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We offer conditions on semipositone function f(t, u0, u1, . . . , un−2) such that the boundary value
problem, uΔn

(t) + f(t, u(σn−1(t)), uΔ(σn−2(t)), . . . , uΔn−2
(σ(t))) = 0, t ∈ (0, 1) ∩ T, n ≥ 2, uΔi

(0) = 0,
i = 0, 1, . . . , n − 3, αuΔn−2

(0) − βuΔn−1
(0) = 0, γuΔn−2

(σ(1)) + δuΔn−1
(σ(1)) = 0, has at least one positive

solution, where T is a time scale and f(t, u0, u1, . . . , un−2) ∈ C([0, 1] × R[0,∞)n−1,R(−∞,∞)) is
continuous with f(t, u0, u1, . . . , un−2) ≥ −M for some positive constantM.

1. Introduction

Throughout this paper, let T be a time scale, for any a, b ∈ R = (−∞,+∞)(b > a), the interval
[a, b] defined as [a, b] = {t ∈ T | a ≤ t ≤ b}. Analogous notations for open and half-open
intervals will also be used in the paper. We also use the notation R[c, d] to denote the real
interval {t ∈ R | c ≤ t ≤ d}. To understand further knowledge about dynamic equations on
time scales, the reader may refer to [1–3] for an introduction to the subject.

In this paper, we present results governing the existence of positive solutions to the
differential equation on time scales of the form

uΔn

(t) + f
(
t, u

(
σn−1(t)

)
, uΔ

(
σn−2(t)

)
, . . . , uΔn−2

(σ(t))
)
= 0, t ∈ (0, 1), n ≥ 2 (1.1)

subject to the two-point boundary conditions

uΔi
(0) = 0, i = 0, 1, . . . , n − 3,

αuΔn−2
(0) − βuΔn−1

(0) = 0,

γuΔn−2
(σ(1)) + δuΔn−1

(σ(1)) = 0,

(1.2)
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where α, γ, β, δ ≥ 0, d := αδ + γβ + αγσ(1) > 0 and

δ + γ
(
σ(1) − σ2(1)

)
≥ 0. (1.3)

Throughout, we assume that f(t, u0, u1, . . . , un−2) ∈ C([0, 1] × R[0,∞)n−1,R(−∞,∞)) is
continuous with f(t, u0, u1, . . . , un−2) ≥ −M for some positive constant M.

Let Cn
rd
[0, 1] denote the space of functions

Cn
rd[0, 1] =

{
u : u ∈ C[0, σn(1)], . . . , uΔn−1 ∈ C[0, σ(1)], uΔn ∈ Crd[0, 1]

}
. (1.4)

We say that u(t) is a positive solution of BVP (1.1) and (1.2), if u(t) ∈ Cn
rd
[0, 1] is a solution of

BVP (1.1) and (1.2) and uΔi
(t) > 0, t ∈ (0, σn−i(1)), i = 0, 1, . . . , n − 2.

Various cases of BVP (1.1) and (1.2) have attracted a lot of attention in the literature.
When n = 2, BVP (1.1) and (1.2) has been studied by many specialists. For example,
Agarwal et al. [4] have established the existence of positive solutions for continuous case
of the semipositone Sturm-Liouville BVPs. Erbe and Peterson [5] andHao et al. [6] dealt
with Sturm-Liouville BVPs on time scale of positone nonlinear term. In addition, Agarwal
and O’Regan [7] obtained positive solution of second-order right focal BVPs on time scale
by using nonlinear alternative of Leray-Schauder type. In 2005, Chyan and Wong [8]
obtained triple solutions of the same BVPs with [7]. Recently,Sun and Li [9, 10] investigated
semipositone Dirichlet BVPs on time scale. For higher-order BVPs, continuous case of BVP
(1.1) and (1.2) have been investigated by Agarwal and Wong [11], Wong and Agarwal [12]
and Wong [13]. The discrete positone case of BVP (1.1) and (1.2) has been tackled by using a
fixed point theorem formappings that are decreasingwith respect to a cone in [14]. Especially,
time-scale case of (1.1) with four-point boundary condition has been studied by Liu and
Sang [15]. Besides, BVP (1.1) and (1.2) of nonlinear positone term f(t, u(t), u′(t), . . . , u(n−1)(t))
which satisfied Nagumo-type conditions have been dealt with in [16]. Motivated by the
works mentioned above, the purpose of this paper is to tackle semipositone BVP (1.1) and
(1.2). In fact, BVPs appeared in [7–14] can be looked at as special case of BVP (1.1) and (1.2)
in this paper. For other related works, we also refer to [17–19].

The paper is outlined as follows. In Section 2, we will present some notations and
lemmas which will be used later. In Section 3, by using Krasnoselskii’s fixed point theorem in
a cone, we offer criteria for the existence of positive solution of BVP (1.1) and (1.2).

2. Preliminary

In this section, we offer some notations and lemmas, which will be used in main results.
Throughout this paper, we always use the following notations:

(C1) K(t, s) is the Green’s function of the differential equation −uΔn
(t) = 0, t ∈ (0, 1)

subject to the boundary conditions (1.2);

(C2) k(t, s) is the Green’s function of the differential equation −uΔΔ(t) = 0, t ∈ (0, 1)
subject to the boundary conditions

αu(0) − βuΔ(0) = 0, γu(σ(1)) + δuΔ(σ(1)) = 0; (2.1)
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(C3) Define Ti : [0, 1] → R, i = 0, 1, . . . , n − 2 as

T0(t) ≡ q(t), Ti(t) =
∫ t

0
Ti−1(τ)Δτ, i = 1, 2, . . . , n − 2, (2.2)

where

q(t) := min
t∈[0,σ2(1)]

{
αt + β

ασ2(1) + β
,
γ(σ(1) − t) + δ

γσ(1) + δ

}
. (2.3)

Lemma 2.1. For the Green’s function k(t, s) the following hold:

0 ≤ q(t)k(σ(s), s) ≤ k(t, s) ≤ k(σ(s), s), (t, s) ∈
[
0, σ2(1)

]
× [0, 1]. (2.4)

Proof. It is clear that

k(t, s) = KΔn−2
t (t, s) =

⎧
⎪⎪⎨
⎪⎪⎩

1
d

{
αt + β

}{
γ(σ(1) − σ(s)) + δ

}
, t ≤ s,

1
d

{
ασ(s) + β

}{
γ(σ(1) − t) + δ

}
, σ(s) ≤ t.

(2.5)

From the expression of k(t, s), we can easily obtain

0 ≤ q(t)k(σ(s), s) ≤ k(t, s) ≤ k(σ(s), s), (t, s) ∈
[
0, σ2(1)

]
× [0, 1]. (2.6)

Lemma 2.2. Let w(t) be the solution of BVP

−uΔn

(t) = M, t ∈ [0, 1],

uΔi

(0) = 0, i = 0, 1, . . . , n − 3,

αuΔn−2
(0) − βuΔn−1

(0) = 0,

γuΔn−2
(σ(1)) + δuΔn−1

(σ(1)) = 0.

(2.7)

Then

0 ≤ wΔi

(t) ≤ cMTn−2−i(t), t ∈
[
0, σn−i(1)

]
, i = 0, 1, . . . , n − 2, (2.8)

where

c:=

(
γσ(1) + δ

)(
ασ2(1) + β

)

d
σ(1), (2.9)

and M ∈ R(0,∞) is a positive constant.
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Proof. For t ≤ s,

k(t, s) =
1
d

{
αt + β

}{
γ(σ(1) − σ(s)) + δ

} ≤ 1
d

{
αt + β

}{
γ(σ(1) − t) + δ

}

=
αt + β

ασ2(1) + β
· γ(σ(1) − t) + δ

γσ(1) + δ
·
(
γσ(1) + δ

)(
α2σ(1) + β

)

d

≤ cq(t)
σ(1)

.

(2.10)

For σ(s) ≤ t,

k(t, s) =
1
d

{
ασ(s) + β

}{
γ(σ(1) − t) + δ

} ≤ 1
d

{
αt + β

}{
γ(σ(1) − t) + δ

}

=
γ(σ(1) − t) + δ

γσ(1) + δ
· αt + β

ασ2(1) + β
·
(
γσ(1) + δ

)(
ασ2(1) + β

)

d

≤ cq(t)
σ(1)

.

(2.11)

So

0 ≤ k(t, s) ≤ cq(t)
σ(1)

, (t, s) ∈
[
0, σ2(1)

]
× [0, 1]. (2.12)

By defining w(t) as w(t) =
∫σ(1)
0 K(t, s)Mds, t ∈ [0, σn(1)], it is clear that

wΔn−2
(t) =

∫σ(1)

0
k(t, s)Mds, t ∈

[
0, σ2(1)

]
. (2.13)

Then

0 ≤ wΔn−2
(t) ≤ cq(t)

σ(1)

∫σ(1)

0
MΔs = cMq(t), t ∈

[
0, σ2(1)

]
. (2.14)

Further, since wΔi
(t) = 0, i = 0, 1, . . . , n − 3, we get

0 ≤ wΔi

(t) ≤ cMTn−2−i(t), t ∈
[
0, σn−i(1)

]
, i = 0, 1, . . . , n − 2. (2.15)

Lemma 2.3 (see [20]). Let E be a Banach space, and let C ⊂ E be a cone in E. Assume that Ω1,Ω2

are open subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let T : C ∩ (Ω2 \ Ω1) → C be a completely
continuous operator such that either
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(i) ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1; ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2 or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1; ‖Tu‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then, T has a fixed point in C ∩ (Ω2 \Ω1).

3. Main Results

In this section, by using Lemma 2.3, we offer criteria for the existence of positive solution of
BVP (1.1) and (1.2).

Let E denote the space of functions

E =
{
u : u ∈ C[0, σn(1)], . . . , uΔn−3 ∈ C

[
0, σ3(1)

]
, uΔn−2 ∈ C

[
0, σ2(1)

]}
. (3.1)

Let B = {u ∈ E : uΔi
(0) = 0, i = 0, 1, . . . , n − 3} be a Banach space with the norm ‖u‖ =

supt∈[0,σ2(1)]|uΔn−2
(t)|, and let

C =
{
u ∈ B : uΔn−2

(t) ≥ q(t)‖u‖, t ∈
[
0, σ2(1)

]}
. (3.2)

It is obvious that C is a cone in B. From uΔi
(0) = 0, i = 0, 1, . . . , n − 3, it follows that for all

u ∈ C,

Tn−2−i(t)‖u‖ ≤ uΔi

(t) ≤ σ0‖u‖, t ∈
[
0, σn−i(1)

]
, i = 0, 1, . . . , n − 2, (3.3)

where

σ0 := [σn(1)]n−2. (3.4)

Throughout the rest of the section, we assume that the set [0, σ(1)] is such that

ξ = min
{
τ ∈ T : τ ≥ σ(1)

4

}
, ζ = min

{
τ ∈ T : τ ≤ 3σ(1)

4

}
(3.5)

exist and satisfy

σ(1)
4

≤ ξ < ζ ≤ 3σ(1)
4

. (3.6)

In addition, we denote that

ηi = min
t∈[ξ, σn−i−1(ζ)]

Tn−2−i(t), i = 0, 1, . . . , n − 2. (3.7)
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In order to obtain positive solutions of BVP (1.1) and (1.2), we need to consider the
following boundary value problem:

uΔn

(t) + f∗
(
t, v

(
σn−1(t)

)
, vΔ

(
σn−2(t)

)
, . . . , vΔn−2

(σ(t))
)
= 0, t ∈ (0, 1),

uΔi

(0) = 0, i = 0, 1, . . . , n − 3,

αuΔn−2
(0) − βuΔn−1

(0) = 0, γuΔn−2
(σ(1)) + δuΔn−1

(σ(1)) = 0,

(3.8)

where

v(t) = u(t) −w(t), (w(t) is as in Lemma 2.2),

f∗(t, u0, u1, . . . , un−2) = f
(
t, ρ0, ρ1, . . . , ρn−2

)
+M

(3.9)

and for all i = 0, 1, . . . , n − 2,

ρi =

⎧
⎨
⎩
ui, ui ≥ 0,

0, ui < 0.
(3.10)

Let the operator S : C → B be defined by

(Su)(t) =
∫σ(1)

0
K(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs, t ∈ [0, σn(1)],

(Su)Δ
n−2
(t) =

∫σ(1)

0
k(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs, t ∈

[
0, σ2(1)

]
.

(3.11)

Lemma 3.1. The operator S maps C into C.

Proof. From Lemma 2.1, we know that for t ∈ [0, σ2(1)],

(Su)Δ
n−2
(t) =

∫σ(1)

0
k(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≤
∫σ(1)

0
k(σ(s), s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs.

(3.12)

So for t ∈ [0, σ2(1)],

‖Su‖ ≤
∫σ(1)

0
k(σ(s), s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs. (3.13)
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From Lemma 2.1 again, it follows that for t ∈ [0, σ2(1)],

(Su)Δ
n−2
(t) =

∫σ(1)

0
k(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≥
∫σ(1)

0
q(t)k(σ(s), s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≥ q(t)‖Su‖.

(3.14)

Hence, S maps C into C.

Lemma 3.2. The operator S : C → C is completely continuous.

Proof. First we shall prove that the operator S is continuous. Let um, u ∈ C be such that
limm→∞‖um − u‖ = 0. From uΔi

(0) = 0, i = 0, 1, . . . , n − 3, we have

sup
t∈[0,σn−i(1)]

∣∣∣uΔi

m (t) − uΔi

(t)
∣∣∣ −→ 0, i = 0, 1, . . . , n − 2. (3.15)

Then, it is easy to see that as m → ∞

ρm := sup
s∈[0,1]

∣∣∣f∗
(
s, um

(
σn−1(s)

)
−w

(
σn−1(s)

)
, . . . , uΔn−2

m (σ(s)) −wΔn−2
(σ(s))

)

−f∗
(
s, u

(
σn−1(s)

)
−w

(
σn−1(s)

)
, . . . , uΔn−2

(σ(s)) −wΔn−2
(σ(s))

)∣∣∣ −→ 0.

(3.16)

Hence, we get from Lemma 2.1 that for t ∈ [0, σ2(1)],

∣∣∣(Sum)Δ
n−2
(t) − (Su)Δ

n−2
(t)

∣∣∣

=

∣∣∣∣∣
∫σ(1)

0
k(t, s)

[
f∗

(
s, um

(
σn−1(s)

)
−w

(
σn−1(s)

)
, . . . , uΔn−2

m (σ(s)) −wΔn−2
(σ(s))

)

−f∗
(
s, u

(
σn−1(s)

)
−w

(
σn−1(s)

)
, . . . , uΔn−2

(σ(s)) −wΔn−2
(σ(s))

)]
Δs

∣∣∣∣∣

≤ ρm

∫σ(1)

0
k(t, s)Δs ≤ ρm

∫σ(1)

0
k(σ(s), s)Δs −→ 0, as m −→ ∞.

(3.17)

This shows that S : C → C is continuous.
Next, to show complete continuity, we will apply Arzela-Ascoli theorem. Let Ω be a

bounded subset of C. Then there exists L > 0 such that for all u ∈ Ω,

sup
∣∣∣uΔn−2

∣∣∣ ≤ L, sup
∣∣∣uΔi

∣∣∣ ≤ σ0L, i = 0, 1, . . . , n − 3, (3.18)
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where σ0 is given in (3.4). Let

M̃ = sup
(s,ρ0,ρ1,...,ρn−2)∈[0,1]×R[0,σ0L]n−2×R[0,L]

f
(
s, ρ0, ρ1, . . . , ρn−2

)
+M. (3.19)

Clearly, we have for t ∈ [0, σ2(1)],

∣∣∣(Su)Δn−2
(t)

∣∣∣ ≤ M̃

∫σ(1)

0
k(t, s)Δs ≤ M̃

∫σ(1)

0
k(σ(s), s)Δs (3.20)

and for t, t′ ∈ [0, σ2(1)],

∣∣∣(Su)Δn−2
(t) − (Su)Δ

n−2(
t′
)∣∣∣ ≤ M̃

∫σ(1)

0

∣∣k(t, s) − k
(
t′, s

)∣∣Δs. (3.21)

The Arzela-Ascoli theorem guarantees that SΩ is relatively compact, so S : C → C is
completely continuous.

Theorem 3.3. Assume that the following conditions hold:

(i) there exist r ∈ R(cM,∞) such that for any (u0, u1, . . . , un−2) ∈ Γr := R[0, σ0r]
n−2 ×

R[0, r],

A(u0, u1, . . . , un−2) :=
∫σ(1)

0
k(σ(s), s)

[
f(s, u0, u1, . . . , un−2) +M

]
Δs ≤ r, (3.22)

(ii) there exist R ∈ R(cM,∞) with R/= r such that for any (u0, u1, . . . , un−2) ∈ ΓR :=
R[εη0R, σ0R] × R[εη1R, σ0R] × · · · × R[εηn−2R,R],

B(u0, u1, . . . , un−2) := ηn−2

∫ ζ

ξ

k(σ(s), s)
[
f(s, u0, u1, . . . , un−2) +M

]
Δs ≥ R, (3.23)

where σ0 is given in (3.4), ξ, ζ are given in (3.5), ηi, i = 0, 1, . . . , n − 2 are given in (3.7),
and

ε = 1 − cM

R
. (3.24)

Then BVP (1.1) and (1.2) has a positive solution.

Proof. Without loss of generality, we assume that r < R. Now we seek positive solutions of
BVP (3.8). Let

Ω1 = {u ∈ B : ‖u‖ ≤ r}. (3.25)
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For u ∈ ∂Ω1 ∩ C, it follows from (3.3) that

0 ≤ uΔi

(t) ≤ σ0r, t ∈
[
0, σn−i(1)

]
, i = 0, 1, . . . , n − 3. (3.26)

From (i), we obtain that for u ∈ ∂Ω1 ∩ C,

(Su)Δ
n−2
(t) =

∫σ(1)

0
k(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≤
∫σ(1)

0
k(σ(s), s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≤ r.

(3.27)

So

‖Su‖ ≤ ‖u‖, u ∈ ∂Ω1 ∩ C. (3.28)

Let

Ω2 = {u ∈ B : ‖u‖ ≤ R}. (3.29)

For u ∈ ∂Ω2 ∩ C, it follows from Lemma 2.2 and (3.3) that for s ∈ [0, σ(1)],

vΔi
(
σn−i−1(s)

)
= uΔi

(
σn−i−1(s)

)
−wΔi

(
σn−i−1(s)

)

≥ uΔi
(
σn−i−1(s)

)
− cMTn−2−i

(
σn−i−1(s)

)

= uΔi
(
σn−i−1(s)

)
− cMTn−2−i

(
σn−i−1(s)

)‖u‖
R

≥ uΔi
(
σn−i−1(s)

)
− cMuΔi(

σn−i−1(s)
)

R

= εuΔi
(
σn−i−1(s)

)
≥ εRTn−2−i

(
σn−i−1(s)

)
, i = 0, 1, . . . , n − 2.

(3.30)

So

vΔi
(
σn−i−1(s)

)
≥ εηiR, s ∈ [ξ, ζ], i = 0, 1, . . . , n − 2, (3.31)

where ηi is given in (3.7) and ε is given in (3.24).
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Combining Lemma 2.1, (3.3), and (ii)with (3.31), we obtain that for u ∈ ∂Ω2 ∩ C,

(Su)Δ
n−2
(t) =

∫σ(1)

0
k(t, s)f∗

(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≥
∫ ζ

ξ

k(t, s)f∗
(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≥ ηn−2

∫ ζ

ξ

k(σ(s), s)f∗
(
s, v

(
σn−1(s)

)
, vΔ

(
σn−2(s)

)
, . . . , vΔn−2

(σ(s))
)
Δs

≥ R.

(3.32)

So

‖Su‖ ≥ ‖u‖, u ∈ ∂Ω2 ∩ C. (3.33)

Therefore, it follows from Lemma 2.3 that BVP (3.8) has a solution u1 ∈ C such that r ≤ ‖u1‖ ≤
R.

Finally, we will prove that u1(t)−w(t) is a positive solution of BVP (1.1) and (1.2). Let
u(t) = u1(t) −w(t), then we have from Lemma 2.2 and (3.3) that for i = 0, 1, . . . , n − 2,

uΔi

(t) = uΔi

1 (t) −wΔi

(t) ≥ uΔi

1 (t) − cMTn−2−i(t)

≥ uΔi

1 (t) − cMTn−2−i(t)‖u1‖
r

≥ uΔi

1 (t) − cMuΔi

1 (t)
r

=
(
1 − cM

r

)
uΔi

1 (t) ≥ (r − cM)Tn−2−i(t) > 0, t ∈
(
0, σn−i(1)

)
.

(3.34)

In addition,

uΔn

(t) = uΔn

1 (t) +M

= −f∗
(
t, u1

(
σn−1(t)

)
−w

(
σn−1(t)

)
, . . . , uΔn−2

1 (σ(t)) −wΔn−2
(σ(t))

)
+M

= −f
(
t, u1

(
σn−1(t)

)
−w

(
σn−1(t)

)
, . . . , uΔn−2

1 (σ(t)) −wΔn−2
(σ(t))

)

= −f
(
t, u

(
σn−1(t)

)
, . . . , uΔn−2

(σ(t))
)
.

(3.35)

So, u(t) = u1(t) −w(t) is a positive solution of BVP (1.1) and (1.2). This completes the proof.
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Corollary 3.4. Assume that

(a) for any (t, u0, u1, . . . , un−2) ∈ [0, 1] × R[0,∞)n−1,

f(t, u0, u1, . . . , un−2) +M ≤ μ(t)g(u0, u1, . . . , un−2), (3.36)

where g : R[0,∞)n−1 → R[0,∞) is a continuous function which is nondecreasing in uj

for each fixed (u0, . . . , uj−1, uj+1, . . . , un−2) and μ(t) is a continuous nonnegative function
on [0, 1],

(b) for any (t, u0, u1, . . . , un−2) ∈ [ξ, ζ] × R[0,∞)n−1,

f(t, u0, u1, . . . , un−2) +M ≥ ν(t)h(u0, u1, . . . , un−2), (3.37)

where h : R[0,∞)n−1 → R[0,∞) is a continuous function which is nondecreasing in uj

for each fixed (u0, . . . , uj−1, uj+1, . . . , un−2) and ν(t) is a continuous nonnegative function
on [0, 1],

(c) there exists r ∈ R(cM,∞) such that

g(σ0r, . . . , σ0r, r)
∫σ(1)

0
k(σ(s), s)μ(s)Δs ≤ r, (3.38)

(d) there exists R ∈ R(cM,∞) with R/= r such that

h
(
εη0R, εη1R, . . . , εηn−2R

)
ηn−2

∫ ζ

ξ

k(σ(s), s)ν(s)Δs ≥ R. (3.39)

Then BVP (1.1) and (1.2) has a positive solution.

Proof. From (a) and (c), we obtain that for (u0, u1, . . . , un−2) ∈ Γr ,

A(u0, u1, . . . , un−2) =
∫σ(1)

0
k(σ(s), s)

[
f(s, u0, u1, . . . , un−2) +M

]
Δs

≤
∫σ(1)

0
k(σ(s), s)μ(s)g(u0, u1, . . . , un−2)Δs

≤ g(σ0r, . . . , σ0r, r)
∫σ(1)

0
k(σ(s), s)μ(s)Δs ≤ r.

(3.40)
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So, condition (i) of Theorem 3.3 is satisfied. From (b) and (d), we obtain that for (u0, u1, . . . ,
un−2) ∈ ΓR,

B(u0, u1, . . . , un−2) = ηn−2

∫ ζ

ξ

k(σ(s), s)
[
f(s, u0, u1, . . . , un−2) +M

]
Δs

≥ ηn−2

∫ ζ

ξ

k(σ(s), s)ν(s)h(u0, u1, . . . , un−2)Δs

≥ h
(
εη0R, εη1R, . . . , εηn−2R

)
ηn−2

∫ ζ

ξ

k(σ(s), s)ν(s)Δs ≥ R.

(3.41)

So, condition (ii) of Theorem 3.3 is satisfied.
Therefore, from Theorem 3.3, BVP(1.1) and (1.2) has a positive solution.

Corollary 3.5. Assume that conditions (a) and (c) of Corollary 3.4 and the following condition hold:

lim
u0+u1+...+un−2 →∞

min
t∈[ξ,ζ]

f(t, u0, u1, . . . , un−2) +M

u0 + u1 + · · · + un−2
∈ R

(
D1

ε
∑n−2

i=0 ηi
,∞

)
, (3.42)

where D1 = [ηn−2
∫ζ
ξ k(σ(s), s)Δs]−1. Then BVP (1.1) and (1.2) has one positive solution.

Proof. We only need to prove that (3.42) implies condition (ii) of Theorem 3.3. From (3.42),
we know that there exists R (Rmay be chosen arbitrary large) such that for (u0, u1, . . . , un−2) ∈
R[εη0R,∞) × · · · × R[εηn−2R,∞),

min
t∈[ξ,ζ]

f(t, u0, u1, . . . , un−2) +M

u0 + u1 + · · · + un−2
≥ D1

ε
∑n−2

i=0 ηi
. (3.43)

Hence, for (t, u0, u1, . . . , un−2) ∈ [ξ, ζ] × ΓR,

f(t, u0, u1, . . . , un−2) +M ≥ D1

ε
∑n−2

i=0 ηi

n−2∑
i=0

ui ≥ D1

ε
∑n−2

i=0 ηi
· ε

n−2∑
i=0

ηiR = D1R. (3.44)

Thus, it follows that

B(u0, u1, . . . , un−2) = ηn−2

∫ ζ

ξ

k(σ(s), s)
[
f(s, u0, u1, . . . , un−2) +M

]
Δs

≥ ηn−2

∫ ζ

ξ

k(σ(s), s)D1RΔs = R.

(3.45)

So, condition (ii) of Theorem 3.3 is satisfied.

Finally we present an example to illustrate our result.
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Example 3.6. Consider the following boundary value problem:

uΔ3
(t) + sin

[
uΔ(σ(t))

]
+
exp

((
u
(
σ2(t)

)
+ uΔ(σ(t))

)
/5

)

5(5 + u(σ2(t)))
= 0, t ∈ (0, 1) ∩ T,

u(0) = 0, uΔ(0) − uΔ2
(0) = 0, uΔ2

(σ(1)) = 0,
(3.46)

where T = 0 ∪ {t/8 : t ∈ N}, f(t, u0, u1) = sinu1 + exp((u0 + u1)/5)/5(5 + u0), M = 1,
α = β = δ = 1, and γ = 0. Obviously,

d = αδ + γβ + αγσ(1) = 1, δ + γ
(
σ(1) − σ2(1)

)
= 1 ≥ 0, ξ =

3
8
, ζ =

6
8
. (3.47)

Let μ(t) = ν(t) = 1, g(u0, u1) = 2 + exp((u0 + u1)/5)/5(5 + u0), and h(u0, u1) =
exp((u0 + u1)/5)/5(5 + u0). So conditions (a) and (b) in Corollary 3.4 are satisfied. By
direct calculation, we obtain that c = 81/32, σ0 = 11/8, T0(t) = q(t) = (4/9)(t + 1), t ∈
[0, 10/8], and T1(t) =

∫ t
0 q(τ)Δτ =

∑
τ∈[0,t)[σ(τ)−τ]q(τ). Since Ti(t), i = 0, 1 are nondecreasing,

η0 = mint∈[3/8,1]T1(t) = T1(3/8) = 3/16, η1 = mint∈[3/8,7/8]q(t) = q(3/8) = 11/18. In addition,∫σ(1)
0 k(σ(s), s)Δs = 117/64,

∫ζ
ξ k(σ(s), s)Δs = 39/64. Take r = 5, R = 63. So

g(σ0r, r)
∫σ(1)

0
k(σ(s), s)μ(s)Δs

=
(
2 +

exp([σ0 + 1]r/5)
5(5 + σ0r)

)∫σ(1)

0
k(σ(s), s)Δs ≈ 3.99 < 5 = r,

h
(
εη0R, εη1R

)
η1

∫ ζ

ξ

k(σ(s), s)ν(s)Δs

=
exp

(
(R − cM)

(
η0 + η1

)
/5

)

5
[
5 + (R − cM)η0

] η1

∫ ζ

ξ

k(σ(s), s)Δs ≈ 71.25 > 60 = R.

(3.48)

Hence, conditions (c) and (d) in Corollary 3.4 are satisfied. Therefore from Corollary 3.4,
(3.46) has at least one positive solution.

Remark 3.7. In Example 3.6, because nonlinear term f may attain negative value, the result in
[15] is not applicable.
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