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The existence of asymptotically almost periodic mild solutions for a class of abstract partial neutral
integro-differential equations with unbounded delay is studied.

1. Introduction

In this paper, we study the existence of asymptotically almost periodic mild solutions for a
class of abstract partial neutral integro-differential equations modelled in the form

d

dt

(
x(t) + f(t, xt)

)
= Ax(t) +

∫ t

0
B(t − s)x(s)ds + g(t, xt), (1.1)

where A : D(A) ⊂ X → X and B(t) : D(B(t)) ⊂ X → X, t ≥ 0, are closed linear operators;
(X, ‖ · ‖) is a Banach space; the history xt : (−∞, 0] → X, xt(θ) = x(t + θ), belongs to some
abstract phase space B defined axiomatically f, g : I × B → X are appropriated functions.

The study of abstract neutral equations is motivated by different practical applications
in different technical fields. The literature related to ordinary neutral functional differential
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equations is very extensive and we refer the reader to Chukwu [1], Hale and Lunel [2], Wu
[3], and the references therein. As a practical application, we note that the equation

d

dt

[

u(t) − λ

∫ t

−∞
C(t − s)u(s)ds

]

= Au(t) + λ

∫ t

−∞
B(t − s)u(s)ds − p(t) + q(t) (1.2)

arises in the study of the dynamics of income, employment, value of capital stock, and
cumulative balance of payment; see [1] for details. In the above system, λ is a real number,
the state u(t) ∈ R

n, C(·), B(·) are n × n continuous functions matrices, A is a constant n × n
matrix, p(·) represents the government intervention, and q(·) the private initiative. We note
that by assuming the solution u is known on (−∞, 0], we can transform this system into an
abstract system with unbounded delay described as (1.1).

Abstract partial neutral differential equations also appear in the theory of heat
conduction. In the classic theory of heat conduction, it is assumed that the internal energy
and the heat flux depend linearly on the temperature u and on its gradient ∇u. Under
these conditions, the classic heat equation describes sufficiently well the evolution of the
temperature in different types of materials. However, this description is not satisfactory in
materials with fading memory. In the theory developed in [4, 5], the internal energy and the
heat flux are described as functionals of u and ux. The next system, see for instance [6–9], has
been frequently used to describe this phenomenon,

d

dt

[

u(t, x) +
∫ t

−∞
k1(t − s)u(s, x)ds

]

= cΔu(t, x) +
∫ t

−∞
k2(t − s)Δu(s, x)ds,

u(t, x) = 0, x ∈ ∂Ω.

(1.3)

In this system, Ω ⊂ R
n is open, bounded, and with smooth boundary; (t, x) ∈ [0,∞) × Ω;

u(t, x) represents the temperature in x at the time t; c is a physical constant ki : R → R,
i = 1, 2, are the internal energy and the heat flux relaxation, respectively. By assuming that
the solution u is known on (−∞, 0] and k2 ≡ 0, we can transform this system into an abstract
system with unbounded delay described in the form (1.1).

Recent contributions on the existence of solutions with some of the previously
enumerated properties or another type of almost periodicity to neutral functional differential
equations have been made in [10, 11], for the case of neutral ordinary differential equations,
and in [12–15] for partial functional differential systems.

The purpose of this work is to study the existence of asymptotically almost periodic
mild solutions for the neutral system (1.1). To this end, we study the existence and qualitative
properties of an exponentially stable resolvent operator for the integro-differential system

dx(t)
dt

= Ax(t) +
∫ t

0
B(t − s)x(s)ds, t ≥ 0,

x(0) = z ∈ X.

(1.4)

There exists an extensive literature related to the existence and qualitative properties of
resolvent operator for integro-differential equations. We refer the reader to the book by
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Gripenberg et al. [16] which contains an overview of the theory for the case where the
underlying spaceX has finite dimension. For abstract integro-differential equations described
on infinite dimensional spaces, we cite the Prüss book [17] and the papers [18–20], Da Prato
et al. [21, 22], and Lunardi [9, 23]. To finish this short description of the related literature,
we cite the papers [24–26] where some of the above topics for the case of abstract neutral
integro-differential equations with unbounded delay are treated.

To the best of our knowledge, the study of the existence of asymptotically almost
periodic solutions of neutral integro-differential equations with unbounded delay described
in the abstract form (1.1) is an untreated topic in the literature and this is the main motivation
of this article.

To finish this section, we emphasize some notations used in this paper. Let (Z, ‖ · ‖Z)
and (W, ‖·‖W) be Banach spaces.We denote byL(Z,W) the space of bounded linear operators
from Z intoW endowed with norm of operators, and we write simplyL(Z)when Z = W . By
R(Q), we denote the range of a map Q, and for a closed linear operator P : D(P) ⊆ Z → W ,
the notation [D(P)] represents the domain of P endowed with the graph norm, ‖z‖1 = ‖z‖Z +
‖Pz‖W , z ∈ D(P). In the case Z = W , the notation ρ(P) stands for the resolvent set of P, and
R(λ, P) = (λI − P)−1 is the resolvent operator of P . Furthermore, for appropriate functions
K : [0,∞) → Z and S : [0,∞) → L(Z,W), the notation K̂ denotes the Laplace transform of
K and S∗K the convolution between S andK, which is defined by S∗K(t) =

∫ t
0S(t−s)K(s)ds.

The notation Br(x,Z) stands for the closed ball with center at x and radius r > 0 in Z. As
usual, C0([0,∞), Z) represents the subspace of Cb([0,∞), Z) formed by the functions which
vanish at infinity.

2. Preliminaries

In this work, we will employ an axiomatic definition of the phase space B similar to that in
[27]. More precisely, B will denote a vector space of functions defined from (−∞, 0] into X
endowed with a seminorm denoted by ‖ · ‖B and such that the following axioms hold.

(A) If x : (−∞, σ + b) → X, with b > 0, is continuous on [σ, σ + b) and xσ ∈ B, then for
each t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,
(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖B, where H > 0 is a

constant, andK,M : [0,∞) 
→ [1,∞) are functions such thatK(·) andM(·) are
respectively continuous and locally bounded, andH,K,M are independent of
x(·).

(A1) If x(·) is a function as in (A), then xt is a B-valued continuous function on [σ, σ +b).

(B) The space B is complete.

(C2) If (ϕn)n∈N is a sequence in Cb((−∞, 0], X) formed by functions with compact
support such that ϕn → ϕ uniformly on compact, then ϕ ∈ B and ‖ϕn − ϕ‖B → 0
as n → ∞.
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Remark 2.1. In the remainder of this paper, L > 0 is such that

∥
∥ϕ
∥
∥
B ≤ L sup

θ≤0

∥
∥ϕ(θ)

∥
∥

(2.1)

for every ϕ : (−∞, 0] → X continuous and bounded; see [27, Proposition 7.1.1] for details.

Definition 2.2. Let S(t) : B → B be theC0-semigroup defined by S(t)ϕ(θ) = ϕ(0) on [−t, 0] and
S(t)ϕ(θ) = ϕ(t+θ) on (−∞,−t]. The phase space B is called a fading memory if ‖S(t)ϕ‖B → 0
as t → ∞ for each ϕ ∈ B with ϕ(0) = 0.

Remark 2.3. In this work, we suppose that there exists a positive K such that

max{K(t),M(t)} ≤ K (2.2)

for each t ≥ 0. Observe that this condition is verified, for example, if B is a fading memory,
see [27, Proposition 7.1.5].

Example 2.4 (The phase space Cr × Lp(ρ,X)). Let r ≥ 0, 1 ≤ p < ∞, and let ρ : (−∞,−r] →
R be a nonnegative measurable function which satisfies the conditions (g-5) and (g-6) in
the terminology of [27]. Briefly, this means that ρ is locally integrable, and there exists a
nonnegative, locally bounded function γ on (−∞, 0] such that ρ(ξ + θ) ≤ γ(ξ)ρ(θ), for all
ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero.
The space Cr × Lp(ρ,X) consists of all classes of functions ϕ : (−∞, 0] → X such that ϕ is
continuous on [−r, 0], Lebesgue-measurable, and ρ‖ϕ‖p is Lebesgue integrable on (−∞,−r).
The seminorm in Cr × Lp(ρ,X) is defined by

‖ϕ‖B : sup
{
‖ϕ(θ)‖ : −r ≤ θ ≤ 0

}
+
(∫−r

−∞
ρ(θ)
∥∥ϕ(θ)

∥∥pdθ
)1/p

. (2.3)

The space B = Cr × Lp(ρ;X) satisfies axioms (A), (A-1), and (B). Moreover, when r = 0 and

p = 2, we can take H = 1, M(t) = γ(−t)1/2, and K(t) = 1 + (
∫0
−tρ(θ)dθ)

1/2
, for t ≥ 0; see [27,

Theorem 1.3.8] for details.
Now, we need to introduce some concepts, definitions, and technicalities on almost

periodical functions.

Definition 2.5. A function f ∈ C(R, Z) is almost periodic (a.p.) if for every ε > 0, there exists a
relatively dense subset of R, denoted by H(ε, f, Z), such that

∥∥f(t + ξ) − f(t)
∥∥
Z < ε, t ∈ R, ξ ∈ H

(
ε, f, Z

)
. (2.4)

Definition 2.6. A function f ∈ C([0,∞), Z) is asymptotically almost periodic (a.a.p.) if there
exists an almost periodic function g(·) and w ∈ C0([0,∞), Z) such that f(·) = g(·) +w(·).

The next lemmas are useful characterizations of a.p and a.a.p functions.
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Lemma 2.7 (see [28, Theorem 5.5]). A function f ∈ C([0,∞), Z) is asymptotically almost periodic
if and only if for every ε > 0 there exist L(ε, f, Z) > 0 and a relatively dense subset of [0,∞), denoted
by T(ε, f, Z), such that

∥
∥f(t + ξ) − f(t)

∥
∥
Z < ε, t ≥ L

(
ε, f, Z

)
, ξ ∈ T

(
ε, f, Z

)
. (2.5)

In this paper, AP(Z) and AAP(Z) are the spaces

AP(Z) =
{
f ∈ C(R, Z) : f is a.p.

}
,

AAP(Z) =
{
f ∈ C([0,∞), Z) : f is a.a.p.

} (2.6)

endowed with the norms |‖u‖|Z = sups∈R‖u(s)‖Z and ‖u‖Z = sups≥0‖u(s)‖Z, respectively. We
know from the result in [28] that AP(Z) and AAP(Z) are Banach spaces.

Next, (Z, ‖ · ‖Z) and (W, ‖ · ‖W) are abstract Banach spaces.

Definition 2.8. Let Ω be an open subset of W.

(a) A continuous function f ∈ C(R × Ω, Z) (resp., f ∈ C([0,∞) × Ω;Z)) is called
pointwise almost periodic (p.a.p.), (resp., pointwise asymptotically almost periodic
(p.a.a.p.) if f(·, x) ∈ AP(Z) (resp., f(·, x) ∈ AAP(Z)) for every x ∈ Ω.

(b) A continuous function F ∈ C(R×Ω, Z) is called uniformly almost periodic (u.a.p.),
if for every ε > 0 and every compact K ⊂ Ω there exists a relatively dense subset of
R, denoted byH(ε, f,K,Z), such that

∥∥f
(
t + ξ, y

)
− f
(
t, y
)∥∥

Z ≤ ε,
(
t, ξ, y

)
∈ R ×H

(
ε, f,K,Z

)
×K. (2.7)

(c) A continuous function f : C([0,∞)×Ω, Z) is called uniformly asymptotically almost
periodic (u.a.a.p.), if for every ε > 0 and every compact K ⊂ Ω there exists a
relatively dense subset of [0,∞), denoted byT(ε, f,K,Z), and L(ε, f,K,Z) > 0 such
that

∥∥f(t + ξ, y) − f(t, y)
∥∥
Z ≤ ε, t ≥ L

(
ε, f,K,Z

)
,
(
ξ, y
)
∈ T
(
ε, f,K,Z

)
×K. (2.8)

The next lemma summarizes some properties which are fundamental to obtain our
results.

Lemma 2.9 (see [29, Theorem 1.2.7]). Let Ω ⊂ W be an open set. Then the following properties
hold.

(a) If f ∈ C(R ×Ω, Z) is p.a.p. and satisfies a local Lipschitz condition at x ∈ Ω, uniformly at
t, then f is u.a.p.

(b) If f ∈ C([0,∞) × Ω, Z) is p.a.a.p. and satisfies a local Lipschitz condition at x ∈ Ω,
uniformly at t, then f is u.a.a.p.

(c) If x ∈ AP(X), then t 
→ xt ∈ AP(B). Moreover, if B is a fading memory space and
z ∈ C(R, X) is such that z0 ∈ B and z ∈ AAP(X), then t 
→ zt ∈ AAP(B).
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(d) If f ∈ C(R ×Ω, Z) is u.a.p. and y ∈ AP(W) is such that {y(t) : t ∈ R}
W

⊂ Ω, then t 
→
f(t, y(t)) ∈ AP(Z).

(e) If f ∈ C([0,∞) × Ω, Z) is u.a.a.p and y ∈ AAP(W) is such that {y(t) : t ∈ R}
W

⊂ Ω,
then t 
→ f(t, y(t)) ∈ AAP(Z).

3. Resolvent Operators

In this section, we study the existence and qualitative properties of an exponentially resolvent
operator for the integro-differential abstract Cauchy problem

dx(t)
dt

= Ax(t) +
∫ t

0
B(t − s)x(s)ds,

x(0) = x ∈ X.

(3.1)

The results obtained for the resolvent operator in this section are similar to those that
can be found, for instance, in the papers [21, 23, 30]. In this paper, we prove the necessary
estimates for the proof of an existence theorem of asymptotically almost periodic solutions for
(1.1). For the better comprehension of the subject, we will introduce the following definitions,
hypothesis, and results.

We introduce the following concept of resolvent operator for integro-differential
problem (3.1).

Definition 3.1. A one-parameter family of bounded linear operators (R(t))t≥0 on X is called a
resolvent operator of (3.1) if the following conditions are verified.

(a) Function R(·) : [0,∞) → L(X) is strongly continuous and R(0)x = x for all x ∈ X.

(b) For x ∈ D(A), R(·)x ∈ C([0,∞), [D(A)])
⋂
C1([0,∞), X), and

dR(t)x
dt

= AR(t)x +
∫ t

0
B(t − s)R(s)xds, (3.2)

dR(t)x
dt

= R(t)Ax +
∫ t

0
R(t − s)B(s)xds, (3.3)

for every t ≥ 0,

(c) There exist constants M > 0, β such that ‖R(t)‖ ≤ Meβt for every t ≥ 0.

Definition 3.2. A resolvent operator (R(t))t≥0 of (3.1) is called exponentially stable if there exist
positive constants M,α such that ‖R(t)‖ ≤ Me−αt.

In this work, we always assume that the following conditions are verified.

(H1) The operator A : D(A) ⊆ X → X is the infinitesimal generator of an analytic
semigroup (T(t))t≥0 on X, and there are constants M0 > 0, ω ∈ R, and ϑ ∈ (π/2, π)
such that ρ(A) ⊇ Λω,ϑ = {λ ∈ C : λ/=ω, | arg(λ−ω)| < ϑ} and ‖R(λ,A)‖ ≤ M0/|λ−ω|
for all λ ∈ Λω,ϑ.
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(H2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator, D(A) ⊆ D(B(t)),
and B(·)x is strongly measurable on (0,∞) for each x ∈ D(A). There exists b(·) ∈
L1
loc(R

+) such that b̂(λ) exists for Re(λ) > 0 and ‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and
x ∈ D(A). Moreover, the operator valued function B̂ : Λω,π/2 → L([D(A)], X) has
an analytical extension (still denoted by B̂) toΛω,ϑ such that ‖B̂(λ)x‖ ≤ ‖B̂(λ)‖ ‖x‖1
for all x ∈ D(A), and ‖B̂(λ)‖ = O(1/|λ|) as |λ| → ∞.

(H3) There exist a subspaceD ⊆ D(A) dense in [D(A)] and positive constantsCi, i = 1, 2,
such that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), and ‖AB̂(λ)x‖ ≤ C1‖x‖ for every x ∈ D
and all λ ∈ Λω,ϑ.

In the sequel, for r > 0, θ ∈ (π/2, ϑ), and w ∈ R, set

Λr,ω,θ =
{
λ ∈ C : λ/=ω, |λ| > r,

∣
∣arg(λ −ω)

∣
∣ < θ

}
, (3.4)

and for ω + Γi
r,θ
, i = 1, 2, 3, the paths

ω + Γ1r,θ =
{
ω + teiθ : t ≥ r

}
,

ω + Γ2r,θ =
{
ω + reiξ : −θ ≤ ξ ≤ θ

}
,

ω + Γ3r,θ =
{
ω + te−iθ : t ≥ r

}
,

(3.5)

with ω + Γr,θ =
⋃3

i=1 ω + Γir,θ are oriented counterclockwise. In addition, Ψ(G) is the set

Ψ(G) =
{
λ ∈ C : G(λ) :=

(
λI −A − B̂(λ)

)−1
∈ L(X)

}
. (3.6)

We next study some preliminary properties needed to establish the existence of a
resolvent operator for the problem (3.1).

Lemma 3.3. There exists r1 > 0 such that Λr1,ω,ϑ ⊆ Ψ(G) and the function G : Λr1,ω,ϑ → L(X) is
analytic. Moreover,

G(λ) = R(λ,A)
[
I − B̂(λ)R(λ,A)

]−1
, (3.7)

and there exist constantsMi for i = 1, 2, 3 such that

‖G(λ)‖ ≤ M1

|λ −ω| , (3.8)

‖AG(λ)x‖ ≤ M2

|λ −ω| ‖x‖1, x ∈ D(A), (3.9)

‖AG(λ)‖ ≤ M3, (3.10)

for every λ ∈ Λr1,ω,ϑ.
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Proof. Since

∥
∥
∥B̂(λ)R(λ,A)

∥
∥
∥ ≤
∥
∥
∥B̂(λ)

∥
∥
∥‖R(λ,A)‖1

≤

⎛

⎝
M0

∥
∥
∥B̂(λ)

∥
∥
∥

|λ −ω| +
M0|λ|

∥
∥
∥B̂(λ)

∥
∥
∥

|λ −ω| +
∥
∥
∥B̂(λ)

∥
∥
∥

⎞

⎠,

(3.11)

fixed ε < 1, there exists a positive number r1 such that ‖B̂(λ)R(λ,A)‖ ≤ ε for λ ∈
Λr1,ω,ϑ. Consequently, the operator I − B̂(λ)R(λ,A) has a continuous inverse with ‖(I −
B̂(λ)R(λ,A))−1‖ ≤ 1/(1 − ε). Moreover, for x ∈ X, we have

(
λI − B̂(λ) −A

)
R(λ,A)

(
I − B̂(λ)R(λ,A)

)−1
x = x, (3.12)

and for x ∈ D(A),

R(λ,A)
(
I − B̂(λ)R(λ,A)

)−1(
λI − B̂(λ) −A

)
x = x, (3.13)

which shows (3.7) and that Λr1,ω,ϑ ⊆ Ψ(G). Now, from (3.7) we obtain R(G(λ)) ⊆ D(A) and

AG(λ) = (λR(λ,A) − I)
(
I − B̂(λ)R(λ,A)

)−1
. (3.14)

Consequently,

‖AG(λ)‖ ≤ 1
1 − ε

‖λR(λ,A) − I‖

≤ 1
1 − ε

(
M0 +

M0|ω|
|λ −ω| + 1

)

≤ M3,

(3.15)

the functions G,AG : Λr1,ω,ϑ → L(X) are analytic, and estimates (3.8), and (3.10) are valid.
In addition, for x ∈ D(A), we can write

‖AG(λ)x‖ ≤
∥∥∥∥AR(λ,A)

(
I − B̂(λ)R(λ,A)

)−1
x −AR(λ,A)x

∥∥∥∥ + ‖R(λ,A)Ax‖

=
∥∥∥∥
[
AR(λ,A)

(
I −
(
I − B̂(λ)R(λ,A)

))] (
I − B̂(λ)R(λ,A)

)−1
x

∥∥∥∥ + ‖R(λ,A)Ax‖

=
∥∥∥AG(λ)B̂(λ)R(λ,A)x

∥∥∥ + ‖R(λ,A)Ax‖
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≤ M3‖B̂(λ)‖‖R(λ,A)x‖1 + ‖R(λ,A)Ax‖

≤ M2

|λ −ω| ‖x‖1,

(3.16)

for |λ| sufficiently large. This proves (3.9) and completes the proof.

Observation 1. If R(·) is a resolvent operator for (3.1), it follows from (3.3) that R̂(λ)(λI −
A − B̂(λ))x = x for all x ∈ D(A). Applying Lemma 3.3 and the properties of the Laplace
transform, we conclude that R(·) is the unique resolvent operator for (3.1).

In the remainder of this section, r and θ are numbers such that r > r1 and θ ∈ (π/2, ϑ).
Moreover, we denote by C a generic constant that represents any of the constants involved
in the statements of Lemma 3.3 as well as any other constant that arises in the estimate that
follows. We now define the operator family (R(t))t≥0 by

R(t) =

⎧
⎪⎨

⎪⎩

1
2πi

∫

ω+Γr,θ
eλtG(λ)dλ, t > 0,

I, t = 0.
(3.17)

We will next establish that (R(t))t≥0 is a resolvent operator for (3.1).

Lemma 3.4. The function R(·) is exponentially bounded in L(X).

Proof. If t > 1, from (3.17) and estimate (3.8), we get

‖R(t)‖ ≤ C

π

∫∞

r

et(ω+s cos θ)ds

s
+

C

2π

∫θ

−θ
et(ω+r cos ξ)dξ

≤
(

C

πr|cos θ| +
Cθ

π
ert
)
eωt.

(3.18)

On the other hand, using that G(·) is analytic on Λr,ω,θ, for t ∈ (0, 1), we obtain

‖R(t)‖ =

∥∥∥∥∥
1

2πi

∫

ω+Γr/t,θ
eλtG(λ)dλ

∥∥∥∥∥

≤ C

π

∫∞

r/t

et(ω+s cos θ)ds

s
+

C

2π

∫θ

−θ
etω+r cos ξdξ

≤
(

C

π

∫∞

r

eu cos θ du

u
+

C

2π

∫θ

−θ
er cos ξdξ

)

eωt

≤
(

C

πr|cos θ| +
Cθ

π
er
)
eωt.

(3.19)

This complete the proof.
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Lemma 3.5. The operator function R(·) is exponentially bounded in L([D(A)]).

Proof. It follows from (3.9) that the integral in

S(t) =
1

2πi

∫

ω+Γr,θ
eλtAG(λ)dλ, t > 0, (3.20)

is absolutely convergent in L([D(A)], X) and defines a linear operator S(t) ∈ L([D(A)], X).
Using that A is closed, we can affirm that S(t) = AR(t). From Lemma 3.3, G : Λr,ω,ϑ →
L([D(A)]) is analytic and ‖G(λ)‖1 ≤ C|λ −ω|−1. If t > 1 and x ∈ D(A), we have

‖AR(t)x‖ ≤
(

C

π

∫∞

r

et(ω+s cos θ)ds

s
+

C

2π

∫θ

−θ
et(ω+r cos ξ)dξ

)

‖x‖1

≤
(

C

πr|cos θ| +
Cθ

π
ert
)
eωt‖x‖1.

(3.21)

For t ∈ (0, 1) and x ∈ D(A), we get

‖AR(t)x‖ =

∥∥∥∥∥
1

2πi

∫

ω+Γr/t,θ
eλtAG(λ)xdλ

∥∥∥∥∥

≤
(

C

π

∫∞

r/t

et(ω+s cos θ)ds

s
+

C

2π

∫θ

−θ
etω+r cos ξdξ

)

‖x‖1

≤
(

C

πr|cos θ| +
Cθ

π
er
)
eωt‖x‖1.

(3.22)

From before and Lemma 3.4, we infer that R(·) is exponentially bounded in L([D(A)]). The
proof is finished.

Lemma 3.6. The function R : [0,∞) → L(X) is strongly continuous.

Proof. It is clear from (3.17) thatR(·)x is continuous at t > 0 for every x ∈ X. We next establish
the continuity at t = 0. Let ω ≥ 0 and N be sufficiently large, using that

1
2πi

∫

ω+Γr,θ
λ−1eλtdλ = lim

N→∞

1
2πi

∫

{ω+Γr,θ : |r|≤N}∪ ω+CN,θ

λ−1eλtdλ = 1, (3.23)

where ω + CN,θ represent the curve ω +Neiξ for θ ≤ ξ ≤ 2π − θ.
For x ∈ D(A) and 0 < t ≤ 1, we get

R(t)x − x =
1

2πi

∫

ω+Γr,θ

(
eλtG(λ)x − λ−1eλtx

)
dλ

=
1

2πi

∫

ω+Γr,θ
eλtλ−1G(λ)

(
A + B̂(λ)

)
xdλ.

(3.24)



Advances in Difference Equations 11

Furthermore, it follows from (3.8), and assumption (H2) that

∥
∥
∥eλtλ−1G(λ)

(
A + B̂(λ)

)
x
∥
∥
∥ ≤ eω+rC

|λ||λ −ω| = Φ(λ), (3.25)

whereΦ(·) is integrable for λ ∈ ω+Γr,θ. From the Lebesgue dominated convergence theorem,
we infer that

lim
t→ 0+

(R(t)x − x)
1

2πi

∫

ω+Γr,θ
λ−1G(λ)

(
A + B̂(λ)

)
xdλ. (3.26)

Let now ω +CL,θ be the curve ω + Leiξ for θ ≤ ξ ≤ 2π − θ. Turning to apply Cauchy’s theorem
combining with the estimate

∥∥∥∥∥

∫

ω+CL,θ

λ−1G(λ)
(
A + B̂(λ)

)
xdλ

∥∥∥∥∥
≤ CθL

(L −ω)2
, (3.27)

we obtain

1
2πi

∫

ω+Γr,θ
λ−1G(λ)

(
A + B̂(λ)

)
xdλ

= lim
L→∞

1
2πi

∫

{ω+Γr,θ : |r|≤L}∪ ω+CL,θ

λ−1G(λ)
(
A + B̂(λ)

)
xdλ = 0,

(3.28)

we can affirm that limt→ 0+(R(t)x − x) = 0 for all x ∈ D(A), which completes and the proof
since D(A) is dense in X and R(·) is bounded on [0, 1].

Notice that ω < 0, the sectors Λr,0,ϑ ⊆ Λr,ω,ϑ, from Lemma 3.3, G : Λr,ω,ϑ → L(X) is
analytic. Consider the contours

γ1 = {λ = s − iN sin(θ) : cos(θ) ≤ s ≤ ω + cos(θ)},

γ2 = {λ = s + iN sin(θ) : ω + cos(θ) ≤ s ≤ cos(θ)},

ω + ΓNr,θ =
{
ω + teiθ : r ≤ t ≤ N

}
∪
{
ω + reiξ : −θ ≤ ξ ≤ θ

}
∪
{
ω + te−iθ : r ≤ t ≤ N

}
,

0 + ΓNr,θ =
{
teiθ : r ≤ t ≤ N

}
∪
{
reiξ : −θ ≤ ξ ≤ θ

}
∪
{
te−iθ : r ≤ t ≤ N

}
,

(3.29)

andRN = ω+ΓN
r,θ
∪γ2∪0+ΓNr,θ∪γ1, oriented counterclockwise. By Cauchy theorem for 0 < t ≤ 1,

we obtain

∫

RN

eλtG(λ)dλ = 0. (3.30)
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The following estimate:

∥
∥
∥
∥
∥

∫

γ1

eλtG(λ)dλ

∥
∥
∥
∥
∥
≤
∫ω+cos(θ)

cos(θ)
eRe(s−iN sin(θ))t C

|s − iN sin(θ) −ω|ds

≤
∫ω+cos(θ)

cos(θ)
est

C

N|sin(θ)|ds ≤ C

N|sin(θ)|

(
eωt − 1

t

)
ecos(θ)t

≤ C

N|sin(θ)| e

(3.31)

is the one responsible for the fact that the integral
∫
γ1
eλtG(λ)dλ tends to 0 as N tend to +∞,

in a similar way the integral
∫
γ2
eλtG(λ)dλ, tend to 0 as N tend to +∞, so that

1
2πi

∫

ω+Γr,θ
eλtG(λ)dλ

1
2πi

∫

0+Γr,θ
eλtG(λ)dλ. (3.32)

For x ∈ D(A), we obtain

R(t)x − x =
1

2πi

∫

0+Γr,θ

(
eλtG(λ)x − λ−1eλtx

)
dλ

=
1

2πi

∫

0+Γr,θ
eλtλ−1G(λ)

(
A + B̂(λ)

)
xdλ,

(3.33)

and proceeding as before, we obtain limt→ 0+(R(t)x − x) = 0 for all x ∈ X, which ends the
proof.

The following result can be proved with an argument similar to that used in the proof
of the preceding lemma with changing [D(A)] by D.

Lemma 3.7. The function R : [0,∞) → L([D(A)]) is strongly continuous.

We next set δ = min{ϑ − π/2, π − ϑ}.

Lemma 3.8. The function R : (0,∞) → L(X) has an analytic extension to Λδ,0, and

dR(z)
dz

=
1

2πi

∫

ω+Γr,θ
λeλzG(λ)dλ, z ∈ Λδ,0. (3.34)
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Proof. For λ ∈ ω + Γr,θ and z ∈ Λδ,0, we can write λz = ω|z|ei arg(z) + s|z|ei(arg(z)+ξ), where
π/2 < arg(z) + ξ < π , −θ ≤ ξ ≤ θ and s ≥ r. If |z| > 1, from (3.8) and (3.17), we obtain

‖R(z)‖ ≤ 1
2πi

∫

ω+Γr,θ
eRe(λz)

C

|λ −ω| |dλ|

≤ C

π

∫∞

r

eω|z| cos(arg(z))+s|z| cos(arg(z)+θ)ds

s

+
C

2π

∫θ

−θ
eω|z| cos(arg(z))+r|z| cos(arg(z)+ξ)dξ

≤
(

C

πr
∣
∣cos
(
arg(z) + θ

)∣∣ +
Cθ

π
er|z|
)

eω|z| cos(arg(z)).

(3.35)

Using that G(·) is analytic on Λr,ω,θ, for z ∈ Λδ,0, 0 < |z| < 1, we get

‖R(z)‖ =

∥∥∥∥∥
1

2πi

∫

ω+Γr/|z|,θ
eλzG(λ)dλ

∥∥∥∥∥

≤ C

π

∫∞

r/|z|
eω|z| cos(arg(z))+s|z| cos(arg(z)+θ)ds

s

+
C

2π

∫θ

−θ
eω|z| cos(arg(z))+r cos(arg(z)+ξ)dξ

≤
(

C

π

∫∞

r

eu cos(arg(z)+θ)du

u
+

C
2π

∫θ

−θ
er cos(arg(z)+ξ)dξ

)

eω|z| cos(arg(z))

≤
(

C

πr
∣∣cos
(
arg(z) + θ

)∣∣ +
Cθ

π
er
)

eω|z| cos(arg(z)).

(3.36)

This property allows us to define the extension R(z) by this integral.
Similarly, the integral on the right hand side of (3.34) is also absolutely convergent in

L(X) and strong, continuous on X for z ∈ Λδ,0. For λ ∈ ω + Γr,θ,

∥∥∥∥∥
eλ(z+h) − eλz

h
G(λ) − λeλzG(λ)

∥∥∥∥∥
≤
∣∣∣∣∣
eλ(z+h) − eλz

h
− λeλz

∣∣∣∣∣
C

r
−→ 0 as |h| −→ 0,

∥∥∥∥∥
eλ(z+h) − eλz

h
G(λ) − λeλzG(λ)

∥∥∥∥∥
≤ eRe(λz)

C

|λ −ω| = Σ(λ),

(3.37)

where Σ(·) is integrable for λ ∈ ω+Γr,θ. From the Lebesgue dominated convergence theorem,
we obtain that R′(z) verifies (3.34). The proof is ended.
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Lemma 3.9. For every λ ∈ C with Re(λ) > max{0, ω + r}, R̂(λ) = G(λ).

Proof. Using that G(·) is analytic on Λr,ω,θ and that the integrals involved in the calculus are
absolutely convergent, we have

R̂(λ) =
∫∞

0
e−λtR(t)dt =

∫∞

0

1
2πi

∫

ω+Γr,θ
e−(λ−γ)tG

(
γ
)
dγdt

=
1

2πi

∫

ω+Γr,θ

(
λ − γ

)−1
G
(
γ
)
dγ

= lim
L→∞

(
1

2πi

∫

{ω+Γr,θ : |r|≤L}∪ ω+CL,θ

(
λ − γ

)−1
G
(
γ
)
dγ

)

= G(λ).

(3.38)

Theorem 3.10. The function R(·) is a resolvent operator for the system (3.1).

Proof. Let x ∈ D(A). From Lemma 3.9, for Re(λ) > max{0, ω + r},

R̂(λ)
[
λI −A − B̂(λ)

]
x = x, (3.39)

which implies

R̂(λ)x =
1
λ
x +

1
λ
R̂(λ)A +

1
λ
R̂(λ)B̂(λ)x. (3.40)

Applying [31, Proposition 1.6.4, Corollary 1.6.5], we get

R(t)x = x +
∫ t

0
R(s)Axds +

∫ t

0

∫ s

0
R(s − ξ)B(ξ)xdξds (3.41)

which in turn implies that

dR(t)
dt

x = R(t)Ax +
∫ t

0
R(t − s)B(s)xds. (3.42)

Arguing as above but using the equality [λI −A− B̂(λ)]R̂(λ)x = x,we obtain that (3.2)
holds.

On the other hand, by Lemma 3.8 we infer thatR(·)x ∈ C1((0,∞), X). Next, we analyze
the differentiability on t = 0. Let a > 0 and x ∈ D(A), for all ε > 0; we can choose δ ∈ [0, a]
such that

sup
t∈(0,δ]

‖R(t)Ax +
∫ t

0
R(t − s)B(s)ds −Ax‖ < ε. (3.43)
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For ζ ∈ X′ and t ∈ (0, δ), there exists cζ,t ∈ (0, t) such that

ζ ◦ R(t)x − ζ ◦ R(0)x
t

= ζ

(
R
(
cζ,t
)
Ax +

∫ cζ,t

0
R
(
cϕ,t − s

)
B(s)xds

)
. (3.44)

Consequently, for t ∈ (0, δ) we have that

∥
∥
∥
∥
R(t)x − R(0)x

t
−Ax

∥
∥
∥
∥ = sup

‖ζ‖≤1

∣
∣
∣
∣
ζ ◦ R(t)x − ζ ◦ R(0)x

t
− ζ(Ax)

∣
∣
∣
∣

≤ sup
s∈(0,δ]

∥
∥
∥
∥R(s)Ax +

∫s

0
R(s − τ)B(τ)xdτ −Ax

∥
∥
∥
∥,

(3.45)

which proves the existence of the right derivative ofR(·) at zero and that (d/dt)R(t)|t=0 = Ax.
This proves that resolvent equation (3.3) is valid for every t ≥ 0 and R(·)x ∈ C1([0,∞);X) for
every x ∈ D(A). This completes the proof.

Corollary 3.11. If ω + r < 0, then the function R(·) is an exponentially stable resolvent operator for
the system (3.1).

In the next result, we denote by (−A)ϑ the fractional power of the operator (−A) (see
[32] for details).

Theorem 3.12. Suppose that the conditions (H1)–(H3) are satisfied. Then there exists a positive
number C such that

∥∥∥(−A)ϑR(t)
∥∥∥ ≤

⎧
⎨

⎩

Ce(r+ω)t, t ≥ 1,

Ce(r+ω)tt−ϑ, t ∈ (0, 1),
(3.46)

for all ϑ ∈ (0, 1).

Proof. Let ϑ ∈ (0, 1). From [32, Theorem 6.10], there exists Cϑ > 0 such that

∥∥∥(−A)ϑx
∥∥∥ ≤ Cϑ‖Ax‖ϑ‖x‖1−ϑ, x ∈ D(A). (3.47)

Since G(·) is a D(A) valued function, for all x ∈ X

∥∥∥(−A)ϑG(λ)x
∥∥∥ ≤ Cϑ‖AG(λ)x‖ϑ‖G(λ)x‖1−ϑ

≤ CϑM
ϑ
3 ‖x‖

ϑ M1−ϑ
1

|λ −ω|1−ϑ
‖x‖1−ϑ

≤ C

|λ −ω|1−ϑ
‖x‖,

(3.48)
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where C is independent of λ. From (3.48), we get for t ≥ 1

∥∥
∥(−A)ϑR(t)

∥∥
∥ ≤
∥
∥∥
∥
∥

1
2πi

∫

ω+Γr,θ
eλt(−A)ϑG(λ)dλ

∥
∥∥
∥
∥

≤ C

π

∫∞

r

et(ω+s cos θ) ds

s1−ϑ
+

C

2π

∫θ

−θ
et(ω+r cos ξ) rdξ

r1−ϑ

≤
(

C

πr1−ϑ|cos θ|
+
Cθrϑ

π
ert
)

eωt ≤ Ce(r+ω)t.

(3.49)

On the other hand, using that G(·) is analytic on Λr,ω,θ, for t ∈ (0, 1), we get

∥∥∥(−A)ϑR(t)
∥∥∥ =

∥
∥∥∥∥

1
2πi

∫

ω+Γr/t,θ
eλt(−A)ϑG(λ)dλ

∥
∥∥∥∥

≤ C

π

∫∞

r/t

et(ω+s cos θ) ds

s1−ϑ
+

C

2π

∫θ

−θ
etω+r cos ξ rt−1dξ

r1−ϑtϑ−1

≤
(

C

π

∫∞

r

eu cos θ t−1du

u1−ϑtϑ−1
+

C

2πr−ϑ

∫θ

−θ
er cos ξ

rt−1dξ

r1−ϑtϑ−1

)

eωt

≤
(

C

πr1−ϑ|cos θ|
+
Cθrϑ

π
er
)

eωt

tϑ
.

(3.50)

From the previous facts, we conclude that

∥∥∥(−A)ϑR(t)
∥∥∥ ≤ Ce(r+ω)tt−ϑ, t ∈ (0, 1), (3.51)

which ends the proof.

Corollary 3.13. If ω + r < 0 and ϑ ∈ (0, 1), then there exists φ ∈ L1([0,∞)) such that

∥∥∥(−A)ϑR(t)
∥∥∥ ≤ φ(t). (3.52)

In the remainder of this section, we discuss the existence and regularity of solutions of

dx(t)
dt

= Ax(t) +
∫ t

0
B(t − s)x(s)ds + f(t), t ∈ [0, a], (3.53)

x(0) = z ∈ X, (3.54)

where f ∈ L1([0, a], X). In the sequel, R(·) is the operator function defined by (3.17). We
begin by introducing the following concept of classical solution.
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Definition 3.14. A function x : [0, b] → X, 0 < b ≤ a, is called a classical solution of (3.53)-
(3.54) on [0, b] if x ∈ C([0, b], [D(A)]) ∩ C1((0, b], X), the condition (3.54) holds and (3.53) is
verified on [0, a].

The next result has been established in [30].

Theorem 3.15 ([30, Theorem 2]). Let z ∈ X. Assume that f ∈ C([0, a], X) and x(·) is a classical
solution of (3.53)-(3.54) on [0, a]. Then

x(t) = R(t)z +
∫ t

0
R(t − s)f(s)ds, t ∈ [0, a]. (3.55)

An immediate consequence of the above theorem is the uniqueness of classical
solutions.

Corollary 3.16. If u, v are classical solutions of (3.53)-(3.54) on [0, b], then u = v on [0, b].

Motivated by (3.55), we introduce the following concept.

Definition 3.17. A function u ∈ C([0, a], X) is called a mild solution of (3.53)-(3.54) if

u(t) = R(t)z +
∫ t

0
R(t − s)f(s)ds, t ∈ [0, a]. (3.56)

4. Existence Result of Asymptotically Almost Periodic Solutions

In this section, we study the existence of asymptotically almost periodic mild solutions for
the abstract integro-differential system (1.1). To establish our existence result, motivated by
the previous section we introduce the following assumptions.

(P1) There exists a Banach space (Y, ‖ · ‖Y ) continuously included in X such that the
following conditions are verified.

(a) For every t ∈ (0,∞), R(t) ∈ L(X) ∩ L(Y, [D(A)]) and B(t) ∈ L(Y,X). In
addition, AR(·)x, B(·)x ∈ C((0,∞), X) for every x ∈ Y .

(b) There are positive constants M,β such that

max
{
‖R(s)‖, ‖B(s)‖L(Y,X)

}
≤ Me−βt, s ≥ 0. (4.1)

(c) There exists φ ∈ L1([0,∞)) such that ‖AR(t)‖L(Y,X) ≤ φ(t), t ≥ 0.

(P2) The continuous function f : R × B → Y is p.a.a.p, and there exists a continuous
function Lf : [0,∞) → [0,∞), such that

‖f
(
t, ψ1
)
− f
(
t, ψ2
)
‖Y ≤ Lf(r)‖ψ1 − ψ2‖B,

(
t, ψj

)
∈ R × Br(0,B). (4.2)



18 Advances in Difference Equations

(P3) The continuous function g : R × B → X is p.a.a.p, and there exists a continuous
function Lg : [0,∞) → [0,∞) such that

‖g
(
t, ψ1
)
− g
(
t, ψ2
)
‖ ≤ Lg(r)‖ψ1 − ψ2‖B,

(
t, ψj

)
∈ R × Br(0,B). (4.3)

Motivated by the theory of resolvent operator, we introduce the following concept of
mild solution for (1.1).

Definition 4.1. A function u : (−∞, b] → X, 0 < b ≤ a, is called a mild solution of (1.1) on
[0, b], if u0 = ϕ ∈ B;u|[0,b] ∈ C([0, b] : X); the functions τ 
→ AR(t − τ)f(τ, uτ) and τ 
→∫τ
0B(τ − ξ)f(ξ, uξ)dξ are integrable on [0, t) for every t ∈ (0, b] and

u(t) = R(t)
(
ϕ(0) + f

(
0, ϕ
))

− f(t, ut) −
∫ t

0
AR(t − s)f(s, us)ds

−
∫ t

0
R(t − s)

∫s

0
B(s − ξ)f

(
ξ, uξ

)
dξds +

∫ t

0
R(t − s)g(s, us)ds, t ∈ [0, b].

(4.4)

Lemma 4.2. Let condition (P1)—(c) hold and let v be a function in AAP(Y ). If u : [0,∞) → X is
the function defined by u(t) =

∫ t
0AR(t − s)v(s)ds, then u(·) ∈ AAP(X).

Proof. Let η = max{2‖v‖Y ,
∫∞
0 φ(s)ds}. Let T((ε/3)η−1, v, Y ), T = T((ε/3)η−1, v, Y ) be as in

Lemma 2.7 and T1 > 1 such that
∫∞
T1
φ(s)ds ≤ (ε/3)η−1. For t ≥ T +T1 and ξ ∈ T((ε/3)η−1, v, Y ),

we get

‖u(t + ξ) − u(t)‖ ≤
∫0

−ξ
‖AR(t − s)‖L(Y,X)‖v(s + ξ)‖Yds

+
∫ t

0
‖AR(t − s)‖L(Y,X)‖v(s + ξ) − v(s)‖Yds

≤
∫0

−ξ
φ(t − s)‖v(s + ξ)‖Yds

+
∫T

0
φ(t − s)‖v(s + ξ) − v(s)‖Yds

+
∫ t

T

φ(t − s)‖v(s + ξ) − v(s)‖Yds

≤ ‖v‖Y
∫ t+ξ

t

φ(s)ds + 2‖v‖Y
∫ t

t−T
φ(s)ds + ε

∫ t−T

0
φ(s)ds

≤ ‖v‖Y
∫∞

T1

φ(s)ds + 2‖v‖Y
∫∞

T1

φ(s)ds +
ε

3
η−1
∫∞

0
φ(s)ds

(4.5)
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which implies that

‖u(t + ξ) − u(t)‖ ≤ ε, t ≥ T

(
ε

3
η−1, v, Y

)
+ T1, ξ ∈ T

(
ε

3
η−1, v, Y

)
. (4.6)

Now, from inequality (4.6) and Lemma 2.7, we conclude that u(·) is a.a.p. The proof is
complete.

Lemma 4.3. Assume that the condition (P1) is fulfilled. Let v ∈ AAP(Y ) and letw(·) : [0,∞) → X
be the function defined by

w(t) =
∫ t

0
R(t − s)

∫ s

0
B(s − ξ)v(ξ)dξds, t ≥ 0. (4.7)

Then w(·) ∈ AAP(X).

Proof. Let T((ε/3)η−1, v, Y ), T = T((ε/3)η−1, v, Y ) be as in Lemma 2.7 and T1 > 1 such that

∫∞

T1

e−βsds ≤ ε

3
η−1, te−β(t−T) ≤ ε

3
η−1 (4.8)

for t ≥ T1, where η = max{3‖v‖Y (M2/β), supt≥T1(M
2/β)te−β(t−T)}. For t ≥ T + T1 and ξ ∈

T((ε/3)η−1, v, Y ), we get

w(t + ξ) −w(t) =
∫ t+ξ

0
R(t + ξ − s)

∫ s

0
B(s − u)v(u)duds −

∫ t

0
R(t − s)

∫ s

0
B(s − u)v(u)duds

=
∫ t

0
R(t − s)

∫ s

0
B(s − u)(v(u + ξ) − v(u))duds

+
∫ ξ

0
R(t + ξ − s)

∫s

0
B(s − u)v(u)duds

+
∫ t

0
R(t − s)

∫ ξ

0
B(s + ξ − u)v(u)duds.

(4.9)
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We obtain

‖w(t + ξ) −w(t)‖

≤
∫ t

0
‖R(t − s)‖

∫T

0
‖B(s − u)‖L(Y,X)‖v(u + ξ) − v(u)‖Yduds

+
∫ t

0
‖R(t − s)‖

∫ s

T

‖B(s − u)‖L(Y,X)‖v(u + ξ) − v(u)‖Yduds

+
∫ ξ

0
‖R(t + ξ − s)‖

∫s

0
‖B(s − u)‖L(Y,X)‖v(u)‖Yduds

+
∫ t

0
‖R(t − s)‖

∫ ξ

0
‖B(s + ξ − u)‖L(Y,X)‖v(u)‖Yduds.

≤
∫ t

0
Me−β(t−s)

∫T

0
Me−β(s−u)‖v(u + ξ) − v(u)‖Yduds

+
∫ t

0
Me−β(t−s)

∫ t

T

Me−β(s−u)‖v(u + ξ) − v(u)‖Yduds

+
∫ ξ

0
Me−β(t+ξ−s)

∫s

0
Me−β(s−u)‖v(u)‖Yduds

+
∫ t

0
Me−β(t−s)

∫ ξ

0
Me−β(s+ξ−u)‖v(u)‖Yduds.

≤ 2‖v‖Y
∫ t

0
Me−βt

∫T

0
Meβududs + ε

∫ t

0
Me−βt

∫ t

T

Meβududs

+ ‖v‖Y
∫ ξ

0
Me−β(t+ξ−s)

∫s

0
Me−β(s−u)duds

+ ‖v‖Y
∫ t

0
Me−β(t−s)

∫ ξ

0
Meβ(s+ξ−u)duds

≤ 2‖v‖Y
M2

β
te−β(t−T) + ε

M2

β
te−β(t−T)

+ ‖v‖Y
M2

β

∫ t+ξ

t

e−βsds + ‖v‖Y
M2

β
te−β(t−T)

≤ 3‖v‖Y
M2

β
te−β(t−T) + ε

M2

β
te−β(t−T) + ‖v‖Y

M2

β

∫∞

T1

e−βsds,

(4.10)
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which implies that

‖w(t + ξ) −w(t)‖ ≤ ε, t ≥ T

(
ε

3
η−1, v, Y

)
+ T1, ξ ∈ T

(
ε

3
η−1, v, Y

)
. (4.11)

From inequality (4.11) and Lemma 2.7, we conclude thatw(·) is a.a.p., which ends the proof.

Now, we can establish our existence result.

Theorem 4.4. Assume that B is a fading memory space and (P1), (P2), and (P3) are held. If Lf(0) =
Lg(0) = 0 and f(t, 0) = g(t, 0) = 0 for every t ∈ R, then there exists ε > 0 such that for each
ϕ ∈ Bε(0,B), there exists a mild solution, u(·, ϕ), of (1.1) on [0,∞) such that u(·, ϕ) ∈ AAP(X) and
u0(·, ϕ) = ϕ.

Proof. Let r > 0 and 0 < λ < 1 be such that

Θ = MHλ +MLf(λr)λ + Lf((λ + 1)Kr)(λ + 1)K

(

‖ic‖L(Y,X) +
∥∥φ
∥∥
L1 +

M2

β2

)

+ Lg((λ + 1)Kr)(λ + 1)K
M

β
< 1,

(4.12)

where K is the constant introduced in Remark 2.3. We affirm that the assertion holds for ε =
λr. Let ϕ ∈ Bε(0,B). On the space

D =
{
x ∈ AAP(X) : x(0) = ϕ(0), ‖x(t)‖ ≤ r, t ≥ 0

}
(4.13)

endowed with the metric d(u, v) = ‖u − v‖, we define the operator Γ : D → C([0,∞);X) by

Γu(t) = R(t)
(
ϕ(0) + f

(
0, ϕ
))

− f(t, ũt) −
∫ t

0
AR(t − s)f(s, ũs)ds

−
∫ t

0
R(t − s)

∫s

0
B(s − ξ)f

(
ξ, ũξ

)
dξds +

∫ t

0
R(t − s)g(s, ũs)ds, t ≥ 0,

(4.14)

where ũ : R → X is the function defined by the relation ũ0 = ϕ and ũ = u on [0,∞). From the
hypothesis (P1), (P2), and (P3), we obtain that Γu is well defined and that Γu ∈ C([0,∞);X).
Moreover, from Lemmas 4.2 and 4.3 it follows that Γu ∈ AAP(X).
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Next, we prove that Γ(·) is a contraction from D into D. If u ∈ D and t ≥ 0, we get

‖Γu(t)‖ ≤ MHλr +MLf(λr)λr + ‖ic‖L(Y,X)Lf((λ + 1)Kr)(λ + 1)Kr

+
∫ t

0
φ(t − s)Lf((λ + 1)Kr)(λ + 1)Kr ds

+
∫ t

0
Me−β(t−s)

∫s

0
Me−β(s−ξ)Lf((λ + 1)Kr)(λ + 1)Kr dξds

+
∫ t

0
Me−β(t−s)Lg((λ + 1)Kr)(λ + 1)Kr ds

≤ MHλr +MLf(λr)λr + Lf((λ + 1)Kr)(λ + 1)Kr

+
(∫∞

0
φ(s)ds

)
Lf((λ + 1)Kr)(λ + 1)Kr

+
(∫∞

0
Me−βsds

)(∫∞

0
Me−βξdξ

)
Lf((λ + 1)Kr)(λ + 1)Kr

+
(∫∞

0
e−βsds

)
Lg((λ + 1)K)(λ + 1)Kr

≤ Θr,

(4.15)

where the inequality ‖ũt‖ ≤ (λ+ 1)Kr has been used and ic : Y → X represent the continuous
inclusion of Y on X. Thus, Γ(D) ⊂ D. On the other hand, for u, v ∈ Dwe see that

‖Γu(t) − Γv(t)‖

≤ ‖ic‖L(Y,X)

∥∥f(t, ũt) − f(t, ṽt)
∥∥ +
∫ t

0
‖AR(t − s)‖L(Y,X)

∥∥f(s, ũs) − f(s, ṽs)
∥∥
Yds

+
∫ t

0
‖R(t − s)‖

∫s

0
‖B(s − ξ)‖L(Y,X)

∥∥f(ξ, ũξ) − f(ξ, ṽξ)
∥∥
Ydξds

+
∫ t

0
‖R(t − s)‖

∥∥g(s, ũs) − g(s, ṽs)
∥∥ds

≤ Lf((λ + 1)Kr)K

(

‖ic‖L(Y,X) +
∥∥φ
∥∥
L1 +

M2

β2

)

‖u − v‖

+ Lg((λ + 1)K)K
M

β
‖u − v‖ ≤ Θ‖u − v‖,

(4.16)

which shows that Γ(·) is a contraction from D into D. The assertion is now a consequence of
the contraction mapping principle. The proof is complete.
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5. Applications

In this section, we study the existence of asymptotically almost periodic solutions of the
partial neutral integro-differential system

∂

∂t

[

u(t, ξ) +
∫ t

−∞

∫π

0
b
(
s − t, η, ξ

)
u
(
s, η
)
dηds

]

=

(
∂2

∂ξ2
+ μ

)[

u(t, ξ) +
∫ t

0
e−γ(t−s)u(s, ξ)ds

]

+
∫ t

−∞
a0(s − t)u(s, ξ)ds,

u(t, 0) = u(t, π) = 0,

u(θ, ξ) = ϕ(θ, ξ),

(5.1)

for (t, ξ) ∈ [0, a] × [0, π], θ ≤ 0, μ < 0, and γ > 0. Moreover, we have identified ϕ(θ)(ξ) =
ϕ(θ, ξ).

To represent this system in the abstract form (1.1), we choose the spacesX = L2([0, π])
and B = C0 × L2(ρ,X); see Example 2.4 for details. We also consider the operators A,B(t) :
D(A) ⊆ X → X, t ≥ 0, given by Ax = x′′ + μx, B(t)x = e−γtAx for x ∈ D(A) = {x ∈ X :
x′′ ∈ X, x(0) = x(π) = 0}. Moreover, A has discrete spectrum, the eigenvalues are −n2 + μ,
n ∈ N, with corresponding eigenvectors zn(ξ) = (2/π)1/2 sin(nξ), and the set of functions
{zn : n ∈ N} is an orthonormal basis of X and T(t)x =

∑∞
n=1 e

−(n2−μ)t < x, zn > zn for x ∈ X.
For α ∈ (0, 1), from [32] we can define the fractional power (−A)α : D((−A)α) ⊂ X → X of
A is given by (−A)αx =

∑∞
n=1(n

2 − μ)α〈x, zn〉zn, where D((−A)α) = {x ∈ X : (−A)αx ∈ X}. In
the next theorem, we consider Y = D((−A)1/2). We observe that ρ(A) ⊃ {λ ∈ C : Re(λ) ≥ μ}
and ‖λR(λ,A)‖ ≤ M1 for Re(λ) ≥ μ; from [33, Proposition 2.2.11], we obtain that A is a
sectorial operator satisfying ‖R(λ,A)‖ ≤ M/|λ − μ|,M > 0. Moreover, it is easy to see that
conditions (H2)-(H3) in Section 3 are satisfied with b(t) = e−γt, and D = C∞

0 ([0, π]) is the
space of infinitely differentiable functions that vanish at ξ = 0 and ξ = π . Under the above
conditions, we can represent the system

∂u(t, ξ)
∂t

=

(
∂2

∂ξ2
+ μ

)[

u(t, ξ) +
∫ t

0
e−γ(t−s)u(s, ξ)ds

]

,

u(t, π) = u(t, 0) = 0,

(5.2)

in the abstract form

dx(t)
dt

= Ax(t) +
∫ t

0
B(t − s)x(s)ds,

x(0) = z ∈ X.

(5.3)
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We define the functions f, g : B → X by

f
(
ψ
)
(ξ) =

∫0

−∞

∫π

0
b
(
s, η, ξ

)
ψ
(
s, η
)
dηds,

g
(
ψ
)
(ξ) =

∫0

−∞
a0(s)ψ(s, ξ)ds,

(5.4)

where

(i) the functions a0 : R → R are continuous and Lg := (
∫0
−∞((a0(s))

2/ρ(s))ds)
1/2

< ∞.;

(ii) the functions b(·), ∂b(s, η, ξ)/∂ξ are measurable, b(s, η, π) = b(s, η, 0) = 0 for all
(s, η) and

Lf := max

⎧
⎪⎨

⎪⎩

⎛

⎝
∫π

0

∫0

−∞

∫π

0
ρ−1(θ)

(
∂i

∂ξi
b(θ, η, ξ)

)2

dηdθdξ

⎞

⎠

1/2

: i = 0, 1

⎫
⎪⎬

⎪⎭
< ∞.

(5.5)

Moreover, f, g are bounded linear operators, ‖f‖L(B,X) ≤ Lf , ‖g‖L(B,X) ≤ Lg , and a
straightforward estimation using (ii) shows that f(I × B) ⊂ D((−A)1/2) and

∥∥∥(−A)1/2f(t, ·)
∥∥∥
L(B,X)

≤ Lf (5.6)

for all t ∈ I. This allows us to rewrite the system (5.1) in the abstract form (1.1)with
u0 = ϕ ∈ B.

Theorem 5.1. Assume that the previous conditions are verified. Let 2 < K < γ and μ < 0 such that
|μ| > max{M(K + 1 + γ), γ}, then there exists a mild solution u(·) ∈ AAP(X) of (5.1) with u0 = ϕ.

Proof. For λ = μ + seiθ, from |λ + γ | ≥ s − |γ + μ|, we obtain

∥∥∥B̂(λ)R(λ,A)
∥∥∥ ≤ 1
∣∣λ + γ

∣∣

(

1 +
M
∣∣λ − μ

∣∣ +
M|λ|
∣∣λ − μ

∣∣

)

≤ 1
∣∣λ + γ

∣∣ +

(
1

∣∣λ + γ
∣∣ +

|λ|
∣∣λ + γ

∣∣

)
M
∣∣λ − μ

∣∣

≤ 1
∣∣λ + γ

∣∣ +

(
1

∣∣λ + γ
∣∣ + 1 +

∣∣γ
∣∣

∣∣λ + γ
∣∣

)
M
∣∣λ − μ

∣∣
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≤ 1
s −
∣
∣γ + μ

∣
∣ +

(
1

s −
∣
∣γ + μ

∣
∣ + 1 +

∣
∣γ
∣
∣

s −
∣
∣γ + μ

∣
∣

)
M
∣
∣λ − μ

∣
∣

≤ 1
K

+
(
1 +K + γ

K

)
M
∣
∣λ − μ

∣
∣

≤ 1
K

+
1
K
,

(5.7)

since s ≥ r = max{M(K + 1 + γ), K + |γ + μ|}. By using a similar procedure as in the
proofs of Lemma 3.3 and Theorem 3.10, we obtain the existence of resolvent operator for (5.2).
From the hypothesis, we obtain μ + r < 0; by the Lemma 3.3, Corollaries 3.11 and 3.13, the
assumption (P1) is satisfied. From Theorem 4.4, the proof is complete.
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