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By using Mawhin’s continuation theorem of coincidence degree theory and some skills of
inequalities, we establish the existence of at least 2n positive periodic solutions for n-species
nonautonomous Lotka-Volterra type food chains with harvesting terms. An example is given to
illustrate the effectiveness of our results.

1. Introduction

The dynamic relationship between predators and their prey has long been and will continue
to be one of the dominant themes in both ecology and mathematical ecology due to its
universal existence and importance. These problemsmay appear to be simplemathematically
at first; sight, they are, in fact, very challenging and complicated. There are many different
kinds of predator-prey models in the literature. For more details, we refer to [1, 2]. Food
chain predator-prey system, as one of the most important predator-prey system, has been
extensively studied by many scholars, many excellent results concerned with the persistent
property and positive periodic solution of the system; see [3–13] and the references cited
therein. However, to the best of the authors’ knowledge, to this day, still no scholar study the
n-species nonautonomous case of Food chain predator-prey system with harvesting terms.
Indeed, the exploitation of biological resources and the harvest of population species are
commonly practiced in fishery, forestry, and wildlife management; the study of population
dynamics with harvesting is an important subject in mathematical bioeconomics, which is
related to the optimal management of renewable resources (see [14–16]). This motivates us
to consider the following n-species nonautonomous Lotka-Volterra type food chain model
with harvesting terms:
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ẋ1(t) = x1(t)(a1(t) − b1(t)x1(t) − c12(t)x2(t)) − h1(t),

...

ẋi(t) = xi(t)(−di(t) − bi(t)xi(t) + ci,i−1(t)xi−1(t) − ci,i+1(t)xi+1(t)) − hi(t),

...

ẋn(t) = xn(t)(−dn(t) − bn(t)xn(t) + cn,n−1(t)xn−1(t)) − hn(t),

(1.1)

where i = 2, 3, . . . , n − 1, xi(t) (i = 1, 2, . . . , n) is the ith species population density, a1(t) is the
growth rate of the first species that is the only producer in system (1.1), bi(t) (i = 1, 2, . . . , n)
and hi(t) (i = 1, 2, . . . , n) stand for the ith species intraspecific competition rate and harvesting
rate, respectively, di(t) (i = 2, 3, . . . , n) is the death rate of the ith species, ci,i+1(t) (i =
1, 2, . . . , n− 1) represents the (i+ 1)th species predation rate on the ith species, and ci,i−1(t)(i =
2, 3, . . . , n) stands for the transformation rate from the (i − 1)th species to the ith species. In
addition, the effects of a periodically varying environment are important for evolutionary
theory as the selective forces on systems in a fluctuating environment differ from those
in a stable environment. Therefore, the assumptions of periodicity of the parameters are a
way of incorporating the periodicity of the environment (e.g, seasonal effects of weather,
food supplies, mating habits, etc), which leads us to assume that a1(t), bi(t), di(t), cij(t), and
hi(t) (i, j = 1, 2, . . . , n) are all positive continuous ω-periodic functions.

Since a very basic and important problem in the study of a population growth model
with a periodic environment is the global existence and stability of a positive periodic
solution, which plays a similar role as a globally stable equilibrium does in an autonomous
model, this motivates us to investigate the existence of a positive periodic or multiple positive
periodic solutions for system (1.1). In fact, it is more likely for some biological species to take
on multiple periodic change regulations and have multiple local stable periodic phenomena.
Therefore, it is essential for us to investigate the existence of multiple positive periodic
solutions for population models. Our main purpose of this paper is by using Mawhin’s
continuation theorem of coincidence degree theory [17], to establish the existence of 2n

positive periodic solutions for system (1.1). For the work concerning the multiple existence of
periodic solutions of periodic population models which was done using coincidence degree
theory, we refer to [18–21].

The organization of the rest of this paper is as follows. In Section 2, by employing the
continuation theorem of coincidence degree theory and the skills of inequalities, we establish
the existence of at least 2n positive periodic solutions of system (1.1). In Section 3, an example
is given to illustrate the effectiveness of our results.

2. Existence of at Least 2n Positive Periodic Solutions

In this section, by using Mawhin’s continuation theorem and the skills of inequalities, we
shall show the existence of positive periodic solutions of (1.1). To do so, we need to make
some preparations.

Let X and Z be real normed vector spaces. Let L : Dom L ⊂ X → Z be a linear
mapping and N : X × [0, 1] → Z be a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero if dim Ker L = codim ImL < ∞ and ImL is closed in Z.
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If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = Ker L and Ker Q = ImL = Im (I − Q), and X = Ker L ⊕
Ker P, Z = ImL ⊕ ImQ. It follows that L|DomL∩KerP : (I − P)X → ImL is invertible and
its inverse is denoted by KP . If Ω is a bounded open subset of X, the mapping N is called L-
compact onΩ×[0, 1], ifQN(Ω×[0, 1]) is bounded andKP (I−Q)N : Ω×[0, 1] → X is compact.
Because Im Q is isomorphic to Ker L, there exists an isomorphism J : ImQ → Ker L.

The Mawhin’s continuous theorem [17, page 40] is given as follows.

Lemma 2.1 (see [9]). Let L be a Fredholm mapping of index zero and let N be L-compact on Ω ×
[0, 1]. Assume that

(a) for each λ ∈ (0, 1), every solution x of Lx = λN(x, λ) is such that x /∈ ∂Ω ∩DomL;

(b) QN(x, 0)x /= 0 for each x ∈ ∂Ω ∩ KerL;

(c) deg(JQN(x, 0),Ω ∩ KerL, 0)/= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩Dom L.

For the sake of convenience, we denote fl = mint∈[0,ω]f(t), fM = maxt∈[0,ω]f(t), f =
(1/ω)

∫ω
0 f(t) dt, respectively; here f(t) is a continuous ω-periodic function.
For simplicity, we need to introduce some notations as follows:
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(
al
1 − cM12 l

+
2

)
±
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1 − cM12 l

+
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+
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)2 − 4bMi hM
i
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,

(2.1)

where i = 2, 3, . . . , n.
Throughout this paper, we need the following assumptions:

(H1) al
1 − cM12 l

+
2 > 2

√
bM1 hM

1 and cln,n−1l
−
n−1 − dM

n > 2
√
bMn hM

n ;

(H2) cli,i−1l
−
i−1 − cMi,i+1l

+
i+1 − dM

i > 2
√
bMi hM

i , i = 2, 3, . . . , n − 1.
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Lemma 2.2. Let x > 0, y > 0, z > 0 and x > 2√yz, for the functions f(x, y, z) = (x +√
x2 − 4yz)/2z and g(x, y, z) = (x −

√
x2 − 4yz)/2z, the following assertions hold:

(1) f(x, y, z) and g(x, y, z) are monotonically increasing and monotonically decreasing on the
variable x ∈ (0,∞), respectively.

(2) f(x, y, z) and g(x, y, z) are monotonically decreasing and monotonically increasing on the
variable y ∈ (0,∞), respectively.

(3) f(x, y, z) and g(x, y, z) are monotonically decreasing and monotonically increasing on the
variable z ∈ (0,∞), respectively.

Proof. In fact, for all x > 0, y > 0, z > 0, we have

∂f

∂x
=

x +
√
x2 − 4yz

2z
√
x2 − 4yz

> 0,
∂g

∂x
=

√
x2 − 4yz − x

2z
√
x2 − 4yz

< 0,
∂f

∂y
=

−1
√
x2 − 4yz

< 0,

∂g

∂y
=

1
√
x2 − 4yz

> 0,
∂f

∂z
=

−x
(
x +

√
x2 − 4yz

)

2z2
√
x2 − 4yz

< 0,
∂g

∂z
=

x
(
x −

√
x2 − 4yz

)

2z2
√
x2 − 4yz

> 0.

(2.2)

By the relationship of the derivative and the monotonicity, the above assertions obviously
hold. The proof of Lemma 2.2 is complete.

Lemma 2.3. Assume that (H1) and (H2) hold, then we have the following inequalities:

ln l−i < lnB−
i < lnA−

i < lnA+
i < lnB+

i < lnl+i , i = 1, 2, . . . , n. (2.3)

Proof. Since

aM
1 ≥ al

1 > al
1 − cM12 l

+
2 > 2

√
bM1 hM

1 > 0, 0 < bl1 ≤ bM1 , 0 < hl
1 ≤ hM

1 ,

cMi,i−1l
+
i−1 > cli,i−1l

−
i > cli,i−1l

−
i−1 − cMi,i+1l

+
i+1 − dM

i > 0,

0 < bli ≤ bMi , 0 < hl
i ≤ hM

i , i = 2, 3, . . . , n − 1,

cMn,n−1l
+
n−1 > cln,n−1l

−
n−1 > cln,n−1l

−
n−1 − dM

n > 2
√
bMn hM

n > 0, 0 < bln ≤ bMn , 0 < hl
n ≤ hM

n .

(2.4)
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By assumptions (H1), (H2), Lemma 2.2 and the expressions of A±
i , B

±
i , and l±i , we have
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(2.5)

where i = 2, 3, . . . , n − 1, that is 0 < l−i < B−
i < A−

i < A+
i < B+

i < l+i , i = 1, 2, . . . , n. Thus, we
have ln l−i < lnB−

i < lnA−
i < lnA+

i < lnB+
i < ln l+i , i = 1, 2, . . . , n. The proof of Lemma 2.3 is

complete.

Theorem 2.4. Assume that (H1) and (H2) hold. Then system (1.1) has at least 2n positiveω-periodic
solutions.

Proof. By making the substitution

xi(t) = exp{ui(t)}, i = 1, 2, . . . , n, (2.6)

system (1.1) can be reformulated as

u̇1(t) = a1(t) − b1(t)eu1(t) − c12(t)eu2(t) − h1(t)e−u1(t),

...

u̇i(t) = −di(t) − bi(t)eui(t) + ci,i−1(t)eui−1(t) − ci,i+1(t)eui+1(t) − hi(t)e−ui(t),

...

u̇n(t) = −dn(t) − bn(t)eun(t) + cn,n−1(t)eun−1(t) − hn(t)e−un(t),

(2.7)

where i = 2, 3, . . . , n − 1.
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Let

X = Z =
{
u = (u1, u2, . . . , un)T ∈ C(R,Rn) : u(t +ω) = u(t)

}
(2.8)

and define

‖u‖ =
n∑

i=1

max
t∈[0,ω]

|ui(t)|, u ∈ X or Z. (2.9)

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces. Let

N(u, λ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1(t) − b1(t)eu1(t) − λc12(t)eu2(t) − h1(t)e−u1(t)

...

−λdi(t) − bi(t)eui(t) + ci,i−1(t)eui−1(t) − λci,i+1(t)eui+1(t) − hi(t)e−ui(t)

...

−λdn(t) − bn(t)eun(t) + cn,n−1(t)eun−1(t) − hn(t)e−un(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

n×1

, (2.10)

where i = 2, 3, . . . , n − 1, Lu = u̇ = (du(t))/dt. We put Pu = (1/ω)
∫ω
0 u(t) dt, u ∈ X;Qz =

(1/ω)
∫ω
0 z(t) dt, z ∈ Z. Thus it follows that KerL = Rn, ImL = {z ∈ Z :

∫ω
0 z(t) dt = 0} is

closed in Z, dim KerL = n = codim ImL, and P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im (I −Q). (2.11)

Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
KP : ImL → Ker P

⋂
Dom L is given by

KP (z) =
∫ t

0
z(s) ds − 1

ω

∫ω

0

∫ s

0
z(s) ds. (2.12)
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Then

QN(u, λ) =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

1
ω

∫ω

0
F1(s, λ)ds

...

1
ω

∫ω

0
Fn(s, λ)ds

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

n×1

, (2.13)

KP (I −Q)N(u, λ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ t

0
F1(s, λ) ds − 1

ω

∫ω

0

∫ t

0
F1(s, λ) dsdt +

(
1
2
− t

ω

)∫ω

0
F1(s, λ)ds

...
∫ t

0
Fn(s, λ) ds − 1

ω

∫ω

0

∫ t

0
Fn(s, λ) dsdt +

(
1
2
− t

ω

)∫ω

0
Fn(s, λ)ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×1

,

(2.14)

where

F(u, λ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1(s) − b1(s)eu1(s) − λc12(s)eu2(s) − h1(s)e−u1(s)

...

−λdi(s) − bi(s)eui(s) + ci,i−1(s)eui−1(s) − λci,i+1(s)eui+1(s) − hi(s)e−ui(s)

...

−λdn(s) − bn(s)eun(s) + cn,n−1(s)eun−1(s) − hn(s)e−un(s)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

n×1

. (2.15)

Obviously,QN andKP (I−Q)N are continuous. It is not difficult to show thatKP (I−Q)N(Ω)
is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem. Moreover,
QN(Ω) is clearly bounded. Thus,N is L-compact on Ωwith any open bounded set Ω ⊂ X.

In order to use Lemma 2.1, we have to find at least 2n appropriate open bounded
subsets of X. Corresponding to the operator equation Lu = λN(u, λ), λ ∈ (0, 1), we have

u̇1(t) = λ
(
a1(t) − b1(t)eu1(t) − λc12(t)eu2(t) − h1(t)e−u1(t)

)
,

...

u̇i(t) = λ
(
−λdi(t) − bi(t)eui(t) + ci,i−1(t)eui−1(t) − λci,i+1(t)eui+1(t) − hi(t)e−ui(t)

)
,

...

u̇n(t) = λ
(
−λdn(t) − bn(t)eun(t) + cn,n−1(t)eun−1(t) − hn(t)e−un(t)

)
,

(2.16)
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where i = 2, 3, . . . , n − 1. Assume that u ∈ X is an ω-periodic solution of system (2.16) for
some λ ∈ (0, 1). Then there exist ξi, ηi ∈ [0, ω] such that ui(ξi) = maxt∈[0,ω]ui(t), ui(ηi) =
mint∈[0,ω]ui(t), i = 1, 2, . . . , n. It is clear that u̇i(ξi) = 0, u̇i(ηi) = 0, i = 1, 2, . . . , n. From this and
(2.16), we have

a1(ξ1) − b1(ξ1)eu1(ξ1) − λc12(ξ1)eu2(ξ1) − h1(ξ1)e−u1(ξ1) = 0,

...

−λdi(ξi) − bi(ξi)eui(ξi) + ci,i−1(ξi)eui−1(ξi) − λci,i+1(ξi)eui+1(ξi) − hi(ξi)e−ui(ξi) = 0,

...

−λdn(ξi) − bn(ξn)eun(ξn) + cn,n−1(ξn)eun−1(ξn) − hn(ξn)e−un(ξn) = 0

(2.17)

a1
(
η1
) − b1

(
η1
)
eu1(η1) − λc12

(
η1
)
eu2(η1) − h1

(
η1
)
e−u1(η1) = 0,

...

−λdi

(
ηi
) − bi

(
ηi
)
eui(ηi) + ci,i−1

(
ηi
)
eui−1(ηi) − λci,i+1

(
ηi
)
eui+1(ηi) − hi

(
ηi
)
e−ui(ηi) = 0,

...

−λdn

(
ηi
) − bn

(
ηn

)
eun(ηn) + cn,n−1

(
ηn

)
eun−1(ηn) − hn

(
ηn

)
e−un(ηn) = 0,

(2.18)

where i = 2, 3, . . . , n − 1.
On one hand, according to (2.17), we have

bl1e
2u1(ξ1) − aM

1 eu1(ξ1) + hl
1 ≤ b1(ξ1)e2u1(ξ1) − a1(ξ1)eu1(ξ1) + h1(ξ1) = −λc12(ξ1)eu1(ξ1)+u2(ξ1) < 0,

(2.19)
namely,

bl1e
2u1(ξ1) − aM

1 eu1(ξ1) + hl
1 < 0, (2.20)

which implies that

ln l−1 < u1(ξ1) < ln l+1 , (2.21)

bl2e
2u2(ξ2) + hl

2 < b2(ξ2)e2u2(ξ2) + λc23(ξ2)eu2(ξ2)+u3(ξ2) + λd2(ξ2)eu2(ξ2) + h2(ξ2)

= c21(ξ2)eu2(ξ2)+u1(ξ2) < cM21 l
+
1e

u2(ξ2);
(2.22)

that is,

bl2e
2u2(ξ2) − cM21 l

+
1e

u2(ξ2) + hl
2 < 0, (2.23)
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which implies that

ln l−2 < u2(ξ2) < ln l+2 . (2.24)

By deducing for i = 3, 4, . . . , n − 1, we obtain

blie
2ui(ξi) + hl

i < bi(ξi)e2ui(ξi) + λci,i+1(ξi)eui(ξi)+ui+1(ξi) + λdi(ξi)eui(ξi) + hi(ξi)

= ci,i−1(ξi)eui(ξi)+ui−1(ξi) < cMi,i−1l
+
i−1e

ui(ξi),
(2.25)

namely,

blie
2ui(ξi) − cMi,i−1l

+
i−1e

ui(ξi) + hl
i < 0, (2.26)

which implies that

ln l−i < ui(ξi) < ln l+i , i = 3, 4, . . . , n − 1, (2.27)

blne
2un(ξi) + hl

n < bn(ξn)e2un(ξn) + λdn(ξn)eun(ξn) + hn(ξn)

= cn,n−1(ξn)eun(ξn)+un−1(ξn) < cMn,n−1l
+
n−1e

un(ξn),
(2.28)

namely,

blne
2un(ξn) − cMn,n−1l

+
n−1e

un(ξn) + hl
n < 0, (2.29)

which implies that

ln l−n < un(ξn) < ln l+n. (2.30)

In view of (2.20), (2.23), (2.26), and (2.29), we have

ln l−i < ui(ξi) < ln l+i , i = 1, 2, . . . , n. (2.31)

From (2.18), one can analogously obtain

ln l−i < ui

(
ηi
)
< ln l+i , i = 1, 2, . . . , n. (2.32)

By (2.30) and (2.31), we get

ln l−i < ui

(
ηi
)
< ui(ξi) < ln l+i , i = 1, 2, . . . , n. (2.33)
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On the other hand, in view of (2.17), we have

−bM1 e2u1(ξ1) + al
1e

u1(ξ1) − hM
1 ≤ −b1(ξ1)e2u1(ξ1) + a1(ξ1)eu1(ξ1) − h1(ξ1)

= λc12(ξ1)eu1(ξ1)+u2(ξ1) < cM12 l
+
2e

u1(ξ1),
(2.34)

namely,

bM1 e2u1(ξ1) −
(
al
1 − cM12 l

+
2

)
eu1(ξ1) + hM

1 > 0, (2.35)

which implies that

lnA+
1 < u1(ξ1) or u1(ξ1) < lnA−

1 , (2.36)

cl21l
−
1 < c21(ξ2)eu1(ξ2) = b2(ξ2)eu2(ξ2) + h2(ξ2)e−u2(ξ2) + λd2(ξ2) + λc23(ξ2)eu3(ξ2)

< bM2 eu2(ξ2) + hM
2 e−u2(ξ2) + dM

2 + cM23 l
+
3 ,

(2.37)

that is,

bM2 e2u2(ξ2) −
(
cl21l

−
1 − cM23 l

+
3 − dM

2

)
eu2(ξ2) + hM

2 > 0, (2.38)

which implies that

lnA+
2 < u2(ξ2) 2003or u2(ξ2) < lnA−

2 . (2.39)

By deducing for i = 3, 4, . . . , n − 1, we obtain

cli,i−1l
−
i−1 < ci,i−1(ξi)eui−1(ξi) = bi(ξi)eui(ξi) + hi(ξi)e−ui(ξi) + λdi(ξi) + λci,i+1(ξi)eui+1(ξi)

< bMi eui(ξi) + hM
i e−ui(ξi) + dM

i + cMi,i+1l
+
i+1,

(2.40)

that is,

bMi e2ui(ξi) −
(
cli,i−1l

−
i−1 − cMi,i+1l

+
i+1 − dM

i

)
eui(ξi) + hM

i > 0, (2.41)

which implies that

lnA+
i < ui(ξi) or ui(ξi) < lnA−

i , i = 3, 4, . . . , n − 1, (2.42)

cln,n−1l
−
n−1 < cn,n−1(ξn)eun−1(ξn) = bn(ξn)eun(ξn) + hn(ξn)e−un(ξn) + λdn(ξn)

< bMn eun(ξn) + hM
n e−un(ξn) + dM

n ,
(2.43)
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namely,

bMn e2un(ξn) −
(
cln,n−1l

−
n−1 − dM

n

)
eun(ξn) + hM

n > 0, (2.44)

which implies that

lnA+
n < un(ξn) or un(ξn) < lnA−

n. (2.45)

It follows from (2.35), (2.38), (2.41), and (2.44) that

lnA+
i < ui(ξi) or ui(ξi) < lnA−

i , i = 1, 2, . . . , n. (2.46)

From (2.18), one can analogously obtain

lnA+
i < ui

(
ηi
)

or ui

(
ηi
)
< lnA−

i , i = 1, 2, . . . , n. (2.47)

By (2.32), (2.45), (2.46), and Lemma 2.3, we get

lnA+
i < ui

(
ηi
)
< ui(ξi) < ln l+i or ln l−i < ui

(
ηi
)
< ui(ξi) < lnA−

i , i = 1, 2, . . . , n, (2.48)

which implies that, for all t ∈ R,

lnA+
i < ui(t) < ln l+i or ln l−i < ui(t) < lnA−

i , i = 1, 2, . . . , n. (2.49)

For convenience, we denote

Gi =
(
ln l−i , lnA

−
i

)
, Hi =

(
lnA+

i , ln l
+
i

)
, i = 1, 2, . . . , n. (2.50)

Clearly, l±i (i = 1, 2, . . . , n) and A±
i (i = 1, 2, . . . , n) are independent of λ. For each i =

1, 2, . . . , n, we choose an interval between two intervals Gi and Hi, and denote it as Δi, then
define the set

{
u = (u1, u2, . . . , un)T ∈ X : ui(t) ∈ Δi, t ∈ R, i = 1, 2, . . . , n

}
. (2.51)

Obviously, the number of the above sets is 2n. We denote these sets as Ωk, k =
1, 2, . . . , 2n. Ωk, k = 1, 2, . . . , 2n are bounded open subsets of X,Ωi ∩ Ωj = φ, i /= j. Thus
Ωk(k = 1, 2, . . . , 2n) satisfies the requirement (a) in Lemma 2.1.
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Now we show that (b) of Lemma 2.1 holds; that is, we prove when u ∈ ∂Ωk ∩ KerL =
∂Ωk ∩ Rn, QN(u, 0)/= (0, 0, . . . , 0)T , k = 1, 2, . . . , 2n. If it is not true, then when u ∈ ∂Ωk ∩
KerL = ∂Ωk ∩ Rn, i = 1, 2, . . . , 2n, constant vector u = (u1, u2, . . . , un)

T , with u ∈ ∂Ωk, k =
1, 2, . . . , 2n, satisfies

∫ω

0

(
a1(t) − b1(t)eu1 − h1(t)e−u1

)
dt = 0,

...
∫ω

0

(−bi(t)eui + ci,i−1(t)eui−1 − hi(t)e−ui
)
ds = 0,

...
∫ω

0

(−bn(t)eun + cn,n−1(t)eun−1 − hn(t)e−un
)
ds = 0,

(2.52)

where i = 2, 3, . . . , n − 1. In view of the mean value theorem of calculous, there exist n points
ti (i = 1, 2, . . . , n) such that

a1(t1) − b1(t1)eu1 − h1(t1)e−u1 = 0,

...

−bi(ti)eui + ci,i−1(ti)eui−1 − hi(ti)e−ui = 0,

...

−bn(tn)eun + cn,n−1(tn)eun−1 − hn(tn)e−un = 0,

(2.53)

where i = 2, 3, . . . , n − 1. Following the argument of (2.20)–(2.47), from (2.52), we obtain

ln l−i < ui < lnB−
i < lnA−

i or lnA+
i < lnB+

i < ui < lnl+i , i = 1, 2, . . . , n. (2.54)

Then u belongs to one of Ωk ∩ Rn, k = 1, 2, . . . , 2n. This contradicts the fact that u ∈ ∂Ωk ∩
Rn, k = 1, 2, . . . , 2n. This proves that (b) in Lemma 2.1 holds.

Finally, in order to show that (c) in Lemma 2.1 holds, we only prove that for
u ∈ ∂Ωk ∩ KerL = ∂Ωk ∩ Rn, k = 1, 2, . . . , 2n, then it holds that deg{JQN(u, 0),Ωk ∩
KerL, (0, 0, . . . , 0)T}/= 0. To this end, we define the mapping φ : Dom L × [0, 1] → X by

φ
(
u, μ

)
= μQN(u, 0) +

(
1 − μ

)
G(u); (2.55)
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here μ ∈ [0, 1] is a parameter and G(u) is defined by

G(u) =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫ω

0

(
a1(s) − b1(s)eu1(s) − h1(s)e−u1(s)

)
ds

...
∫ω

0

(
cMi,i−1l

+
i−1 − bi(s)eui(s) − hi(s)e−ui(s)

)
ds

...
∫ω

0

(
cMn,n−1l

+
n−1 − bn(s)eun(s) − hn(s)e−un(s)

)
ds

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×1

, (2.56)

where i = 2, 3, . . . , n − 1. We show that for u ∈ ∂Ωk ∩ KerL = ∂Ωk ∩ Rn, k = 1, 2, . . . , 2n, μ ∈
[0, 1], then it holds that φ(u, μ)/= (0, 0, . . . , 0)T . Otherwise, parameter μ and constant vector
u = (u1, u2, . . . , un)

T ∈ Rn satisfy φ(u, μ) = (0, 0 . . . , 0)T , that is,

0 = μ

∫ω

0

(
a1(s) − b1(s)eu1 − h1(s)e−u1

)
ds +

(
1 − μ

)
∫ω

0

(
a1(s) − b1(s)eu1 − h1(s)e−u1

)
ds,

...

0 = μ

∫ω

0

(
ci,i−1(s)eui−1 − bi(s)eui − hi(s)e−ui

)
ds +

(
1 − μ

)
∫ω

0

(
cMi,i−1l

+
i−1 − bi(s)eui − hi(s)e−ui

)
ds,

...

0 = μ

∫ω

0

(
cn,n−1(s)eun−1 − bn(s)eun − hn(s)e−un

)
ds

+
(
1 − μ

)
∫ω

0

(
cMn,n−1l

+
n−1 − bn(s)eun − hn(s)e−un

)
ds,

(2.57)

where i = 2, 3, . . . , n − 1. In view of the mean value theorem of calculous, there exist n points
ti ∈ [0, ω] (i = 1, 2, . . . , n) such that

a1

(
t1
)
− b1

(
t1
)
eu1 − h1

(
t1
)
e−u1 = 0,

...

cMi,i−1l
+
i−1 − bi

(
ti
)
eui − hi

(
ti
)
e−ui = μ

(
cMi,i−1l

+
i−1 − ci,i−1

(
ti
)
eui−1

)
,

...

cMn,n−1l
+
n−1 − bn

(
tn
)
eun − hn

(
tn
)
e−un = μ

(
cMn,n−1l

+
n−1 − ci,n−1

(
tn
)
eun−1

)
,

(2.58)
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where i = 2, 3, . . . , n − 1. Following the argument of (2.20)–(2.47), from (2.57), we obtain

ln l−i < ui < lnB−
i < lnA−

i or lnA+
i < lnB+

i < ui < ln l+i , i = 1, 2, . . . , n. (2.59)

given that u belongs to one of Ωk ∩ Rn, k = 1, 2, . . . , 2n. This contradicts the fact that u ∈
∂Ωk ∩Rn, k = 1, 2, . . . , 2n. This proves φ(u, μ)/= (0, 0, . . . , 0)T holds. Note that the system of the
following algebraic equations:

a1

(
t1
)
− b1

(
t1
)
ex1 − h1

(
t1
)
e−x1 = 0,

...

cMi,i−1l
+
i−1 − bi

(
ti
)
exi − hi

(
ti
)
e−xi = 0,

...

cMn,n−1l
+
n−1 − bn

(
tn
)
exn − hn

(
tn
)
e−xn = 0

(2.60)

has 2n distinct solutions since (H1) and (H2) hold, (x∗
1, x

∗
2, . . . , x

∗
n) = (ln x̂1, ln x̂2, . . . , ln x̂n),

where x±
1 = (a1(t1) ±

√
(a1(t1))

2 − 4b1(t1)h1(t1))/(2b1(t1)), x±
k = ((cMk,k−1l

+
k−1 ±

(cM
k,k−1l

+
k−1)

2 − 4bk(tk)hk(tk))/(2bk(tk))) (k = 2, 3, . . . , n), x̂i = x−
i or x̂i = x+

i , i = 1, 2, . . . , n.

Similar to the proof of Lemma 2.3, it is easy to verify that

ln l−i < lnx−
i < lnB−

i < lnA−
i < lnA+

i < lnB+
i < lnx+

i < ln l+i , i = 1, 2, . . . , n. (2.61)

Therefore, (x∗
1, x

∗
2, . . . , x

∗
n) uniquely belongs to the corresponding Ωk. Since KerL = ImQ, we

can take J = I. A direct computation gives, for k = 1, 2, . . . , 2n,

deg
{
JQN(u, 0),Ωk ∩ KerL, (0, 0, . . . , 0)T

}

= deg
{
φ(u, 1),Ωk ∩ KerL, (0, 0, . . . , 0)T

}

= deg
{
φ(u, 0),Ωk ∩ KerL, (0, 0, . . . , 0)T

}

= sign

⎡

⎢
⎣

n∏

i=1

⎛

⎜
⎝−bi

(
ti
)
x∗
i +

hi

(
ti
)

x∗
i

⎞

⎟
⎠

⎤

⎥
⎦.

(2.62)
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Since a1(t1) − b1(t1)x∗
1 − (h1(t1))/(x∗

1) = 0, cMi,i−1l
+
i−1 − bi(ti)x∗

i − (hi(ti))/(x∗
i ) = 0 (i = 2, 3, . . . , n),

then

deg
{
JQN(u, 0),Ωk ∩ KerL, (0, 0, . . . , 0)T

}

= sign

[
n∏

i=2

(
a1

(
t1 − 2b1

(
t1
)
x∗
1

))(
cMi,i−1l

+
i−1 − 2bMi x∗

i

)]

= ±1, k = 1, 2, . . . , 2n.
(2.63)

So far, we have proved that Ωk(k = 1, 2, . . . , 2n) satisfies all the assumptions in
Lemma 2.1. Hence, system (2.7) has at least 2n different ω-periodic solutions. Thus, by (2.6)
system (1.1) has at least 2n different positive ω-periodic solutions. This completes the proof
of Theorem 2.4.

In system (1.1), if ci,i−1(t) ≥ 0 (i = 2, 3, . . . , n), cj,j+1(t) ≥ 0 (j = 1, 2, . . . , n − 1), and
a1(t) > 0, di(t) > 0, bi(t) > 0, hi(t) > 0 are continuous periodic functions, then similar to the
proof of Theorem 2.4, one can prove the following

Theorem 2.5. Assume that (H1) and (H2) hold. Then system (1.1) has at least 2n positiveω-periodic
solutions.

Remark 2.6. In Theorem 2.5, ci−1,i(t) = 0 means that the ith species does not prey the (i − 1)th
species, thus ci,i−1(t) = 0. That is to say, there is no relationship between the ith species and
the (i − 1)th species.

3. Illustrative Examples

Example 3.1. Consider the following three-species food chain with harvesting terms:

ẋ(t) = x(t)
(
3 + sin t − 4 + sin t

10
x(t) − c12(t)y(t)

)
− 9 + cos t

20
,

ẏ(t) = y(t)
(
−3 + cos t

10
− 5 + cos t

10
y(t) + c21(t)x(t) − c23(t)z(t)

)
− 2 + cos t

5
,

ż(t) = z(t)
(
−3 + sin 2t

10
− 8 + sin 2t

10
z(t) + c32(t)y(t)

)
− 8 + cos 2t

10
.

(3.1)

In this case, a1(t) = 3 + sin t, b1(t) = (4 + sin t)/10, h1(t) = (9 + cos t)/20, d2(t) = (3 +
cos t)/10, b2(t) = (5 + cos t)/10, h2(t) = (2 + cos t)/5, d3(t) = (3 + sin 2t)/10, b3(t) =
(8 + sin 2t)/10, and h3(t) = (8 + cos 2t)/10. Since

l±1 =
aM
1 ±

√(
aM
1

)2 − 4bl1h
l
1

2bl1
=

20 ± 2
√
97

3
, (3.2)



16 Advances in Difference Equations

taking c21(t) ≡ 14/(5l−1 ), then we have

l±2 =
cM21 l

+
1 ±

√(
cM21 l

+
1

)2 − 4bl2h
l
2

2bl2
=

7l+1 ±
√
49
(
l+1
)2 − 2

(
l−1
)2

2l−1
. (3.3)

Take c32(t) ≡ 12/(5l−2 ), then

l±3 =
cM32 l

+
2 ±

√(
cM32 l

+
2

)2 − 4bl3h
l
3

2bl3
=

12l+2 ±
√(

12l+2
)2 − (

7l−2
)2

7l−2
. (3.4)

Take c12(t) ≡ 1/(2l+2 ), c23(t) ≡ 1/(l+3 ), then

al
1 − cM12 l

+
2 =

3
2
> 1 = 2

√
bM1 hM

1 , cl32l
−
2 − dM

3 = 2 >
9
5
= 2

√
bM3 hM

3 ,

cl21l
−
1 − cM23 l

+
3 − dM

2 =
7
5
>

6
5
= 2

√
bM2 hM

2 .

(3.5)

Therefore, all conditions of Theorem 2.4 are satisfied. By Theorem 2.4, system (3.1) has at least
eight positive 2π-periodic solutions.
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