-0,P(t-0))
0

x [ro(a -t)yms(a—o,t-o0,t—0,p)do

¢
+ j y(a-s)m(a—-o,t-0,5s-0,p)(pi(a—s,t-s) —Fz(p)(a—s,t—s))]dsdG
o
t
= ro(a—t)f m(a,t,0,p)p(a—o0,t—0,P(t-0))m(a—o,t-0,t-0,p)do
0

t
+f mi(a,t,0,p)pa(a-o,t-0,Pt-o0))
0

x ft y(a=s)m(a—-o,t-0,5s-0,p)(pi(a—s,t—s)—F.(p)(a—s,t—s))dsdo

=: B; + B,.
(3.23)
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By the mean value theorem, there exists t, € (0,), such that

t
By =ry(a— t)I mi(at,o,p)ix(a-o,t-0,P(t-o0))m(a-o,t-o,t-o0,p)do
0 (3.24)

=ry(a—t)ms(at,t,p)(1-T2(0,t)¥,"(0,t2),

and by the mean value theorem, there exists ¢, € (0, t), such that

B, = thl(a,t,o,p)ﬁz(a -o,t—0,P(t-0))
0
x Jty(a—s)m(a—o,t—a,s—c,p) (pi(a—s,t—s)—F.(p)(a—s,t—s))dsdo
t s
= Joy(a —-s)(pi(a-s,t—s)—F(p)(a—s,t- s))joxl(a,t,o,p)
xfir(a—-o0,t—0,P(t-0))m(a-o0,t—0,5—0,p)dods
t
= on(a— s)(pi(a—s,t—s)—Fa(p)(a-s,t—s))m(a,t,s,p)

S
d _
x fo - %rz(o,a)qf;(o, 0)do2ds

t
= Joy(a -s)(pi(a-s,t—s)—Fa(p)(a-s,t—s))ms(at,s,p)(1-T2(0,8) ¥, (0,t).
(3.25)

We substitute A, B;, and B, into the formula of F;(p)(a, t) — F2(p)(a,t). Thus,

Fi(p)(at) - F2(p)(a,t)
=po(a—-t)ym(a,tt,p)—so(a—-t)m(a,tt,p)
+so(a—t)m(at,t,p)(1-T1(0,4)¥ (0, t)

+ro(a—t)ms(a,t,t,p)(1-T2(0,4)¥, (0, 1)

t
+Ly(a—s)(p1(a—s,t—s) -Fy(p)(a-s,t-s))

x 3(a,t,s,p)(1-T2(0,5)) ¥, (0, t5)ds
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> PO(a - t)‘ﬂ-l (a/ t, t;P) - So(a - t)JZ-Z(a/ t, t/P)rl (01 t)-lp71 (O/ tl) + Bl + BZ
> pO(a - t)]fl(a, t, t;P) - So(a - t)]l'1 (a/ t, t,P)qu (tl/t) + Bl + B2

> pO(a - t)ﬂ-l(a/ t, t/p) (1 - (tllt)) + B
¢
+ Ly(a -s)(pi(a—s,t—s)—Fx(p)(a—s,t—5s))

xas(a,t,s,p)(1-T5(0, s))‘Pgl(O, ts)ds

> (po(a - )1 (a, 1,1, p) (1= Wy (ty, 1)) + By )l (-)m(@tsp)(1-Ta0)¥ 01)
> 0.

(3.26)

By the formula of F3(p), we have F3(p) > 0. Using (3.17) and (3.18) and substituting
F, and F3 into F; we get

Fl(p)(a,t)—Fg(p)(a,t)

= pO(a - t)]l'l (al t/trp) - T()(a - t)JZ'3(a,t, t;P)

+ JZJr% (a,t,0,p)(fu(a—-o,t—0,P(t-0))F(p)(a—o,t-0)

(3.27)
+ a(a-o,t-0,P(t-0))F(p)(a-o,t-o0))do
t
- f y(a—o0)ms(a,t,0,p)(pi(a—o0,t-0)-F(p)(a—o,t-0))do
0
= po(a-t)m (at,t,p)—ro(a-t)m(attp)+ A +Ci+Co
By the mean value theorem, there exists t3,t4 € (0,t), such that
t
A = f ai(a,t,0,p)pi(a-o,t-0,P(t-0))F(p)(a-o,t-o)do
0
(3.28)

t
= I mi(a,t,0,p)p(a-o,t-0,P(t-0))so(a-t)m(a-o,t-o,t-0c,p)do
0

=so(a—-t)m(a,t,t,p)(1-T1(0,£)¥; (0, ) ¥ (0, ts).
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By the mean value theorem, we have the following:

t
Ci=ry(a- t)f .71'11((1, t,o,p)pa(a—-o,t—0,P(t-0))m(a-o,t-o0,t—0,p)do
0
= TO(a - t)]z-3(al t, t/P) (1 - I12(01 t))/

C, = J‘Oyrll (a,t,0,p)f2(a—o0,t—0,P(t-0))
¢
xf y(a—s)m(a-o,t-0,5s-0,p)(pi(a—s,t—s)—F.(p)(a—s,t—s))dsdo
¢
:joy(a—s)(pl(a—s,t—s)—Fz(p)(a—s,t—s))
><J‘syrll(a,t,o,p)ﬁz(a—o,t—0,P(t—0))7r3(a—o,t—o,s—O',p)dods
0
t s d
= f y(a—=s)(pi(a—s,t—s)-F.(p)(a—s,t- s))yrg(a,t,s,p)f - d—Fz(O,o)des
0 0 9

t
= foy(a -s)(pi(a—-s,t—s)—F(p)(a—s,t—s))ms(at,s,p)(1-T2(0,s)).

(3.29)
Thus,
Fi(p)(a,t) - F3(p)(a 1)
=po(a-tymi(at,t,p) —ro(a-tims(at,t,p)
+ f;x}(a, o, p)fis(a-o,t -0, P(t - 0))F2(p) (a0, t - 0)do
+719(a—t)ms(a,t,t,p)(1-T2(0,t)) (3.30)

t
- foy(a —s)(pi(a-s,t—s)—F(p)(a—s,t—s))ms(at,s,p)(1-T2(0,s))ds
> (po(a—t) —ro(a 1) (a,t,t,p)

t
+f ai(a,t,0,p)pi(a-o,t-0,P(t-0))F2(p)(a-o,t-0)do >0.
0

So that Fi(p)(a,t) > Fa(p)(a,t) >0, Fi(p)(a,t) > F3(p)(a,t) > 0,a.e. a € (t,+o0), and
we can conclude that foreachp € V, F(p) € V. O

Theorem 3.4. Suppose (H1)—(Hs), for each T > 0 and for each py = (po, S0, 10) € (Ll(R+))3, with
Po > So,po > o, there exists a unique p = (p,s,r) € V satisfying (3.2), (3.4), and (3.5), or (3.3),
(3.4), and (3.5). And so, p is the unique solution to problem (2.10).
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Proof. In order to prove the theorem, it remains to be shown that F (defined by (3.11) and
(3.18)) has a unique point fixed in V.

Let C,, be defined by (3.7); then for w being large enough F maps C,, into C,q.
Indeed, by estimate of |p(-,-)|1, we get, for almost all t € 1

|F(P)(/t)|1 = ”Fl(p)(/t)”Ll + ”FZ(P)(/t)”Ll + ||F3(P)(/t)”L1

= J‘ (po(a—-t)mi(a,t,t,p) +so(a-t)m(attp)+ry(a-t)ms(attp))da
t
¢
+ f (Bp(t—a)mi(a,t,a,p) + By(t — a)my(a,t,a,p))da
0

t ra
+I f mi(a,t,op)[p(a-o,t-0)F(p)(a—o,t-0)
0J o

+ fo(a—o,t—-0)F3(p)(a—o0,t - 0)|doda

+oo at
+f fyrl(a,t,o,p)[ﬁl(a—o,t—O')Fz(p)(a—o,t—o)
t Jo

+ fr(a—-o,t-0)F3(p)(a-o0,t-0)|doda
+Itfuy(a—0)”3(a’t'o'P) [pi(a-o0,t-0)-Fa(p)(a-o,t-o0)]doda
0J o

+ J‘*‘ooj.ay(a - O')ﬂ'?)(a,t,O',P) [Pl(a— o,t-0) - Fz(p)(a —o,t— O')]doda
t 0

IN

+o0 t
f (|pota—1)| +|so(a—1t)| +|ro(a—t))da + 2fon(t ~a)da

t

t a+oo
+f f mi(a+t-o,t,t-0,p)[p1(a,0)F2(p)(a,0)+f2(a,0)Fs(p) (a,0)|dado
0o

+I; :"y(a—o)yrg(a+t—o,t,t—o,p) [p1(a,0) - F2(p)(a,0)]dado

IN

t t t
oot + 7 [ IPap) 0l s [ IFso) ol e[ lonC )l
0 0 0
t
+wa |F2(p) (-, w) || ;2 dua
0

t
< Pl Bl, + i + 210+ T+ 264(D)) [ 10g(1P1+ o 1)
0
(3.31)

And from Gronwall’s inequality, it follows that

|[F(p)(, )|, <exp(re™), ae.tel, (3.32)
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for w > 0 depending on T, i,, ji,, and y.,. Hence, we have proved that F maps C,,, into C; 4.

Let us assume that w is fixed such that F(p) remains in C,, for p in C,q,. Clearly,
C,w is closed in V and to prove that F has a unique fixed point in C, 4, it suffices to prove
that F is a strict contraction, for instance for the norm defined in definition of |p|y with k
suitable. For convenience in the following we denote M a certain (which may change) but
which is independent of a,t and P(t). For p := (p,s,r), p' := (p',s,1") € Cyu, let us estimate

|F(p) = F(p)lv-
First, for almost all t € I,

|F(p) - F(p)|, = .[0 |Fi(p)(a,t) - Fi(p")(a,t)|da + Io |F2(p)(a,t) - F2(p'") (a,t)|da

+ fo |F3(p)(a,t) - F3(p")(a,t)|da

= f1(t) + fo2(t) + f3(t).
(3.33)

Now, substituting the expression of F; into f1, we get

t
fi) < f |By(t - a)mi(a,t,a,p) = By(t - a)mi(a,t,a,p)|da
0
+f |po(a—t)||mi(at,t,p) —mi(att,p)|da
t

t Ao
+J‘J‘ |mi(a+t-o,t,t-0,p)pi(a 0, P0))F(p)(a,o)
070 (3.34)
—m(a+t-ot,t-0,p)i(a0,P(0))F(p")(a,0)|dado

t Aoco
+II |mi(a+t-o,t,t-0,p)pa(a o P(0))Fs(p)(a,o)
0o
—m(a+t-o,t,t—0,p)i(a0, P (0))Fs(p")(a,0)|dado

= fi(t) + f1(t) + (1) + f (1),

where P(t) := [;"p(a,t)da and P'(t) := [;*p'(a,t)da. Hence

At = f |po(a—1t)||mi(a,t,a,p) —m(at a,p')|da.
t

+oo
< S2elp=p1[ Imia-1]da (335)

C(T) )
<==lp=plvleolle.
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Estimate of f;.By (3.10), we have

t
£l < [ [Bt-a)llm(atap) - m(atap)|da

t . 3.36
+J‘ |By(t — a) — By (t — a)||m(at,a,p')|da (3:36)
0
= fil+ fi2
Let us now estimate f;'. By (3.9) and (3.10), we get
MC(T) )
fit <= lp=plye. (3:37)

Let us estimate f]?(t). Thanks to (2.7), (2.8), and (3.8), we have
t t
(1) < ’[ |By(t - a) = By(t - a)|da = I | By (1) — By (1) |du
0 0
t pAtoo
< f f |B(a,u, P(w))||p(a,u) - p'(a,u)|dadu

oo

t pAtoo
+ f f |B(a,u, P(u)) — p(a,u,P'(w))||p'(a,u)|dadu

oo

t t
< J‘0C4(T) 108(|P| + 6) ||p(’ u) - pl('/ u) ”leu + IOC3(T)M||p(’ u) - PI(V u) ”leu

< (Cy(T) log(|P| + e) + C3(T)M) ||p(-,u) = p' (-, u) ||, du

t
M )
< Mfolp—p’lldu <—lp=plye™.
(3.38)

Second, let us estimate f,. Substituting the expression for F, into f, and applying (3.11), we
obtain

fZ(t) < f |S()(a - t)||‘7r2(a/t/alp) _JTZ(a/t/ a,Pl)lda
t

¢
+ f |By(t - a)||m(a,t,a,p) - m(a,t,a,p)|da

0 (3.39)

C(T,KOO)HS ” 1 ’ MC(TrKoo) ' M !
< =L o - e+ = p - e+ = [p - p e
k k k

M
k

< —lp-p'lye.
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Estimate of f°. By (2.6) and (3.8), [ii(a,t, P(t))| < Ti, i = 1,2, then
t p+o0
() < /71J‘ J. |mi(a+t-o,t,t—0,p)||F(p)(a, o) - F2(p')(a,0)|dado
oo
t pt+o0
+F1J f |mi(a+t-o,t,t—0,p)-m(a+t-ott-o0,p)||F(p")(a0)|dado
0o

t atoo
+I ’[ |mi(a+t-o,t,t-0,p)||F2(p')(a,0)||f1(a 0, P(0)) - ji1(a,o,P(0))|dado.
oo

(3.40)
Since F;(p) € Cr, we have ||F2(p)||;r £ M, and then
ﬁ ) MCl (T) ) MCl (T) '
fit) < Zo-plye + —5—lp-plye + ——lp-p/l "
(3.41)

M M L
= <p + 7)|P—P'|v€ g

Finally, let us estimate of f3.

+0o0
720 < [ e bl (a8, ,p) = 73t )| da
t

t ptoo
+ Jofo y(a-o0)|ms(a+t-o,t,t—0,p)(Fi(p)(a o) - F(p)(a,o0))

—my(a+t-o,t,t—0,p)(Fi(p")(a,0) - F(p')(a,0))|dado

Cs(T)lImoll )
—— =Pl e

IN

t pA+o0
xf J‘ |Fi(p)(a,0)||ms(a+t—-0o,t,t—0,p) —ms(a+t—-o,t,t—0,p)|dado
0Jo

t ptoo
+ me f |ms(a+t-o,t,t—0,p)||Fi(p)(a,o) - Fi(p')(a,0)|dado
oo

t ptoo
+Ym4[04[0 |F2(p)(a,0')||ﬂ'3((1+t—0',t,t—o‘,p)—_7r3(a+t_o-,t,t_o.’p/)|dado_

t ptoo
+Y°°,[I |ms(a+t-o,t,t—0,p)]
0Jo

x |F2(p)(a,0) — F2(p')(a,0)|dado

CG(Mlroll | ¥Cs(MM Yoo YoM YoM )
( k =+ K2 T T e TTe >|P_P|vekt

M M )
= (p + 7>|P—P |ve.

<

(3.42)
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Figure 1: The temporal solution found by numerical integration of problem with initial values s¢(a) = 10,
io(a) =10, ro(a) = 5. They show that system (2.2) has a unique positive periodic solution.

Therefore, joining all above estimates, we see that for almost all ¢ € 1, there exist M > 0 and
M > 0 depending only on po, T, Yo, H;, i = 1,2, and K, such that

: M M :
Dividing both sides of this inequality by e, we obtain
: M M :
[F@)(,8) = @)Dy < <?+ﬁ>lp—plv- (3.44)

And thus for k great enough F is a strict contraction with a unique fixed point in C, 5, and so
in V. This concludes the proof. O

4. Discussion

In this paper, existence of positive period solution of a non-autonomous SIR epidemic model
with age structure is studied. We obtained existence and uniqueness of this model using
integral differential equation and a fixed theorem. The model is different from the classical
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age structure epidemic model and non-autonomous epidemic model. The initial condition is
nonlocal and dependent on total population. In addition, incidence law is not Lipschitzianity.
The classical methods are not valid. We construct a new norm and prove the existence of
our model under definition of the new norm. We can illustrate this through two simulates
examples. We set

0, O<acx<l, 0, O<axl,
PB(a,t,P(t)) = 4<1—%>, a1 Aa, t,i) = %, a1
p(at, P(t) = 0.02P(t),  pala,t, P(b)) = 0.05P(t), (1)
0, O<axl,

us(a,t, P(t) = 0.01P(t),  y(a) =
0.01, a>1.

System (2.2) with above coefficients has a unique positive periodic solution. We can see it
from Figure 1.

In the future, there are some problems that will be solved. The existence of steady state
and stability of the steady state are still discussed. If birth rate is impulsive, what results will
occur. The simulation of the age structure still to be resolved. Furthermore, what effect will
occurs, if we introduce the delay in our model.

Acknowledgments

This work is Supported by the National Sciences Foundation of China (10971178), the
Sciences Foundation of Shanxi (20090110053), and the Sciences Exploited Foundation of
Shanxi (20081045).

References

[1] A.].Lotka, Elements of Mathematical Biology, Dover, New York, NY, USA, 1956.

[2] H. Von Foerster, “Some remarks on changing populations,” in The Kinetics of Cellular Proliferation, pp.
382-407, Grune & Stratton, New York, NY, USA, 1959.

[3] M. E. Gurtin and R. C. MacCamy, “Non-linear age-dependent population dynamics,” Archive for
Rational Mechanics and Analysis, vol. 54, pp. 281-300, 1974.

[4] S. N. Busenberg, M. Iannelli, and H. R. Thieme, “Global behavior of an age-structured epidemic
model,” SIAM Journal on Mathematical Analysis, vol. 22, no. 4, pp. 1065-1080, 1991.

[5] M. Iannelli, F. A. Milner, and A. Pugliese, “Analytical and numerical results for the age-structured S-I-
S epidemic model with mixed inter-intracohort transmission,” SIAM Journal on Mathematical Analysis,
vol. 23, no. 3, pp. 662-688, 1992.

[6] M. El-Doma, “Analysis for an SIR age-structured epidemic model with vertical transmission and
vaccination,” International Journal of Ecology and Development, vol. 3, pp. 1-38, 2005.

[7] G.E Webb, Theory of Nonlinear Age-Dependent Population Dynamics, vol. 89 of Monographs and Textbooks
in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1985.

[8] H. R. Thieme, “Uniform weak implies uniform strong persistence for non-autonomous semiflows,”
Proceedings of the American Mathematical Society, vol. 127, no. 8, pp. 2395-2403, 1999.

[9] W. Wang and X.-Q. Zhao, “Threshold dynamics for compartmental epidemic models in periodic
environments,” Journal of Dynamics and Differential Equations, vol. 20, no. 3, pp. 699-717, 2008.



Advances in Difference Equations 23

[10] T. Zhang and Z. Teng, “Permanence and extinction for a nonautonomous SIRS epidemic model with
time delay,” Applied Mathematical Modelling, vol. 33, no. 2, pp. 1058-1071, 2009.

[11] Z. Teng, Y. Liu, and L. Zhang, “Persistence and extinction of disease in non-autonomous SIRS
epidemic models with disease-induced mortality,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 69, no. 8, pp. 2599-2614, 2008.

[12] M. Delgado, M. Molina-Becerra, and A. Sudrez, “Analysis of an age-structured predator-prey model
with disease in the prey,” Nonlinear Analysis: Real World Applications, vol. 7, no. 4, pp. 853-871, 2006.



	1. Introduction
	2. The Model Formulation
	3. Existence of a Solution to the System
	4. Discussion
	Acknowledgments
	References

