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We investigate some interesting properties of the Bernstein polynomials related to the bosonic p-
adic integrals on Zp.

1. Introduction

Let C[0, 1] be the set of continuous functions on [0, 1]. Then the classical Bernstein
polynomials of degree n for f ∈ C[0, 1] are defined by

Bn

(
f
)
=

n∑

k=0

f

(
k

n

)
Bk,n(x), 0 ≤ x ≤ 1, (1.1)

where Bn(f) is called the Bernstein operator and

Bk,n(x) =
(
n
k

)
xk(x − 1)n−k (1.2)
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are called the Bernstein basis polynomials (or the Bernstein polynomials of degree n).
Recently, Acikgoz and Araci have studied the generating function for Bernstein polynomials
(see [1, 2]). Their generating function for Bk,n(x) is given by

Fk(t, x) =
tke(1−x)txk

k!
=

∞∑

n=0

Bk,n(x)
tn

n!
, (1.3)

where k = 0, 1, . . . and x ∈ [0, 1]. Note that

Bk,n(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
n

k

⎞

⎠xk(1 − x)n−k, if n ≥ k,

0, if n < k

(1.4)

for n = 0, 1, . . . (see [1, 2]). In [3], Simsek and Acikgoz defined generating function of the
(q-)Bernstein-Type Polynomials, Yn(k, x, q) as follows:

Fk,q(t, x) =
tke[1−x]qt[x]kq

k!
=

∞∑

n=k

Yn

(
k, x, q

) tn

n!
, (1.5)

where [x]q = (1 − qx)/(1 − q). Observe that

lim
q→ 1

Yn

(
k, x, q

)
= Bk,n(x). (1.6)

Hence by the above one can very easily see that

Fk(t, x) =
tke(1−x)txk

k!
=

∞∑

n=k

Bk,n(x)
tn

n!
. (1.7)

Thus, we have arrived at the generating function in [1, 2] and also in (1.3) as well.
The Bernstein polynomials can also be defined in many different ways. Thus, recently,

many applications of these polynomials have been looked for by many authors. Some
researchers have studied the Bernstein polynomials in the area of approximation theory
(see [1–7]). In recent years, Acikgoz and Araci [1, 2] have introduced several type Bernstein
polynomials.

In the present paper, we introduce the Bernstein polynomials on the ring of p-adic
integers Zp. We also investigate some interesting properties of the Bernstein polynomials
related to the bosonic p-adic integrals on the ring of p-adic integers Zp.

2. Bernstein Polynomials Related to the Bosonic p-Adic Integrals on Zp

Let p be a fixed prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring of
p-adic integers, the field of p-adic numbers, and the completion of the algebraic closure ofQp,
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respectively. Let vp be the normalized exponential valuation of Cp with |p|p = p−1. For N ≥ 1,
the bosonic distribution µ1 on Zp

µ
(
a + pNZp

)
=

1
pN

(2.1)

is known as the p-adic Haar distribution µHaar, where a + pNZp = {x ∈ Qp | |x − a|p ≤ p−N}
(cf. [8]). We will write dµ1(x) to remind ourselves that x is the variable of integration. Let
UD(Zp) be the space of uniformly differentiable function on Zp. Then µ1 yields the fermionic
p-adic q-integral of a function f ∈ UD(Zp)

I1
(
f
)
=
∫

Zp

f(x)dµ1(x) = lim
N→∞

1
pN

pN−1∑

x=0

f(x) (2.2)

(cf. [8]). Many interesting properties of (2.2)were studied by many authors (cf. [8, 9] and the
references given there). For n ∈ N, write fn(x) = f(x + n). We have

I1
(
fn
)
= I1

(
f
)
+

n−1∑

l=0

f ′(l). (2.3)

This identity is to derives interesting relationships involving Bernoulli numbers and
polynomials. Indeed, we note that

I1
((
x + y

)n) =
∫

Zp

(
x + y

)n
dµ1

(
y
)
= Bn(x), (2.4)

where Bn(x) are the Bernoulli polynomials (cf. [8]). From (1.2), we have

∫

Zp

Bk,n(x)dµ1(x) =
(
n
k

) n−k∑

j=0

(
n − k
j

)
(−1)n−k−jBn−j ,

∫

Zp

Bk,n(x)dµ1(x) =
∫

Zp

Bn−k,n(1 − x)dµ1(x)

=
(
n
k

) k∑

j=0

(
k
j

)
(−1)k−j

n−j∑

l=0

(
n − j
l

)
(−1)lBl.

(2.5)

By (2.5), we obtain the following proposition.

Proposition 2.1. For n ≥ k,

n−k∑

j=0

(
n − k
j

)
(−1)n−k−jBn−j =

k∑

j=0

(
k
j

)
(−1)k−j

n−j∑

l=0

(
n − j
l

)
(−1)lBl. (2.6)
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From (2.4), we note that

Bn(2) − n = (B(1) + 1)n − n = (B + 1)n = Bn, n > 1 (2.7)

with the usual convention of replacing Bn by Bn and (B(1))n by Bn(1). Thus, we have

∫

Zp

xndµ1(x) =
∫

Zp

(x + 2)ndµ1(x) − n

= (−1)n
∫

Zp

(x − 1)ndµ1(x) − n

=
∫

Zp

(1 − x)ndµ1(x) − n

(2.8)

for n > 1, since (−1)nBn(x) = Bn(1 − x). Therefore we obtain the following theorem.

Theorem 2.2. For n > 1,

∫

Zp

(1 − x)ndµ1(x) =
∫

Zp

xndµ1(x) + n. (2.9)

Also we obtain

∫

Zp

Bn−k,k(x)dµ1(x) =
∫

Zp

xn−k(1 − x)kdµ1(x)

=
n−k∑

l=0

(
n − k
l

)
(−1)l

∫

Zp

(1 − x)l+kdµ1(x)

=
n−k∑

l=0

(
n − k
l

)
(−1)l

{∫

Zp

xl+kdµ1(x) + l + k

}

=
n−k∑

l=0

(
n − k
l

)
(−1)l(Bl+k + l + k).

(2.10)

Therefore we obtain the following result.

Corollary 2.3. For k > 1,

∫

Zp

Bn−k,k(x)dµ1(x) =
n−k∑

l=0

(
n − k
l

)
(−1)l(Bl+k + l + k). (2.11)
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From the property of the Bernstein polynomials of degree n, we easily see that

∫

Zp

Bk,n(x)Bk,m(x)dµ1(x) =
(
n
k

)(
m
k

)∫

Zp

x2k(1 − x)n+m−2kdµ1(x)

=
(
n
k

)(
m
k

) n+m−2k∑

l=0

(
n +m − 2k

l

)
(−1)lB2k+l

∫

Zp

Bk,n(x)Bk,m(x)Bk,s(x)dµ1(x) =
(
n
k

)(
m
k

)(
s
k

)∫

Zp

x3k(1 − x)n+m−3kdµ1(x)

=
(
n
k

)(
m
k

)(
s
k

) n+m+s−3k∑

l=0

(
n +m + s − 3k

l

)
(−1)lB3k+l.

(2.12)

Continuing this process, we obtain the following theorem.

Theorem 2.4. The multiplication of the sequence of Bernstein polynomials

Bk,n1(x), Bk,n2(x), . . . , Bk,ns(x) (2.13)

for s ∈ N with different degree under p-adic integral on Zp, can be given as

∫

Zp

Bk,n1(x)Bk,n2(x) · · ·Bk,ns(x)dµ1(x)

=
(
n1

k

)(
n2

k

)
· · ·

(
ns

k

) n1+n2+···+ns−sk∑

l=0

(
n1 + n2 + · · · + ns − sk

l

)
(−1)lBsk+l.

(2.14)

We put

Bm
k,n(x) = Bk,n(x) × · · · × Bk,n(x)︸ ︷︷ ︸

m-times

. (2.15)

Theorem 2.5. The multiplication of

Bm1
k,n1

(x), Bm2
k,n2

(x), . . . , Bms

k,ns
(x) (2.16)
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Bernstein polynomials with different degrees n1, n2, . . . , ns under p-adic integral on Zp can be given
as

∫

Zp

Bm1
k,n1

(x)Bm2
k,n2

(x) · · ·Bms

k,ns
(x)dµ1(x)

=
(
n1

k

)m1(n2

k

)m2

· · ·
(
ns

k

)ms n1m1+n2m2+···+nsms−(m1+···+ms)k∑

l=0

(−1)l

×
(
n1m1 + n2m2 + · · · + nsms − (m1 + · · · +ms)k

l

)
B(m1+···+ms)k+l.

(2.17)

Theorem 2.6. The multiplication of

Bm1
k1,n1

(x), Bm2
k2,n2

(x), . . . , Bms

ks,ns
(x) (2.18)

Bernstein polynomials with different degrees n1, n2, . . . , ns with different powers m1, m2, . . . , ms

under p-adic integral on Zp can be given as

∫

Zp

Bm1
k1,n1

(x)Bm2
k2,n2

(x) · · ·Bms

ks,ns
(x)dµ1(x)

=
(
n1

k1

)m1(n2

k2

)m2

· · ·
(
ns

ks

)ms n1m1+n2m2+···+nsms−(k1m1+···+ksms)∑

l=0

(−1)l

×
(
n1m1 + n2m2 + · · · + nsms − (k1m1 + · · · + ksms)

l

)
Bk1m1+···+ksms+l.

(2.19)

Problem. Find the Witt’s formula for the Bernstein polynomials in p-adic number field.
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