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We consider coupled boundary value problems for second-order symmetric equations on time
scales. Existence of eigenvalues of this boundary value problem is proved, numbers of their
eigenvalues are calculated, and their relationships are obtained. These results not only unify
the existing ones of coupled boundary value problems for second-order symmetric differential
equations but also contain more complicated time scales.

1. Introduction

In this paper we consider the following second-order symmetric equation:

−
(
p(t)yΔ(t)

)Δ
+ q(t)yσ(t) = λr(t)yσ(t), t ∈

[
ρ(0), ρ(1)

]
∩ T, and 0, 1 ∈ T (1.1)

with the coupled boundary conditions:

(
y(1)
yΔ(1)

)
= eiθK

(
y
(
ρ(0)

)

yΔ(ρ(0))
)
, (1.2)

where T is a time scale; pΔ, q, and r are real and continuous functions in [ρ(0), ρ(1)]∩T, p > 0
over [ρ(0), 1] ∩ T, r > 0 over [ρ(0), ρ(1)] ∩ T, and p(ρ(0)) = p(1) = 1; σ(t) and ρ(t) are the
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forward and backward jump operators in T, yΔ is the delta derivative, and yσ(t) := y(σ(t));
θ /= 0, −π < θ < π, is a constant parameter; i =

√
−1,

K =
(
k11 k12

k21 k22

)
, kij ∈ R, i, j = 1, 2, with detK = 1. (1.3)

The boundary condition (1.2) contains the two special cases: the periodic and
antiperiodic conditions. In fact, (1.2) is the periodic boundary condition in the case where
θ = 0 and K = I, the identity matrix, and (1.2) is the antiperiodic condition in the case where
θ = π and K = I. Equation (1.1) with (1.2) is called a coupled boundary value problem.

Hence, according to [1, Theorem 3.1], the periodic and antiperiodic boundary value
problems have Nd + 1 real eigenvalues and they satisfy the following inequality:

−∞ < λ0(I) < λ0(−I) ≤ λD0 ≤ λ1(−I) < λ1(I) ≤ λD1 ≤ λ2(I) < λ2(−I) ≤ λD2 ≤ λ3(−I) ≤ λD3 ≤ · · · ,
(1.4)

where Nd := |[0, 1] ∩ T| − def(μ(ρ(0))) − 1, λDn denote the nth Dirichlet eigenvalues. Denote
the number of point of a set S ⊂ R by |S| and introduce the following notation for α ∈ R:

def α =

⎧
⎨
⎩

0, if α/= 0,

1, if α = 0.
(1.5)

Furthermore, if Nd < ∞, then

λ0(I) < λ0(−I) ≤ λ1(−I) < λ1(I) ≤ λ2(I) < λ2(−I) ≤ λ3(−I) < λ3(I)

≤ · · · ≤ λNd−1(−I) < λNd−1(I) ≤ λNd(I) < λNd(−I), if Nd + 1 is odd,

λ0(I) < λ0(−I) ≤ λ1(−I) < λ1(I) ≤ λ2(I) < λ2(−I) ≤ λ3(−I) < λ3(I)

≤ · · · ≤ λNd−1(I) < λNd−1(−I) ≤ λNd(−I) < λNd(I), if Nd + 1 is even.

(1.6)

In [2], Eastham et al. considered the second-order differential equation:

−
(
p(t)x′(t)

)′ + q(t)x(t) = λw(t)x(t), t ∈ [a, b], (1.7)

with the coupled boundary condition:

(
y(b)

p(b)y′(b)

)
= eiαK

(
y(a)

p(a)y′(a)

)
, (1.8)

where i =
√
−1, −π < α ≤ π , −∞ < a < b < ∞, K =

(
k11 k12
k21 k22

)
, kij ∈ R, i, j = 1, 2, detK = 1, and

1/p, q, w ∈ L1([a, b],R), p > 0, w > 0 a.e. on [a, b]. Here R denote the set of real number, and
L1([a, b],R) the space of real valued Lebesgue integrable functions on [a, b]. They obtained
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the following results: the coupled boundary value problem (1.7) with (1.8) has an infinite but
countable number of only real eigenvalues which can be ordered to form a nondecreasing
sequence:

−∞ < λ0(K) < λ0

(
eiαK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiαK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiαK

)
< λ2(−K) ≤ λ3(−K) < λ3

(
eiαK

)
< λ3(K) ≤ · · · .

(1.9)

In the present paper, we try to extend these results on time scales. We shall remark
that Eastham et al. employed continuous eigenvalue branch which studied in [2], in their
proof. Instead, we will make use of some oscillation results that are extended from the results
obtained by Agarwal et al. [4] to prove the existence of eigenvalues of (1.1) with (1.2) and
compare the eigenvalues as θ varies.

This paper is organized as follows. Section 2 introduces some basic concepts and
fundamental theory about time scales and gives some properties of eigenvalues of a kind
of separated boundary value problem for (1.1) which will be used in Section 4. Our main
result has been introduced in Section 3. Section 4 pays attention to prove some propositions,
by which one can easily obtain the existence and the comparison result of eigenvalues of the
coupled boundary value problems (1.1) with (1.2). By using these propositions, we give the
proof of our main result in Section 5.

2. Preliminaries

In this section, some basic concepts and some fundamental results on time scales are
introduced. Next, the eigenvalues of the kind of separated boundary value problem for (1.1)
and the oscillation of their eigenfunction are studied. Finally, the reality of the eigenvalues of
the coupled boundary value problems for (1.1) is shown.

Let T ⊂ R be a nonempty closed subset. Define the forward and backward jump
operators σ, ρ : T → T by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, (2.1)

where inf ∅ = supT, sup ∅ = infT. A point t ∈ T is called right-scattered, right-dense, left-
scattered, and left-dense if σ(t) > t, σ(t) = t, ρ(t) < t, and ρ(t) = t, respectively.

We assume throughout the paper that if 0 is right-scattered, then it is also left-scattered,
and if 1 is left-scattered, then it is also right-scattered.

Since T is a nonempty bounded closed subset of R, we put Tk = T\ (ρ(maxT),maxT].
The graininess μ : T → [0,∞) is defined by

μ(t) = σ(t) − t. (2.2)
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Let f be a function defined on T. f is said to be (delta) differentiable at t ∈ T
k provided

there exists a constant a such that for any ε > 0, there is a neighborhood U of t (i.e., U =
(t − δ, t + δ) ∩ T for some δ > 0) with

∣∣f(σ(t)) − f(s) − a(σ(t) − s)
∣∣ ≤ ε |σ(t) − s|, ∀s ∈ U. (2.3)

In this case, denote fΔ(t) := a. If f is (delta) differentiable for every t ∈ T
k, then f is said to

be (delta) differentiable on T. If f is differentiable at t ∈ T
k, then

fΔ(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
s→ t
s∈T

f(t) − f(s)
t − s

if μ(t) = 0

f(σ(t)) − f(t)
μ(t)

, if μ(t) > 0.

(2.4)

If FΔ(t) = f(t) for all t ∈ T
k, then F(t) is called an antiderivative of f on T. In this case, define

the delta integral by

∫ t

s

f(τ)Δτ = F(t) − F(s) ∀s, t ∈ T. (2.5)

Moreover, a function f defined on T is said to be rd-continuous if it is continuous at every
right-dense point in T and its left-sided limit exists at every left-dense point in T.

For convenience, we introduce the following results ([5, Chapter 1], [6, Chapter 1],
and [7, Lemma 1]), which are useful in the paper.

Lemma 2.1. Let f, g : T → R and t ∈ T
k.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f and g are differentiable at t, then fg is differentiable at t and

(
fg

)Δ(t) = fσ(t)gΔ(t) + fΔ(t)g(t) = fΔ(t)gσ(t) + f(t)gΔ(t). (2.6)

(iii) If f and g are differentiable at t, and f(t)fσ(t)/= 0, then f−1g is differentiable at t and

(
gf−1

)Δ
(t) =

(
gΔ(t)f(t) − g(t)fΔ(t)

)(
fσ(t)f(t)

)−1
. (2.7)

(iv) If f is rd-continuous on T, then it has an antiderivative on T.

Now, we turn to discuss some properties of solutions of (1.1) and eigenvalues of its
boundary value problems.

Define the Wronskian by

W
(
x, y

)
:= xyΔ − yxΔ, x, y ∈ C2

rd(T), (2.8)
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where C2
rd(T) is the set of twice differentiable functions with rd-continuous second derivative.

The following result can be derived from the Lagrange Identity [5, Theorem 4.30].

Lemma 2.2. For any two solutions x and y of (1.1), p(t)W(x, y)(t) is a constant on [ρ(0), 1] ∩ T.

In [4], Agarwal et al. studied the following second-order symmetric linear equation:

yΔΔ + q(t)yσ = −λyσ, t ∈
[
ρ(a), ρ(b)

]
∩ T, and a, b ∈ T (2.9)

with the boundary conditions:

Ra

(
y
)

:= αy
(
ρ(a)

)
+ βyΔ(ρ(a)) = 0, Rb

(
y
)

:= γy(b) + δyΔ(b) = 0, (2.10)

where q : [ρ(a), ρ(b)] ∩ T → R is continuous; (α2 + β2)(γ2 + δ2)/= 0; a < b satisfy that
if a is right-scattered, then it is also left-scattered; and if b is left-scattered, then it is also
right-scattered. A solution y of (2.9) is said to have a node at (t + σ(t))/2 if y(t)y(σ(t)) < 0.
A generalized zero of y is defined as its zero or its node. Without loss of generality, they
assumed that α and β in (2.10) satisfy

(H) β > αμ(ρ(a)) if β /=αμ(ρ(a)) and α = −1 if β = αμ(ρ(a))

and obtained the following oscillation result.

Lemma 2.3 (see [4, Theorem 1]). The eigenvalues of (2.9) with (2.10) may be arranged as −∞ <
λ0 < λ1 < λ2 < · · · and an eigenfunction corresponding to λk has exactly k-generalized zeros in the
open interval (a, b).

In order to study the kind of separated boundary value problem for (1.1), we now
extend the above oscillation theorem to the more general equation (1.1) with

R0
(
y
)
= R1

(
y
)
= 0. (2.11)

By n(λ) denote the number of generalized zeros of the solution y(t, λ) of (1.1) with the initial
conditions

y
(
ρ(0), λ

)
= β, yΔ(ρ(0), λ) = −α (2.12)

in the open interval (0,1), where α and β satisfy (H) with a and b replaced by 0 and 1,
respectively. It can be easily verified that

either y(0, λ) > 0 or y(0, λ) = 0 and yΔ(0, λ) = 1, (2.13)

which is independent of λ.

Lemma 2.4 (see [1, Lemma 2.5]). Let y(t, λ) be the solution of (1.1) with (2.12). Then
yΔ(t, λ)/y(t, λ) is strictly decreasing in λ ∈ R for each t ∈ (0, 1] ∩ T whenever y(t, λ)/= 0.
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Lemma 2.5 (see [1, Lemma 2.6]). If there exists λ0 ∈ R such that n(λ0) = 0, then n(λ) = 0 for all
λ < λ0.

With a similar argument to that used in the proof of [4, Theorem 1], one can show the
following result.

Theorem 2.6. All the eigenvalues of (1.1) with (2.11) are simple and can be arranged as −∞ < λ0 <
λ1 < λ2 < · · · , and an eigenfunction corresponding to λk has exactly k-generalized zeros in the open
interval (0, 1), where 0, 1 ∈ T satisfy that if 0 is right-scattered, then it is also left-scattered; if 1 is
left-scattered, then it is also right-scattered. Furthermore, the number of its eigenvalues is equal to
|[0, 1] ∩ T| − def(β − αμ(ρ(0))) − def δ.

Setting β = 0, γ = k22, and δ = −k12 in (2.11), where k12, k22 are elements of K in (1.2),
we get the following separated boundary conditions:

y
(
ρ(0)

)
= 0, k22y(1) − k12y

Δ(1) = 0. (2.14)

The following result is a direct consequence of Theorem 2.6.

Theorem 2.7. All the eigenvalues of (1.1) with (2.14) are simple and can be arranged as

−∞ < μ0 < μ1 < μ2 < · · · , (2.15)

and an eigenfunction corresponding to μk has exactly k-generalized zeros in (0, 1). Furthermore, the
number of its eigenvalues is equal toNd := |[0, 1] ∩ T| − def(μ(ρ(0))) − def k12.

For convenience, we shall write μk+1 = ∞ if Nd = k < ∞.

Lemma 2.8. For each λ ∈ (μk, μk+1], n(λ) = k + 1, k ≥ 0.

Proof. The proof is similar to that of [4, Theorem 6]. So the details are omitted.

Lemma 2.9. All the eigenvalues of the coupled boundary value problem (1.1) with (1.2) are real.

Proof. The proof is similar to that of [1, Lemma 2.8]. So the details are omitted.

3. Main Result

In this section we state our main results: general inequalities among eigenvalues of coupled
boundary value problem of (1.1) with (1.2).

Theorem 3.1. If k11 > 0 and k12 ≤ 0 or k11 ≥ 0 and k12 < 0, then, for every fixed θ /= 0, −π < θ < π ,
coupled boundary value problem (1.1) with (1.2) hasNd +1 eigenvalues and these eigenvalues satisfy
the following inequalities:

λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiθK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiθK

)
< λ2(−K) ≤ λ3(−K) < λ3

(
eiθK

)
< λ3(K) ≤ · · · ,

(3.1)
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whereNd := |[0, 1] ∩ T| − def(μ(ρ(0))) − def k12. Furthermore, ifNd < ∞ then

λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiθK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiθK

)
< λ2(−K) ≤ λ3(−K) < λ3

(
eiθK

)
< λ3(K)

≤ · · · ≤ λNd−1(−K) < λNd−1

(
eiθK

)
< λNd−1(K) ≤ λNd(K)

< λNd

(
eiθK

)
< λNd(−K), if N is odd,

λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ λ1(−K) < λ1

(
eiθK

)
< λ1(K)

≤ λ2(K) < λ2

(
eiθK

)
< λ2(−K) ≤ λ3(−K) < λ3

(
eiθK

)
< λ3(K)

≤ · · · ≤ λNd−1(K) < λNd−1

(
eiθK

)
< λNd−1(−K) ≤ λNd(−K)

< λNd

(
eiθK

)
< λNd(K), if N is even.

(3.2)

Remark 3.2. If k11 ≤ 0 and k12 > 0 or k11 < 0 and k12 ≥ 0, a similar result can be
obtained by applying Theorem 3.1 to −K. In fact, eiθK = ei(π+θ)(−K) for θ ∈ (−π, 0) and
eiθK = ei(−π+θ)(−K) for θ ∈ (0, π). Hence, the boundary condition (1.2) in the cases of
k11 ≤ 0, k12 > 0 or k11 < 0, k12 ≥ 0 and θ /= 0, −π < θ < π , can be written as condition
(1.2), where θ is replaced by π + θ for θ ∈ (−π, 0) and −π + θ for θ ∈ (0, π), and K is replaced
by −K.

4. The Characteristic Function D(λ)

Before showing Theorem 3.1, we need to prove the following six propositions.
Let ϕ(t, λ) and ψ(t, λ) be the solutions of (1.1) satisfying the following initial

conditions:

ϕ
(
ρ(0), λ

)
= 1, ϕΔ(ρ(0), λ) = 0; ψ

(
ρ(0), λ

)
= 0, ψΔ(ρ(0), λ) = 1, (4.1)

respectively. Obviously, ϕ(t, λ) and ψ(t, λ) are two linearly independent solutions of (1.1). By
Lemma 2.2 we have

p(t)
[
ϕ(t, λ)ψΔ(t, λ) − ϕΔ(t, λ)ψ(t, λ)

]
= 1, t ∈

[
ρ(0), 1

]
∩ T, (4.2)

which, together with the assumption of p(1) = 1, implies

ϕ(1, λ)ψΔ(1, λ) − ϕΔ(1, λ)ψ(1, λ) = 1. (4.3)
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For any fixed K ∈ SL(2, R), detK = 1, and all λ ∈ C, we define

D(λ) = k11ψ
Δ(1, λ) − k21ψ(1, λ) + k22ϕ(1, λ) − k12ϕ

Δ(1, λ), (4.4)

A(λ) = k11ϕ
Δ(1, λ) − k21ϕ(1, λ), (4.5)

B(λ) = k11ψ
Δ(1, λ) + k12ϕ

Δ(1, λ) − k22ϕ(1, λ) − k21ψ(1, λ), (4.6)

B1(λ) = k11ψ
Δ(1, λ) − k21ψ(1, λ), (4.7)

B2(λ) = k22ϕ(1, λ) − k12ϕ
Δ(1, λ), (4.8)

C(λ) = k22ψ(1, λ) − k12ψ
Δ(1, λ). (4.9)

Note that

D(λ) = B1(λ) + B2(λ), B(λ) = B1(λ) − B2(λ). (4.10)

Let

φ(t, λ) =
(

ϕ(t, λ) ψ(t, λ)
p(t)ϕΔ(t, λ) p(t)ψΔ(t, λ)

)
, t ∈

[
ρ(0), 1

]
∩ T. (4.11)

Hence, we have

K−1φ(1, λ) =
(
B2(λ) C(λ)
A(λ) B1(λ)

)
, (4.12)

and by Lemma 2.2, we get

φ−1(t, λ) =
(

p(t)ψΔ(t, λ) −ψ(t, λ)
−p(t)ϕΔ(t, λ) ϕ(t, λ)

)
, t ∈

[
ρ(0), 1

]
∩ T. (4.13)

Proposition 4.1. For λ ∈ C, λ is an eigenvalue of (1.1) with (1.2) if and only if

D(λ) = 2 cos θ. (4.14)

Moreover, λ is a multiple eigenvalue of (1.1) with (1.2) if and only if

φ(1, λ) = eiθK. (4.15)

Proof. Since ϕ(t, λ) and ψ(t, λ) are linearly independent solutions of (1.1), then λ is an
eigenvalue of the problem (1.1) with (1.2) if and only if there exist two constants C1 and
C2, not both zero, such that C1ϕ(t, λ) + C2ψ(t, λ) satisfies (1.2), which yields

(
ϕ(1, λ) − eiθk11 ψ(1, λ) − eiθk12

ϕΔ(1, λ) − eiθk21 ψΔ(1, λ) − eiθk22

)(
C1

C2

)
= 0. (4.16)
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It is evident that (4.15) has a nontrivial solution (C1, C2) if and only if

det

(
ϕ(1, λ) − eiθk11 ψ(1, λ) − eiθk12

ϕΔ(1, λ) − eiθk21 ψΔ(1, λ) − eiθk22

)
= 0, (4.17)

which together with (4.3), (4.4) and detK = k11k22 − k12k21 = 1 implies that

1 + e2iθ − eiθD(λ) = 0. (4.18)

It follows from the above relation and the fact that e−iθ + eiθ = 2 cos θ that λ is an eigenvalue
of (1.1) with (1.2) if and only if λ satisfies

D(λ) = 2 cos θ. (4.19)

On the other hand, (1.1) has two linearly independent solutions satisfying (1.2) if and only if
all the entries of the coefficient matrix of (4.16) are zero. Hence, λ is a multiple eigenvalue of
(1.1) with (1.2) if and only if (4.15) holds. This completes the proof.

The following result is a direct consequence of the first result of Proposition 4.1.

Corollary 4.2. For any θ ∈ (−π,π],

λn
(
eiθK

)
= λn

(
e−iθK

)
, n ≥ 0. (4.20)

For K ∈ SL(2,R) and detK = 1, we consider the separated boundary problem (1.1)
with (2.14). Let μn, 0 ≤ n ≤ Nd − 1, be all the eigenvalues of (1.1) with (2.14) and ordered
as that in Theorem 2.7. Since ϕ(t, λ) and ψ(t, λ) are all entire functions in λ ∈ C for each
t ∈ [ρ(0), σ(1)] ∩ T, D(λ) is an entire functions in C. Denote

d

dλ
D(λ) := D′(λ),

d2

dλ2
D(λ) := D′′(λ). (4.21)

Proposition 4.3. Assume that k11 > 0 and k12 ≤ 0 or k11 ≥ 0 and k12 < 0. For each n, n ≥ 0,
D(μn) ≥ 2 if n is odd, and D(μn) ≤ −2 if n is even.

Proof. It is noted that λ is eigenvalue of (1.1) with (2.14) if and only if k22ψ(1, λ)−k12ψ
Δ(1, λ) =

0. Hence, ψ(t, μn) is an eigenfunction with respect to μn. By Theorem 2.7 and the last two
relations in (4.1), we have that ψ(t, μn) has exactly n generalized zeros in (0, 1) and

sgnψ
(
1, μn

)
= (−1)n. (4.22)

(i) If k12 < 0, then it follows from k22ψ(1, μn) − k12ψ
Δ(1, μn) = 0 that

ψ
(
1, μn

)

k12
=

ψΔ(1, μn

)

k22
, k11k22ψ

(
1, μn

)
= k11k12ψ

Δ(1, μn

)
. (4.23)
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By (4.3) and the first relation in (4.23) we have

1 = ϕ
(
1, μn

)
ψΔ(1, μn

)
− ϕΔ(1, μn

)
ψ
(
1, μn

)

= ϕ
(
1, μn

)k22

k12
ψ
(
1, μn

)
− ϕΔ(1, μn

)
ψ
(
1, μn

)

=
(
k22ϕ

(
1, μn

)
− k12ϕ

Δ(1, μn

))ψ(1, μn

)

k12
.

(4.24)

By the definition of D(λ), the second relation in (4.23), and detK = 1, we get

k12D
(
μn

)
= k11k12ψ

Δ(1, μn

)
− k12k21ψ

(
1, μn

)
+ k12k22ϕ

(
1, μn

)
− k2

12ϕ
Δ(1, μn

)

= k11k22ψ
(
1, μn

)
− k12k21ψ

(
1, μn

)
+ k12k22ϕ

(
1, μn

)
− k2

12ϕ
Δ(1, μn

)

= ψ
(
1, μn

)
+ k12k22ϕ

(
1, μn

)
− k2

12ϕ
Δ(1, μn

)
.

(4.25)

Hence,

D
(
μn

)
=
(
k22ϕ

(
1, μn

)
− k12ϕ

Δ(1, μn

))
+
ψ
(
1, μn

)

k12
. (4.26)

Noting (k22ϕ(1, μn) − k12ϕ
Δ(1, μn))(ψ(1, μn)/k12) = 1, k12 < 0, and (4.22), we have that if n is

odd, then

D
(
μn

)
=

⎛
⎝
√

ψ
(
1, μn

)

k12
−
√
k22ϕ

(
1, μn

)
− k12ϕΔ

(
1, μn

)
⎞
⎠

2

+ 2 ≥ 2, (4.27)

and if n is even, then

D
(
μn

)
= −

⎛
⎝
√
−
ψ
(
1, μn

)

k12
−
√
−
(
k22ϕ

(
1, μn

)
− k12ϕΔ

(
1, μn

))
⎞
⎠

2

− 2 ≤ −2. (4.28)

(ii) If k12 = 0, then it is noted that λ is eigenvalue of (1.1) with (2.14) if and only if
ψ(1, λ) = 0. Hence, ψ(t, μn) is an eigenfunction with respect to μn. By Theorem 2.7, ψ(t, μn)
has exactly n generalized zeros in (0, 1) and

ψ
(
ρ(0), μn

)
= ψ

(
1, μn

)
= 0, ψΔ(ρ(0), μn

)
= 1, n ≥ 0. (4.29)

Hence ψ(t, μ0) > 0 for all t ∈ (0, 1) ∩ T.
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Next we will show ψΔ(1, μ0) < 0. In the case that ρ(1) < 1, ψ(ρ(1), μ0) > 0 and
ψΔ(ρ(1), μ0) < 0. It follows from (1.1) and (2.4) that

(
p
(
ρ(1)

)
ψΔ(ρ(1), μ0

))Δ
=

p(1)ψΔ(1, μ0
)
− p

(
ρ(1)

)
ψΔ(ρ(1), μ0

)

1 − ρ(1)
= 0, (4.30)

which implies

ψΔ(1, μ0
)
= p

(
ρ(1)

)
ψΔ(ρ(1), μ0

)
< 0. (4.31)

In the other case that ρ(1) = 1, then

ψΔ(1, μ0
)
= lim

t→ 1−

ψ
(
t, μ0

)
− ψ

(
1, μ0

)

t − 1
= − lim

t→ 1−

ψ
(
t, μ0

)

1 − t
≤ 0. (4.32)

Further, by the existence and uniqueness theorem of solutions of initial value problems for
(1.1) [5, Theorem 4.5], we obtain that ψΔ(1, μ0) < 0.

With a similar argument from above, we get sgnψΔ(1, μn) = (−1)n+1, n ≥ 0.
By referring to ψ(1, μn) = 0 and from (4.3), it follows that

ϕ
(
1, μn

)
ψΔ(1, μn

)
= 1. (4.33)

Hence, noting detK = k11k22 = 1 and k22 > 0, if n is odd, then

D
(
μn

)
=

k22

ψΔ
(
1, μn

) + k11ψ
Δ(1, μn

)
≥ 2, (4.34)

and if n is even, then

D
(
μn

)
≤ −2. (4.35)

This completes the proof.

Proposition 4.4. Assume that k11 > 0 and k12 ≤ 0 or k11 ≥ 0 and k12 < 0. There exists a constant ν0

such that ν0 < μ0 and D(ν0) ≥ 2.

Proof. Since ϕ(t, λ) and ψ(t, λ) are solutions of (1.1), we have

−
(
p(t)ϕΔ(t, λ)

)Δ
+ q(t)ϕσ(t, λ) = λr(t)ϕσ(t, λ),

−
(
p(t)ψΔ(t, λ)

)Δ
+ q(t)ψσ(t, λ) = λr(t)ψσ(t, λ).

(4.36)
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By integration, it follows from (4.1) and (4.36) that

ϕΔ(1, λ) =
∫1

ρ(0)

(
q(s) − λr(s)

)
ϕ(σ(s), λ)Δs,

ψΔ(1, λ) = 1 +
∫1

ρ(0)

(
q(s) − λr(s)

)
ψ(σ(s), λ)Δs,

(4.37)

where p(ρ(0)) = p(1) = 1 is used. In addition, from (4.36), we obtain

(
ϕ(t, λ)

(
p(t)ϕΔ(t, λ)

))Δ
= p(t)

(
ϕΔ(t, λ)

)2
+
(
q(t) − λr(t)

)(
ϕσ(t, λ)

)2
,

(
ψ(t, λ)

(
p(t)ψΔ(t, λ)

))Δ
= p(t)

(
ψΔ(t, λ)

)2
+
(
q(t) − λr(t)

)(
ψσ(t, λ)

)2
,

(4.38)

which, similarly together with (4.1) and by integration, imply that

ϕ(1, λ)ϕΔ(1, λ) =
∫1

ρ(0)

(
p(s)

(
ϕΔ(s, λ)

)2
+
(
q(s) − λr(s)

)
ϕ2(σ(s), λ)

)
Δs

≥
∫1

ρ(0)

(
q(s) − λr(s)

)
ϕ2(σ(s), λ)Δs,

ψ(1, λ)ψΔ(1, λ) =
∫1

ρ(0)

(
p(s)

(
ψΔ(s, λ)

)2
+
(
q(s) − λr(s)

)
ψ2(σ(s), λ)

)
Δs

≥
∫1

ρ(0)

(
q(s) − λr(s)

)
ψ2(σ(s), λ)Δs.

(4.39)

On the other hand, it follows from Lemma 2.5 and (4.1) that for all sufficiently large −λ,
ϕσ(t) > 0, ψσ(t) > 0, for all t ∈ (ρ(0), 1) ∩ T, where α and β in (2.11) are taken as α = 0, β = 1,
and α = −1, β = 0, respectively, which satisfy (H). So, from (4.37) and (4.39), we obtain that

lim
λ→−∞

ψΔ(1, λ) = lim
λ→−∞

ϕΔ(1, λ) = lim
λ→−∞

(
ψ(1, λ)ψΔ(1, λ)

)
= lim

λ→−∞

(
ϕ(1, λ)ϕΔ(1, λ)

)
= ∞,

(4.40)

and by Lemma 2.4, it implies

lim
λ→−∞

D(λ) = lim
λ→−∞

(
k22ϕ(1, λ) + k11ψ

Δ(1, λ) − k21ψ(1, λ) − k12ϕ
Δ(1, λ)

)

= lim
λ→−∞

(
k11ψ(1, λ)

(
ψΔ(1, λ)
ψ(1, λ)

− k21

k11

)
− k12ϕ(1, λ)

(
ϕΔ(1, λ)
ϕ(1, λ)

− k22

k12

))

= ∞.

(4.41)
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By Proposition 4.3, D(μ0) ≤ −2. Therefore, there exists a ν0 < μ0 such that D(ν0) ≥ 2. This
completes the proof.

Lemma 4.5. For any λ ∈ C one has

D′(λ) =
∫1

ρ(0)

(
A(λ)ψ2(σ(s), λ) − B(λ)ψ(σ(s), λ)ϕ(σ(s), λ) − C(λ)ϕ2(σ(s), λ)

)
r(s)Δs,

(4.42)

4C(λ)D′(λ) = −
∫1

ρ(0)

(
2C(λ)ϕ(σ(s), λ) + B(λ)ψ(σ(s), λ)

)2
r(s)Δs

−
(
4 −D2(λ)

) ∫1

ρ(0)
ψ2(σ(s), λ)r(s)Δs,

(4.43)

4A(λ)D′(λ) =
∫1

ρ(0)

(
2A(λ)ψ(σ(s), λ) − B(λ)ϕ(σ(s), λ)

)2
r(s)Δs

+
(
4 −D2(λ)

) ∫1

ρ(0)
ϕ2(σ(s), λ)r(s)Δs.

(4.44)

Proof. Since ϕ(t, λ) and ψ(t, λ) are solutions of (1.1) with (4.1), then they satisfy (4.36).
Differentiating (4.36) with respect to λ, we have

(
p(t)ϕΔ

λ (t, λ)
)Δ

+
(
q(t) + λr(t)

)
ϕσ
λ(t, λ) = −r(t)ϕσ(t, λ)

ϕλ

(
ρ(0), λ

)
= ϕΔ

λ

(
ρ(0), λ

)
= 0,

(
p(t)ψΔ

λ (t, λ)
)Δ

+
(
q(t) + λr(t)

)
ψσ
λ (t, λ) = −r(t)ψσ(t, λ)

ψλ

(
ρ(0), λ

)
= ψΔ

λ

(
ρ(0), λ

)
= 0.

(4.45)

By the variation of constants formula [5, Theorem 4.24], we get

ϕλ(t, λ) =
∫ t

ρ(0)
r(s)

(
ψ(σ(s), λ)ϕ(t, λ) − ϕ(σ(s), λ)ψ(t, λ)

)
ϕ(σ(s), λ)Δs,

ψλ(t, λ) =
∫ t

ρ(0)
r(s)

(
ψ(σ(s), λ)ϕ(t, λ) − ϕ(σ(s), λ)ψ(t, λ)

)
ψ(σ(s), λ)Δs.

(4.46)
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Further, it follows from [5, Theorem 1.117] that

ϕΔ
λ (t, λ) =

∫ t

ρ(0)
r(s)

(
ψ(σ(s), λ)ϕΔ(t, λ) − ϕ(σ(s), λ)ψΔ(t, λ)

)
ϕ(σ(s), λ)Δs,

ψΔ
λ (t, λ) =

∫ t

ρ(0)
r(s)

(
ψ(σ(s), λ)ϕΔ(t, λ) − ϕ(σ(s), λ)ψΔ(t, λ)

)
ψ(σ(s), λ)Δs.

(4.47)

From (4.46), (4.47), and (4.11), we have

φλ(t, λ) =

(
ϕλ(t, λ) ψλ(t, λ)

p(t)ϕΔ
λ (t, λ) p(t)ψΔ

λ (t, λ)

)
=
∫ t

ρ(0)
r(s)

(
A11(s, t, λ) A12(s, t, λ)

A21(s, t, λ) A22(s, t, λ)

)
Δs, (4.48)

where

A11(s, t, λ) =
(
ψσ(s, λ)ϕ(t, λ) − ϕσ(s, λ)ψ(t, λ)

)
ϕσ(s, λ),

A12(s, t, λ) =
(
ψσ(s, λ)ϕ(t, λ) − ϕσ(s, λ)ψ(t, λ)

)
ψσ(s, λ),

A21(s, t, λ) = p(t)
(
ψσ(s, λ)ϕΔ(t, λ) − ϕσ(s, λ)ψΔ(t, λ)

)
ϕσ(s, λ),

A22(s, t, λ) = p(t)
(
ψσ(s, λ)ϕΔ(t, λ) − ϕσ(s, λ)ψΔ(t, λ)

)
ψσ(s, λ).

(4.49)

It follows from (4.11) and (4.13) that

φ(t, λ)φ−1(σ(s), λ)R(s)φ(σ(s), λ) = −
(
A11(s, t, λ) A12(s, t, λ)

A21(s, t, λ) A22(s, t, λ)

)
, (4.50)

where R(t) =
(

0 0
r(t) 0

)
, t ∈ [ρ(0), ρ(1)] ∩ T.

Hence,

φλ(t, λ) = −
∫1

ρ(0)
φ(t, λ)φ−1(σ(s), λ)R(s)φ(σ(s), λ)Δs. (4.51)

By (4.10) and (4.12), we have

D(λ) = B1(λ) + B2(λ) = traceK−1φ(1, λ). (4.52)
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Differentiating above relation with respect to λ, and with (4.12), we have

D′(λ)

= traceK−1φλ(1, λ)

= −trace
∫1

ρ(0)
K−1φ(1, λ)φ−1(σ(s), λ)R(s)φ(σ(s), λ)Δs

= −trace
∫1

ρ(0)

(
B2(λ) C(λ)

A(λ) B1(λ)

)(
ψΔ(σ(s), λ) −ψ(σ(s), λ)
−ϕΔ(σ(s), λ) ϕ(σ(s), λ)

)

×
(

0 0
r(s) 0

)( ϕ(σ(s), λ) ψ(σ(s), λ)

ϕΔ(σ(s), λ) ψΔ(σ(s), λ)

)
Δs

=
∫1

ρ(0)

(
A(λ)ψ2(σ(s), λ) − (B1(λ) − B2(λ))ψ(σ(s), λ)ϕ(σ(s), λ) − C(λ)ϕ2(σ(s), λ)

)
r(s)Δs,

(4.53)

which together with (4.10) confirm (4.42).
To establish (4.43), from (4.12) and (4.10), we obtain

B1(λ)B2(λ) −A(λ)C(λ) = det
(
K−1φ(1, λ)

)
= 1,

4 −D2(λ) = 4 − (B1(λ) + B2(λ))
2 = 4 − (B1(λ) − B2(λ))

2 − 4B1(λ)B2(λ)

= 4(1 − B1(λ)B2(λ)) − B2(λ) = −
(
4A(λ)C(λ) + B2(λ)

)
.

(4.54)

Thus

4C(λ)D′(λ)

=
∫1

ρ(0)

(
4A(λ)C(λ)ψσ2

(s, λ) − 4B(λ)C(λ)ψσ(s, λ)ϕσ(s, λ) − 4C2(λ)ϕσ2
(s, λ)

)
r(s)Δs

=
∫1

ρ(0)

(
−
(
2C(λ)ϕσ(s, λ) + B(λ)ψσ(s, λ)

)2 +
(

4A(λ)C(λ) + B2(λ)
)
ψσ2

(s, λ)
)
r(s)Δs

= −
∫1

ρ(0)

(
2C(λ)ϕσ(s, λ) + B(λ)ψσ(s, λ)

)2
r(s)Δs −

(
4 −D2(λ)

)∫1

ρ(0)
ψσ2

(s, λ)r(s)Δs.

(4.55)

That is, (4.43) holds. The identity (4.44) can be verified similarly. This completes the
proof.

Corollary 4.6. If λ ∈ R satisfies |D(λ)| < 2, then A(λ)/= 0, C(λ)/= 0, and D′(λ)/= 0.

Proof. These are direct consequences of (4.43) and (4.44).
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Lemma 4.7. C(λ) = 0 if and only if λ = μn for some n ∈ {0, 1, . . . ,Nd − 1} and ψ(·, μn) is an
eigenfunction of μn.

Proof. It is directly follows from the definition of C(λ) and the initial conditions (4.1).

Lemma 4.8. Assum that θ = 0 or θ = π and λ is a multiple eigenvalue of (1.1) with (1.2) if and
only if D′(λ) = 0.

Proof. Assume that θ = 0. By (4.15) λ is a multiple eigenvalue if and only if

φ(1, λ) = K; (4.56)

hence, it follows from (4.12) that

(
B2(λ) C(λ)
A(λ) B1(λ)

)
= K−1φ(1, λ) = K−1K = I. (4.57)

Therefore A(λ) = C(λ) = 0 and B1(λ) = B2(λ) = 1.

(i) Suppose that λ is a multiple eigenvalue of (1.1) with (1.2). Then A(λ) = C(λ) = 0
and B(λ) = B1(λ) − B2(λ) = 0. By (4.42), D′(λ) = 0.

(ii) Suppose that λ is an eigenvalue of (1.1) with (1.2) and D′(λ) = 0. Then by (4.14),
D(λ) = 0. From (4.43) and (4.44) we get

2C(λ)ϕ(σ(s), λ) + B(λ)ψ(σ(s), λ) = 0,

2A(λ)ψ(σ(s), λ) − B(λ)ϕ(σ(s), λ) = 0.
(4.58)

Since ϕ(t, λ) and ψ(t, λ) are linearly independence solutions of (1.1), we have

A(λ) = B(λ) = C(λ) = 0. (4.59)

It follows from B(λ) = B1(λ) − B2(λ) = 0 and D(λ) = B1(λ) + B2(λ) = 2 that B1(λ) = B2(λ) = 1.
Thus, λ is a multiple eigenvalue of (1.1) with (1.2).

The case θ = π can be established by replacing K by −K in the above argument. This
completes the proof.

Lemma 4.9. Assume θ = 0 or θ = π . If λ is a multiple eigenvalue of (1.1) with (1.2), then there
exists n ∈ {0, 1, . . . ,Nd − 1} such that λ = μn.

Proof. Assume that λ is a multiple eigenvalue of (1.1) with (1.2). From the proof of Lemma 4.8
we see that C(λ) = 0. From (4.9) we have

k22ψ(1, λ) − k12ψ
Δ(1, λ) = 0. (4.60)

This means that λ = μn for some n ∈ {0, 1, . . . ,Nd − 1}. This completes the proof.
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Proposition 4.10. Assume that k11 > 0 and k12 ≤ 0 or k11 ≥ 0 and k12 < 0.

(i) Equations D′(λ) = 0 and D(λ) = 2 or −2 hold if and only if λ is a multiple eigenvalue of
(1.1) with (1.2) with θ = 0 or θ = π .

(ii) If D(λ) = 2 or −2 and λ is a multiple eigenvalue of (1.1) with (1.2), then λ = μn, n ∈
{0, 1, . . . ,Nd − 1}.

(iii) If D(λ) = 2 or −2 for some λ/=μn, n ∈ {0, 1, . . . ,Nd − 1}, then λ is a simple eigenvalue of
(1.1) with (1.2) with θ = 0 or θ = π .

(iv) Moreover, for every λ/=μn, n ∈ {0, 1, . . . ,Nd − 1}, with −2 ≤ D(λ) ≤ 2 one has

D′(λ) < 0, ν0 < λ < μ0;
(−1)nD′(λ) > 0, μn < λ < μn+1, n ≥ 0,

(4.61)

and in the case of Nd < ∞,

(−1)Nd−1D′(λ) > 0, λ > μNd−1. (4.62)

Proof. Parts (i), (ii), and (iii) follow from Lemmas 4.8 and 4.9. It follows from Propositions
4.3 and 4.4 and Corollary 4.6 that D(μ0) ≤ −2, D(ν0) ≥ 2 with ν0 < μ0 and D′(λ)/= 0 when
|D(λ)| < 2. Hence, D′(λ) < 0 with ν0 < λ < μ0, −2 ≤ D(λ) ≤ 2. Similarly, by Proposition 4.3
and Corollary 4.6, we have

D
(
μn

)
D
(
μn+1

)
≤ −4, D′(λ)/= 0 when |D(λ)| < 2, (4.63)

which implies

(−1)nD′(λ) > 0 with μn < λ < μn+1, −2 ≤ D(λ) ≤ 2. (4.64)

If Nd < ∞, then all the points of [0, 1] ∩ T are isolated. In this case, (1.1) can be rewritten as

p(σ(t))y
(
σ2(t)

)
= (a(t) + λb(t))y(σ(t)) + c(t)y(t), t ∈

[
ρ(0), ρ(1)

]
∩ T, (4.65)

where

a(t) = p(σ(t)) + p(t)
μ(σ(t))
μ(t)

− q(t)μ(t)μ(σ(t)),

b(t) = −r(t)μ(t)μ(σ(t)), c(t) = −p(t)
μ(σ(t))
μ(t)

.

(4.66)

By Theorem 2.7, (1.1) with (2.14) has Nd eigenvalues:

μ0 < μ1 < · · · < μNd−1. (4.67)
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It follows from (4.65) that ψΔ(1, λ) = (ψ(σ(1), λ) − ψ(1, λ))/μ(1) and ϕΔ(1, λ) = (ϕ(σ(1), λ) −
ϕ(1, λ))/μ(1) are two polynomials of degree Nd + 1 in λ and ψ(1, λ) and ϕ(1, λ) are two
polynomials of degree Nd in λ. Then D(λ) can be written as

D(λ) = k11ψ
Δ(1, λ) − k21ψ(1, λ) + k22ϕ(1, λ) − k12ϕ

Δ(1, λ) = (−1)Nd+1ANd+1λ
Nd+1 + h(λ),

(4.68)

where ANd+1 > 0 and h(λ) is a polynomial in λ whose order is not larger than Nd. By
Proposition 4.3, if Nd + 1 is odd, then D(μNd−1) ≥ 2, and if Nd + 1 is even, then D(μNd−1) ≤ −2.
It follows that if Nd + 1 is odd, then D(λ) → −∞ as λ → ∞, and if Nd + 1 is even, then
D(λ) → ∞ as λ → ∞. Hence, if Nd + 1 is odd, then there exists a constant ξ0 > μNd−1

such that D(ξ0) ≤ −2. Similarly, in the other case that Nd + 1 is even, there exists a constant
η0 > μNd−1 such that D(η0) ≥ 2, and by using Corollary 4.6, we have

−D′(λ) > 0 with μNd−1 < λ < ξ0 if Nd + 1 is odd,

D′(λ) > 0 with μNd−1 < λ < η0 if Nd + 1 is even.
(4.69)

Hence,

(−1)Nd−1D′(λ) > 0, λ > μNd−1. (4.70)

This completes the proof.

Proposition 4.11. For any fixed θ /= 0, −π < θ < π , each eigenvalue of (1.1) with (1.2) is simple.

Proof. It follows from (4.46) and (4.47) that

D′(λ) = k11ψ
Δ
λ (1, λ) − k21ψλ(1, λ) + k22ϕλ(1, λ) − k12ϕ

Δ
λ (1, λ) =

∫1

ρ(0)
r(s)δ(s)Δs, (4.71)

where

δ(s) :=
(
k11ϕ

Δ(1, λ) − k21ϕ(1, λ)
)
ψ2(σ(s), λ)

+
(
k22ϕ(1, λ) − k11ψ

Δ(1, λ) + k21ψ(1, λ) − k12ϕ
Δ(1, λ)

)
ϕ(σ(s), λ)ψ(σ(s), λ)

−
(
k22ψ(1, λ) − k12ψ

Δ(1, λ)
)
ϕ2(σ(s), λ)

=
(
ψ(σ(s), λ), ϕ(σ(s), λ)

)
H(λ)

(
ψ(σ(s), λ)

ϕ(σ(s), λ)

)
,

H(λ) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

k11ϕ
Δ(1, λ) − k21ϕ(1, λ)

1
2
(
k22ϕ(1, λ) − k11ψ

Δ(1, λ)

+k21ψ(1, λ) − k12ϕ
Δ(1, λ)

)

1
2
(
k22ϕ(1, λ) − k11ψ

Δ(1, λ)

+k21ψ(1, λ) − k12ϕ
Δ(1, λ)

)
k12ψ

Δ(1, λ) − k22ψ(1, λ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.72)
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Then from (4.1), detK = 1, and the definition of D(λ), we have

detH(λ) =
(
k11ϕ

Δ(1, λ) − k21ϕ(1, λ)
)(

k12ψ
Δ(1, λ) − k22ψ(1, λ)

)

−
(
k22ϕ(1, λ) − k11ψ

Δ(1, λ) + k21ψ(1, λ) − k12ϕ
Δ(1, λ)

)2

4

=
(
k11ϕ

Δ(1, λ) − k21ϕ(1, λ)
)(

k12ψ
Δ(1, λ) − k22ψ(1, λ)

)

− 1
4
D2(λ) +

(
k22ϕ(1, λ) − k12ϕ

Δ(1, λ)
)(

k11ψ
Δ(1, λ) − k21ψ(1, λ)

)

= −1
4
D2(λ) + 1.

(4.73)

Thus, if |D(λ)| ≤ 2, then detH(λ) ≥ 0. H(λ) is always positive semidefinite or negative
semidefinite. Consequently, δ(s) is not change sign in [ρ(0), 1] ∩ T. In this case, D′(λ) cannot
vanish unless δ(s) ≡ 0. Because ϕ(t, λ) and ψ(t, λ) are linearly independent, δ(s) ≡ 0 if and
only if all the entries of the matrix H(λ) vanish, namely,

k11ϕ
Δ(1, λ) − k21ϕ(1, λ) = 0,

k12ψ
Δ(1, λ) − k22ψ(1, λ) = 0,

k22ϕ(1, λ) − k11ψ
Δ(1, λ) + k21ψ(1, λ) − k12ϕ

Δ(1, λ) = 0.

(4.74)

Suppose that λ is an eigenvalue of the problem (1.1) with (1.2) and fix θ,−π < θ < π with
θ /= 0. By Proposition 4.1, we have D2(λ) = 4 cos2θ < 4, then detH(λ) > 0, and the matrix
H(λ) is positive definite or negative definite. Hence, δ(s) > 0 or δ(s) < 0 for s ∈ [ρ(0), 1] ∩ T,
since ϕ(t, λ) and ψ(t, λ) are linearly independent.

If λ is a multiple eigenvalue of problem (1.1) with (1.2), then (4.15) holds by
Proposition 4.1. By using (4.15), it can be easily verified that (4.74) holds; that is, all the entries
of the matrix H(λ) are zeros. Then δ(s) = 0, which is contrary to δ(s)/= 0. Hence, λ is a simple
eigenvalue of (1.1) and (1.2). This completes the proof.

Proposition 4.12. If n is odd, D(μn) = 2, and D′(μn) = 0, then D′′(μn) < 0; if n is even, D(μn) =
−2, and D′(μn) = 0, then D′′(μn) > 0.

Proof. Assume D(μn) = 2 and D′(μn) = 0 with n being odd. It follows from Proposition 4.1
that

φ
(
1, μn

)
= K. (4.75)
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As in the proof of Lemma 4.5 and by (4.11) and (4.13),

D′(λ) = −trace
∫1

ρ(0)
K−1φ(1, λ)φ−1(σ(s), λ)R(s)φ(σ(s), λ)Δs

= −trace
∫1

ρ(0)
φ−1(1, μn

)
φ(1, λ)

(
p(s)ψΔ(σ(s), λ) −ψ(σ(s), λ)
−p(s)ϕΔ(σ(s), λ) ϕ(σ(s), λ)

)

×
(

0 0
r(s) 0

)(
ϕ(σ(s), λ) ψ(σ(s), λ)

p(s)ϕΔ(σ(s), λ) p(s)ψΔ(σ(s), λ)

)
Δs

= trace

(
φ−1(1, μn

)
φ(1, λ)

∫1

ρ(0)

(
ψ(σ(s), λ)ϕ(σ(s), λ) ψ2(σ(s), λ)

−ϕ2(σ(s), λ) −ψ(σ(s), λ)ϕ(σ(s), λ)

)
r(s)Δs

)
.

(4.76)

Hence,

D′′(λ)

= trace

(
φ−1(1, μn

)
φλ(1, λ)

∫1

ρ(0)

(
ψ(σ(s), λ)ϕ(σ(s), λ) ψ2(σ(s), λ)

−ϕ2(σ(s), λ) −ψ(σ(s), λ)ϕ(σ(s), λ)

)
r(s)Δs

)

+ trace

(
φ−1(1, μn

)
φ(1, λ)

∂

∂λ

∫1

ρ(0)

(
ψ(σ(s), λ)ϕ(σ(s), λ) ψ2(σ(s), λ)

−ϕ2(σ(s), λ) −ψ(σ(s), λ)ϕ(σ(s), λ)

)
r(s)Δs

)

= trace

⎛
⎝φ−1(1, μn

)
φ(1, λ)

∫1

ρ(0)

(
ψσ(s, λ)ϕσ(s, λ) ψσ2

(s, λ)

−ϕσ2
(s, λ) −ψσ(s, λ)ϕσ(s, λ)

)2

r2(s)Δs

⎞
⎠

+ trace

(
φ−1(1, μn

)
φ(1, λ)

∂

∂λ

∫1

ρ(0)

(
ψσ(s, λ)ϕσ(s, λ) ψσ2

(s, λ)

−ϕσ2
(s, λ) −ψσ(s, λ)ϕσ(s, λ)

)
r(s)Δs

)
,

(4.77)

where (4.51) is used and

D′′(μn

)
= trace

∫1

ρ(0)

(
ψ(σ(s), μn)ϕ(σ(s), μn) ψ2(σ(s), μn)

−ϕ2(σ(s), μn) −ψ(σ(s), μn)ϕ(σ(s), μn)

)2

r2(s)Δs

= 2

(∫1

ρ(0)
ψ(σ(s), μn)ϕ(σ(s), μn)r(s)Δs

)2

− 2
∫1

ρ(0)
ψ2(σ(s), μn

)
r(s)Δs

∫1

ρ(0)
ϕ2(σ(s), μn

)
r(s)Δs

≤ 0

(4.78)
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D(λ)

2

2 cos θ

λ0(−K) μ0 λ1(−K) λ2(−K)

v0 λ0(K) λ0(eiθK) λ1(eiθK) μ1, (λ1,2(K)) λ2(eiθK) λ

−2

Figure 1: The graph of D(λ).

D(λ)

2

2 cos θ

λNd−1(−K) ξ0λNd
(−K)

λNd−1(eiθK) λNd−1(K) μNd−1 λNd
(K) λNd

(eiθK) λ

−2

Figure 2: The graph of D(λ) in the case that Nd + 1 is odd.

by the Holder inequality [8, Lemma 2.2(iv)]. Therefore D′′(μn) < 0. Since ϕ(t, λ) and ψ(t, λ)
are linearly independent, which proves the first conclusion, the second conclusion can be
shown similarly. This completes the proof.

5. Proofs of the Main Results

Proof of Theorem 3.1. By Propositions 4.1–4.12 and the intermediate value theorem, the
inequalities in (3.1)–(3.2) can been illustrated with the graph of D(λ) (see Figures 1–3). We
now give the detail proof of Theorem 3.1.

By Lemma 2.9, all the eigenvalues of the coupled boundary value problem (1.1) with
(1.2) are real. By Propositions 4.3–4.10, D(μ0) ≤ −2, D′(λ) < 0 for all λ < μ0 with −2 ≤ D(λ) ≤
2, and there exists ν0 < μ0 such that D(ν0) ≥ 2. Therefore, by the continuity of D(λ) and the
intermediate value theorem, (1.1) and (1.2) with θ = 0 have only one eigenvalue λ0(K) < μ0,



22 Advances in Difference Equations

D(λ)

2

2 cos θ

λNd−1(−K) μNd−1 λNd
(−K)

λNd−1(K) λNd−1(eiθK) λNd
(eiθK) λNd

(K) η0 λ

−2

Figure 3: The graph of D(λ) in the case that Nd + 1 is even.

(1.1) and (1.2) with θ = π hve only one eigenvalue λ0(−K) ≤ μ0, and (1.1) and (1.2) with
θ /= 0, −π < θ < π have only one eigenvalue λ0(K) < λ0(eiθK) < λ0(−K), and they satisfy

ν0 ≤ λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ μ0. (5.1)

Similarly, by Propositions 4.1, 4.3, and 4.10, the continuity of D(λ), and the intermediate value
theorem, D(λ) reaches −2, 2 cos θ (θ /= 0, −π < θ < π), and 2 exactly one time between any two
consecutive eigenvalues of the separated boundary value problem (1.1) with (2.14). Hence,
(1.1) and (1.2) with θ = 0, θ /= 0, −π < θ < π , and θ = π have only one eigenvalue between any
two consecutive eigenvalues of (1.1) with (2.14), respectively. In addition, by Propositions
4.10 and 4.12, if D(μn) = 2 or −2 and D′(μn) = 0, then μn is not only an eigenvalue of (1.1)
with (2.14) but also a multiple eigenvalue of (1.1) and (1.2) with θ = 0 and θ = π .

If Nd = ∞, then it follows from the above discussion that (1.1) and (1.2) with θ /= 0,
−π < θ < π have infinitely many eigenvalues, and they are real and satisfy (3.1).

If Nd < ∞, then all points of [0, 1] ∩ T are isolated. In this case (1.1) and D(λ) can be
rewritten as (4.65) and (4.68). By the same method in the proof of Proposition 4.10, that if
Nd + 1 is even, then there exists a constant ξ0 > μNd−1 such that D(ξ0) ≤ −2, which together
with (4.62), implies that (1.1) and (1.2) with θ = 0, θ /= 0, −π < θ < π , and θ = π have only
one eigenvalue λNd(K), λNd(e

iθK), and λNd(−K), satisfying

μNd−1 ≤ λNd(K) < λNd

(
eiθK

)
< λNd(−K) ≤ ξ0 (5.2)

(see Figure 2). Similarly, in the other case that Nd+1 is even, there exists a constant η0 > μNd−1

such that D(η0) ≥ 2, which, together with (4.62) implies that (1.1) and (1.2) with θ = 0, θ /= 0,
−π < θ < π , and θ = π have only one eigenvalue λNd(K), λNd(e

iθK), and λNd(−K), satisfying

μNd−1 ≤ λNd(−K) < λNd

(
eiθK

)
< λNd(K) ≤ η0 (5.3)
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(see Figure 3). Therefore, we get that (1.1) and (1.2) with θ /= 0, −π < θ < π have Nd + 1
eigenvalues and they are real and satisfy

ν0 ≤ λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ μ0 ≤ λ1(−K) < λ1

(
eiθK

)
< λ1(K) ≤ μ1 ≤ λ2(K)

< · · · < λNd−1(K) ≤ μNd−1 ≤ λNd(K) < λNd

(
eiθK

)
< λNd(−K) ≤ ξ0

(5.4)

if Nd + 1 is odd; and

ν0 ≤ λ0(K) < λ0

(
eiθK

)
< λ0(−K) ≤ μ0 ≤ λ1(−K) < λ1

(
eiθK

)
< λ1(K) ≤ μ1 ≤ λ2(K)

< · · · < λNd−1(−K) ≤ μNd−1 ≤ λNd(−K) < λNd

(
eiθK

)
< λNd(K) ≤ η0

(5.5)

if Nd + 1 is even. This completes the proof.

Remark 5.1. In the continuous case: μ(t) = 0, Nd = ∞, by Theorem 3.1, the coupled boundary
value problems (1.1) and (1.2) have infinitely many eigenvalues: {λn(eiθK)}∞n=0 for θ /= 0, −π <
θ < π ; {λn(K)}∞n=0 for θ = 0; {λn(−K)}∞n=0 for θ = π , and they satisfy inequality (3.1). This
result is the same as that obtained by Eastham et al. for second-order differential equations
[2, Theorem 3.2].

Example 5.2. Consider the following three specific cases:

[
ρ(0), 1

]
∩ T =

[
0,

1
2

]
∪
[

2
3
, 1
]

;

[
ρ(0), 1

]
∩ T =

[
0,

1
2

]
∪
{

1
2(N − 1)

,
1

(N − 1)
,

3
2(N − 1)

, . . . , 1
}
, N > 2;

[
ρ(0), 1

]
∩ T =

{
qk | k ≥ 0, k ∈ Z

}
∪ {0}, where 0 < q < 1.

(5.6)

It is evident that |[ρ(0), 1]∩T| = ∞ and then Nd = ∞ in these three cases. By Theorem 3.1, the
coupled boundary value problems (1.1) and (1.2) have infinitely many real eigenvalues and
they satisfy the inequality (3.1). Obviously, the above three cases are not continuous and not
discrete. So the existing results are not available now.

By Remark 5.1 and Example 5.2, our result in Theorem 3.1 not only extends the results
in the discrete cases but also contains more complicated time scales.
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