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We provide a complete diagram of the relation between the admissibility of pairs of Banach
function spaces and the exponential dichotomy of evolution families on the real line. We prove
that if W ∈ H(R) and V ∈ T(R) are two Banach function spaces with the property that either
W ∈ W(R) or V ∈ V(R), then the admissibility of the pair (W(R, X), V (R, X)) implies the existence
of the exponential dichotomy. We study when the converse implication holds and show that the
hypotheses on the underlying function spaces cannot be dropped and that the obtained results are
the most general in this topic. Finally, our results are applied to the study of exponential dichotomy
of C0-semigroups.

1. Introduction

In the study of the asymptotic behavior of evolution equations the input-output conditions
are very efficient tools, with wide applicability area, and give a nice connection between
control theory and the qualitative theory of differential equations (see [1–16] and the
reference therein). Starting with the pioneering work of Perron (see [8]) these methods
were developed and improved in remarkable books (see [1, 4, 6]). A new and interesting
perspective on this framework was proposed in [5], where the authors presented a complete
study of stability, expansiveness, and dichotomy of evolution families on the half-line in
terms of input-output methods. This paper was the starting point for an entire collection
of studies dedicated to the input-output techniques and their applications to the qualitative
theory of differential and difference equations.

If one analyzes the dichotomous properties of differential equations, then it is easily
seen that there are some main technical differences between the case of evolution families
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on the half-line (see [5, 9, 10]) and the case of evolution families on the real line (see [11–
16]), which require a distinct analysis for each case. For instance, when one determines
sufficient conditions for the existence of exponential dichotomy on the half-line, an important
hypothesis is that the initial stable subspace is closed and complemented (see, e.g., [5,
Theorem4.3] or [9, Theorem3.3]). This assumption may be dropped when we study the
exponential dichotomy on the real line (see, e.g., [11, Theorem5.1] or [16, Theorem5.3]).
These facts implicitly generate the differences between the admissibility concepts used on the
real line compared with those used on the half-line and also interesting technical approaches
in each case.

The aim of the present paper is to provide new and very general conditions for the
existence of exponential dichotomy on the real line. We consider the problem of finding
connections between the solvability of an integral equation and the existence of exponential
dichotomy of evolution families on the real line. The main purpose is to obtain a complete
diagram and a classification of the classes of function spaces that may be used in the study of
exponential dichotomy via admissibility.

For the beginning we will present the previous results in this topic and the main
objectives will be clearly specified in the context of the actual state of knowledge. We denote
by T(R) the class of all Banach sequence spaces B which are invariant under translations,
contain the continuous functions with compact support, satisfy an integral property and if
B \ L1(R,R)/= ∅, then there is a continuous function ϕ ∈ B \ L1(R,R). We consider H(R)
the subclass of T(R) satisfying the ideal property. We associate two subclasses of H(R):
W(R)—the class of all Banach function spaces with unbounded fundamental function and
V(R)—the class of all Banach function spaces which contain at least a nonintegrable function.
A pair of function spaces (W(R, X), V (R, X)) is called admissible for an evolution family
U = {U(t, s)}t≥s on the Banach space X if for every test function in the input space V (R, X)
there exists a unique solution function in the output spaceW(R, X) for the associated integral
equation given by the variation of constants formula (see Definition 3.5 below).

For the first time, we have proposed in [11] a sufficient condition for exponential
dichotomy, using certain Banach function spaces which are invariant under translations and
we obtained the following theorem.

Theorem 1.1. If V ∈ V(R) and the pair (Cb(R, X), V (R, X)) is admissible for an evolution family
U = {U(t, s)}t≥s, then U is exponentially dichotomic.

Our study has been continued and extended in [16], both for uniform dichotomy
and exponential dichotomy. According to the proof of Theorem4.8 in [16] we may give the
following sufficient condition for uniform dichotomy.

Theorem 1.2. If W ∈ H(R), V ∈ T(R), and the pair (W(R, X), V (R, X)) is admissible for an
evolution family U = {U(t, s)}t≥s, then U is uniformly dichotomic.

From the proof of Theorem5.3(i) in [16] we deduce the following sufficient condition
for exponential dichotomy.

Theorem 1.3. If W ∈ W(R), V ∈ T(R), and the pair (W(R, X), V (R, X)) is admissible for an
evolution family U = {U(t, s)}t≥s, then U is exponentially dichotomic.

Taking into account the above results and their consequences, the natural question
arises whether, in the general case, the output space may belong to the class H(R) and
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if so, which is the most general class where the input space should belong to. The aim
of the present paper is to answer this question and to provide a complete study of the
exponential dichotomy on the real line via integral admissibility. The answer to the above
question will establish clearly how should one modify the hypotheses of Theorem 1.2 such
that the admissibility of the pair (W(R, X), V (R, X)) implies the existence of the exponential
dichotomy.

We will prove that if W ∈ H(R) and V ∈ V(R), then the admissibility of the pair
(W(R, X), V (R, X)) is a sufficient condition for exponential dichotomy. Consequently, we
will deduce a complete diagram of the study of exponential dichotomy on the real line in
terms of the admissibility of function spaces (see Theorem 3.11). Specifically, if W ∈ H(R)
and V ∈ T(R) are two Banach function spaces with the property that either W ∈ W(R)
or V ∈ V(R), then the admissibility of the pair (W(R, X), V (R, X)) implies the existence
of the exponential dichotomy. Also, in certain conditions, we deduce that the exponential
dichotomy of an evolution family U = {U(t, s)}t≥s is equivalent with the admissibility of the
pair (W(R, X), V (R, X)).

By an example we motivate our techniques and show that the hypotheses from our
main results cannot be removed. Precisely, if W ∈ H(R) and V ∈ T(R) are such that
W /∈W(R) and V /∈V(R), then we prove that the admissibility of the pair (W(R, X), V (R, X))
does not imply the exponential dichotomy. Moreover, we show that the obtained results and
their consequences are the most general in this topic.

Finally, our results are applied at the study of the exponential dichotomy of C0-
semigroups. Using function spaces which are invariant under translations, we obtain a
classification of the classes of input and output spaces which may be used in the study of
exponential dichotomy of semigroups in terms of input-output techniques with respect to
associated integral equations.

2. Preliminaries: Banach Function Spaces

In this section, for the sake of clarity, we present some definitions and notations and we
introduce the main classes of function spaces that will be used in our study. Let M(R) be
the linear space of all Lebesgue measurable functions u : R → R, identifying the functions
equal almost everywhere.

Definition 2.1. A linear subspace B ofM(R) is called normed function space if there is amapping
| · |B : B → R+ such that

(i) |u|B = 0 if and only if u = 0 a.e.;

(ii) |αu|B = |α||u|B, for all (α, u) ∈ R × B;

(iii) |u + v|B ≤ |u|B + |v|B, for all u, v ∈ B;

(iv) if u, v ∈ B and |u| ≤ |v| a.e. then |u|B ≤ |v|B;

(v) if u ∈ B, then |u| ∈ B.

If (B, | · |B) is complete, then B is called Banach function space.

Definition 2.2. A Banach function space (B, | · |B) is said to be invariant under translations if for
every (u, s) ∈ B × R, the function us : R → R, us(t) = u(t − s) belongs to B and |us|B = |u|B.
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Notations 1. Let Cc(R,R) denote the linear space of all continuous functions v : R → R with
compact support. Throughout this paper, we denote by T(R) the class of all Banach function
spaces B, which are invariant under translations, Cc(R,R) ⊂ B, and satisfy the following
conditions:

(i) for every t > s there is α(t, s) > 0 such that
∫ t
s|u(τ)|dτ ≤ α(t, s)|u|B, for all u ∈ B;

(ii) if B \ L1(R,R)/= ∅ then there is a continuous function ϕ ∈ B \ L1(R,R).

For examples of Banach function spaces from the class T(R) we refer to [11].
Let H(R) be the class of all Banach function spaces B ∈ T(R) with the property that if

|u| ≤ |v| a.e. and v ∈ B, then u ∈ B.

For every A ⊂ R we denote by χA the characteristic function of the set A. Then, if
B ∈ H(R), we have that χ[a,b) ∈ B, for every a, b ∈ Rwith a < b.

Definition 2.3. Let B ∈ H(R). The mapping FB : (0,∞) → R, FB(t) = |χ[0,t)|B is called the
fundamental function of the space B.

For the proof of the next proposition we refer to [16, Proposition 2.8].

Proposition 2.4. Let B ∈ H(R) and ν > 0. If u : R → R+ is a function, which belongs to B and
with the property that qu : R → R+, qu(t) =

∫ t+1
t u(s)ds belongs to B, then the functions

fu, gu : R −→ R+, fu(t) =
∫ t

−∞
e−ν(t−s)u(s)ds, gu(t) =

∫∞

t

e−ν(s−t)u(s)ds (2.1)

belong to B.

Example 2.5. Let M1(R,R) be the linear space of all u ∈ M(R) with the property that
supt∈R

∫ t+1
t |u(s)|ds < ∞. With respect to the norm

‖u‖M1 := sup
t∈R

∫ t+1

t

|u(s)|ds, (2.2)

this is a Banach function space which belongs toH(R).

Lemma 2.6. If B ∈ T(R), then B ⊂ M1(R,R).

Proof. Let α > 0 be such that
∫1
0|u(τ)|dτ ≤ α|u|B, for all u ∈ B. Then, we have that

∫ t+1

t

|v(τ)|dτ =
∫1

0
|vt(τ)|dτ ≤ α|vt|B = α|v|B, ∀t ∈ R, ∀v ∈ B. (2.3)
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Notations 2. In what follows we denote by

(i) W(R) the class of all Banach function spaces B ∈ H(R) with supt>0FB(t) = ∞;

(ii) V(R) the class of all Banach function spaces B ∈ T(R) with the property that B \
L1(R,R)/= ∅;

(iii) O(R) the class of all Banach function spaces B ∈ H(R) with the property that for
every u : R → R+ in B, the function qu : R → R+, qu(t) =

∫ t+1
t u(s)ds belongs to B.

Remark 2.7. (i) For examples of Banach function spaces from the class W(R) we refer to [16,
Proposition 2.9].

(ii) If B ∈ V(R) then there is a continuous function ϕ : R → R+ with ϕ ∈ B \ L1(R,R).

Notation 1. Let C0(R,R) be the space of all continuous functions v : R → R with
limt→±∞v(t) = 0, which is Banach space with respect to the norm |‖v‖| := supt∈R|v(t)|.

Lemma 2.8. Let B be a Banach function space with B ∈ H(R) \ W(R). Then C0(R,R) ⊂ B.

Proof. Let L := supt>0FB(t). Let v ∈ C0(R,R). Then there is an unbounded increasing sequence
(tn) ⊂ (0,∞) such that |v(t)| ≤ 1/(n + 1), for all |t| ≥ tn and all n ∈ N. Setting vn = vχ[−tn,tn] we
have that

∣∣vn+p − vn

∣∣
B
≤ 1

n + 1

(∣∣∣χ[−tn+p,−tn)

∣∣∣
B
+
∣∣∣χ(tn,tn+p]

∣∣∣
B

)
≤ 2L

n + 1
, ∀p ∈ N

∗, ∀n ∈ N. (2.4)

From the above inequality we deduce that (vn) is fundamental in the Banach space B, so there
is w ∈ B such that vn → w in B. According to [16, Lemma2.4] there is a subsequence (vkn)
such that vkn → w a.e. This implies that v ≡ w a.e., so v = w in B. Thus v ∈ B and the proof
is complete.

Notation 2. Let X be a real or complex Banach space. For every B ∈ T(R) we denote by
B(R, X) the linear space of all Bochner measurable functions v : R → X with the property
that themappingNv : R → R+, Nv(t) = ‖v(t)‖ lies in B. With respect to the norm ‖v‖B(R,X) :=
|Nv|B, B(R, X) is a Banach space.

3. Exponential Dichotomy for Evolution Families on the Real Line

Let X be a real or complex Banach space. The norm on X and on B(X), the Banach algebra of
all bounded linear operators on X, will be denoted by ‖ · ‖. Denote by Id the identity operator
on X. First, we remind some basic definitions.

Definition 3.1. A familyU = {U(t, s)}t≥s of bounded linear operators onX is called an evolution
family if the following properties hold:

(i) U(t0, t0) = Id andU(t, s)U(s, t0) = U(t, t0), for all t ≥ s ≥ t0;

(ii) for every x ∈ X and every t0 ∈ R the mapping t 
→ U(t, t0)x is continuous on [t0,∞)
and the mapping s 
→ U(t0, s)x is continuous on (−∞, t0];

(iii) there are M ≥ 1 and ω > 0 such that ‖U(t, t0)‖ ≤ Meω(t−t0), for all t ≥ t0.
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Definition 3.2. An evolution family U = {U(t, s)}t≥s is said to be uniformly dichotomic if there
are a family of projections {P(t)}t∈R and a constant K ≥ 1 such that

(i) U(t, t0)P(t0) = P(t)U(t, t0), for all t ≥ t0;

(ii) the restriction U(t, t0)| : ker P(t0) → ker P(t) is an isomorphism, for all t ≥ t0;

(iii) ‖U(t, t0)x‖ ≤ K‖x‖, for all x ∈ Im P(t0) and all t ≥ t0;

(iv) ‖U(t, t0)y‖ ≥ (1/K)‖y‖, for all y ∈ ker P(t0) and all t ≥ t0.

Definition 3.3. An evolution family U = {U(t, s)}t≥s is said to be exponentially dichotomic if
there exist a family of projections {P(t)}t∈R and two constants K ≥ 1 and ν > 0 such that

(i) U(t, t0)P(t0) = P(t)U(t, t0), for all t ≥ t0;

(ii) the restriction U(t, t0)| : ker P(t0) → ker P(t) is an isomorphism, for all t ≥ t0;

(iii) ‖U(t, t0)x‖ ≤ Ke−ν(t−t0)‖x‖, for all x ∈ Im P(t0) and all t ≥ t0;

(iv) ‖U(t, t0)y‖ ≥ (1/K)eν(t−t0)‖y‖, for all y ∈ ker P(t0) and all t ≥ t0.

Remark 3.4. It is obvious that if an evolution family is exponentially dichotomic, then it is
uniformly dichotomic.

One of the most efficient tool in the study of the dichotomic behavior of an evolution
family is represented by the so-called input-output techniques. The input-output method
considered in this paper is the admissibility of a pair of function spaces. Indeed, let W,V be
two Banach function spaces such that W ∈ H(R) and V ∈ T(R).

Definition 3.5. The pair (W(R, X), V (R, X)) is said to be admissible for U if for every v ∈
V (R, X) there exists a unique f ∈ W(R, X) such that the pair (f, v) satisfies the equation

f(t) = U(t, s)f(s) +
∫ t

s

U(t, τ)v(τ)dτ, ∀t ≥ s. (EU)

Remark 3.6. If the pair (W(R, X), V (R, X)) is admissible for U, then it makes sense to define
the operator Q : V (R, X) → W(R, X), Q(v) = f , where f ∈ W(R, X) is such that the pair
(f, v) satisfies (EU). Then Q is a bounded linear operator (see [16, Proposition 4.4]).

Let U = {U(t, s)}t≥s be an evolution family on X and W ∈ H(R). For every t ∈ R, we
consider the stable subspace Xs(t) as the space of all x ∈ X with the property that the function

δx : R −→ X, δx(τ) =

⎧
⎨

⎩

U(τ, t)x, τ ≥ t,

0, τ < t
(3.1)

belongs toW(R, X) and we define the unstable subspaceXu(t) as the space of all x ∈ X with the
property that there is a function ϕx ∈ W(R, X) such that ϕx(t) = x and ϕx(τ) = U(τ, s)ϕx(s),
for all s ≤ τ ≤ t.

An important information concerning the structure of the projection family associated
with a uniformly dichotomic evolution family was obtained in [16, Theorem4.8] and this is
given by the following.
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Theorem 3.7. LetU = {U(t, s)}t≥s be an evolution family onX and letW,V be two Banach function
spaces withW ∈ H(R) and V ∈ T(R). If the pair (W(R, X), V (R, X)) is admissible for the evolution
family U, then U is uniformly dichotomic with respect to the family of projections {P(t)}t∈R, where

ImP(t) = Xs(t), kerP(t) = Xu(t), ∀t ∈ R. (3.2)

Taking into account the results obtained in [11, 16], an interesting open question is
whether in the study of exponential dichotomy, the output space may belong to the general
class H(R). To answer this question, the first purpose of this paper is to prove the following
theorem.

Theorem 3.8. Let U = {U(t, s)}t≥s be an evolution family on the Banach space X and let W, V be
two Banach function spaces with W ∈ H(R) and V ∈ V(R). If the pair (W(R, X), V (R, X)) is
admissible for U, then U is uniformly exponentially dichotomic.

The proof will be constructive and therefore, we will present several intermediate
results.

Theorem 3.9. Let U = {U(t, s)}t≥s be an evolution family on the Banach space X and let W,V be
two Banach function spaces with W ∈ H(R) and V ∈ V(R). If the pair (W(R, X), V (R, X)) is
admissible for U, then there are K, ν > 0 such that

‖U(t, t0)x‖ ≤ Ke−ν(t−t0)‖x‖, ∀t ≥ t0, ∀x ∈ Xs(t0). (3.3)

Proof. According to Theorem 3.7 and Definition 3.2(iii)we have that there is λ > 0 such that

‖U(t, t0)x‖ ≤ λ‖x‖, ∀t ≥ t0, ∀x ∈ Xs(t0). (3.4)

Since V ∈ V(R+), from Remark 2.7(ii)we have that there is a continuous function ϕ : R → R+

with ϕ ∈ V \L1(R,R). Using the invariance under translations of the space V , we may assume
that there is r > 1 such that

∫ r

0
ϕ(s)ds ≥ 2

eλ2‖Q‖
∣∣ϕ

∣∣
V

FW(1)
. (3.5)

Since
∫r−1/n
1/n ϕ(s)ds →

n→∞

∫ r
0ϕ(s)ds there is n0 ∈ N

∗ such that

∫ r−1/n0

1/n0

ϕ(s)ds ≥ 1
2

∫ r

0
ϕ(s)ds. (3.6)

Let α : R → [0, 1] be a continuous function with supp α ⊂ (0, r) and α(t) = 1, for t ∈
[1/n0, r − 1/n0]. Then, the function ψ : R → R+, ψ(t) = α(t)ϕ(t) is continuous and from (3.5)
and (3.6) we have that

∫ r

0
ψ(t)dt ≥

∫ r−1/n0

1/n0

ϕ(t)dt ≥
eλ2‖Q‖

∣∣ϕ
∣∣
V

FW(1)
. (3.7)
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Let t0 ∈ R and let x ∈ Xs(t0). We consider the functions

v : R → X, v(t) = ψ(t − t0)U(t, t0)x, (3.8)

f : R → X, f(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

t0

ψ(τ − t0)dτU(t, t0)x, t ≥ t0,

0, t < t0.

(3.9)

Since v ∈ Cc(R, X) it follows that v ∈ V (R, X). Setting q =
∫ r
0ψ(τ)dτ we observe that

f(t) = qU(t, t0)x, for all t ≥ t0 + r. Since x ∈ Xs(t0) we deduce that f ∈ W(R, X). A simple
computation shows that the pair (f, v) satisfies (EU), so f = Q(v). This implies that

∥
∥f

∥
∥
W(R,X) ≤ ‖Q‖‖v‖V (R,X). (3.10)

According to relation (3.4)we observe that

‖v(t)‖ = ψ(t − t0)‖U(t, t0)x‖ ≤ λ‖x‖ψt0(t), ∀t ∈ R, (3.11)

and using the invariance under translations of the space V we deduce that ‖v‖V (R,X) ≤
λ‖x‖|ψ|V . From ψ(t) ≤ ϕ(t), for all t ∈ R, we have that |ψ|V ≤ |ϕ|V . Thus we obtain that

‖v‖V (R,X) ≤ λ‖x‖
∣∣ϕ

∣∣
V . (3.12)

From ‖U(t0 + r + 1, t0)x‖ ≤ λ‖U(τ, t0)x‖ = (λ/q)‖f(τ)‖, for all τ ∈ [t0 + r, t0 + r + 1], we have
that ‖U(t0 + r + 1, t0)x‖χ[t0+r,t0+r+1)(τ) ≤ (λ/q)‖f(τ)‖, for all τ ∈ R, which implies that

FW(1)‖U(t0 + r + 1, t0)x‖ ≤ λ

q

∥∥f
∥∥
W(R,X). (3.13)

Setting l = r + 1, from relations (3.10)–(3.13) it follows that

qFW(1)‖U(t0 + l, t0)x‖ ≤ λ2‖Q‖
∣∣ϕ

∣∣
V ‖x‖. (3.14)

Using relations (3.7) and (3.14)we deduce that ‖U(t0+l, t0)x‖ ≤ (1/e)‖x‖. Taking into account
that l does not depend on t0 or x, we have that

‖U(t0 + l, t0)x‖ ≤ 1
e
‖x‖, ∀t0 ∈ R, ∀x ∈ Xs(t0). (3.15)

Let ν = 1/l andK = λe. Let t ≥ t0 and x ∈ Xs(t0). Then, there are j ∈ N and s ∈ [0, l) such that
t = t0 + jl + s. Using relations (3.4) and (3.15) we obtain that ‖U(t, t0)x‖ ≤ λ‖U(t0 + jl, t0)x‖ ≤
λe−j‖x‖ ≤ Ke−ν(t−t0)‖x‖, which completes the proof.
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Theorem 3.10. Let U = {U(t, s)}t≥s be an evolution family on the Banach space X and let W,V
be two Banach function spaces with W ∈ H(R) and V ∈ V(R). If the pair (W(R, X), V (R, X)) is
admissible for U, then there are K, ν > 0 such that

‖U(t, t0)x‖ ≥ 1
K
eν(t−t0)‖x‖, ∀t ≥ t0, ∀x ∈ Xu(t0). (3.16)

Proof. Let M ≥ 1 and ω > 0 be given by Definition 3.1. According to Theorem 3.7 and
Definition 3.2(iv) we have that there is λ > 0 such that

‖U(t, t0)x‖ ≥ 1
λ
‖x‖, ∀t ≥ t0, ∀x ∈ Xu(t0). (3.17)

Since V ∈ V(R+), from Remark 2.7(ii)we have that there is a continuous function ϕ : R → R+

with ϕ ∈ V \L1(R,R). Using the invariance under translations of the space V wemay assume
that there is r > 1 such that

∫ r

0
ϕ(s)ds ≥ 2

λMeω+1‖Q‖
∣∣ϕ

∣∣
V

FW(1)
. (3.18)

Using similar arguments with those in the proof of Theorem 3.9 we obtain that there is a
continuous function ψ : R → R+ with suppψ ⊂ (0, r), ψ(t) ≤ ϕ(t), for all t ∈ R and

∫ r

0
ψ(τ)dτ ≥

λMeω+1‖Q‖
∣∣ϕ

∣∣
V

FW(1)
. (3.19)

Let t0 ∈ R and x ∈ Xu(t0). Then, there is ϕx ∈ W(R, X) such that ϕx(t0) = x and ϕx(τ) =
U(τ, s)ϕx(s), for all s ≤ τ ≤ t0. We consider the functions

v : R −→ X, v(t) = −ψ(t − t0)U(t, t0)x, (3.20)

f : R −→ X, f(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫∞

t

ψ(τ − t0)dτU(t, t0)x, t ≥ t0,

qϕx(t), t < t0,

(3.21)

where q =
∫r
0ψ(τ)dτ . We have that v ∈ Cc(R, X), so v ∈ V (R, X). Using relation (3.17) we

have that

∥∥f(t)
∥∥ ≤ q

∥∥ϕx(t)
∥∥ + qλ‖U(t0 + r, t0)x‖χ[t0,t0+r)(t), ∀t ∈ R. (3.22)

From this inequality, since W ∈ H(R) we deduce that f ∈ W(R, X). An easy computation
shows that the pair (f, v) satisfies (EU), so f = Q(v). Then, we have that

∥∥f
∥∥
W(R,X) ≤ ‖Q‖‖v‖V (R,X). (3.23)
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Using relation (3.17) we have that

‖v(t)‖ = ψ(t − t0)‖U(t, t0)x‖ ≤ ψ(t − t0)λ‖U(t0 + r, t0)x‖, ∀t ∈ R (3.24)

which implies that

‖v‖V (R,X) ≤
∣
∣ψ

∣
∣
V λ‖U(t0 + r, t0)x‖ ≤

∣
∣ϕ

∣
∣
V λ‖U(t0 + r, t0)x‖. (3.25)

Since x = ϕx(t0) = U(t0, t)ϕx(t), for all t ∈ [t0 − 1, t0], we deduce that

‖x‖χ[t0−1,t0)(t) ≤ Meω
∥
∥ϕx(t)

∥
∥χ[t0−1,t0)(t) ≤

Meω

q

∥
∥f(t)

∥
∥, ∀t ∈ R. (3.26)

This shows that

q‖x‖FW(1) ≤ Meω
∥∥f

∥∥
W(R,X). (3.27)

From relations (3.19)–(3.27) it follows that ‖U(t0 + r, t0)x‖ ≥ e‖x‖. Taking into account that r
does not depend on t0 or x, we have that

‖U(t0 + r, t0)x‖ ≥ e‖x‖, ∀t0 ∈ R, ∀x ∈ Xu(t0). (3.28)

We set ν = 1/r and K = λe. Let t ≥ t0 and x ∈ Xu(t0). Then, there are j ∈ N and s ∈ [0, r) such
that t = t0 + jr + s. Using relations (3.17) and (3.28)we obtain that ‖U(t, t0)x‖ ≥ (1/λ)‖U(t0 +
jr, t0)x‖ ≥ (1/λ)ej‖x‖ ≥ (1/K)eν(t−t0)‖x‖, which completes the proof.

Now, we may give the proof of Theorem 3.8.

Proof of Theorem 3.8. This immediately follows from Theorems 3.7, 3.9, and 3.10.

Now, we may give the main result of the paper, which establishes a complete
diagram concerning the study of exponential dichotomy on the real line in terms of integral
admissibility.

Theorem 3.11. Let U = {U(t, s)}t≥s be an evolution family on the Banach space X and let W,V be
two Banach function spaces with W ∈ H(R) and V ∈ T(R). If W ∈ W(R) or V ∈ V(R), then the
following assertions hold:

(i) if the pair (W(R, X), V (R, X)) is admissible for U, then U is uniformly exponentially
dichotomic;

(ii) if V ⊂ W and one of the spaces V,W belongs to the class O(R), then U is exponentially
dichotomic if and only if the pair (W(R, X), V (R, X)) is admissible for U.

Proof. (i) This follows from Theorems 1.3 and 3.8.
(ii) Necessity. Suppose that U is exponentially dichotomic with respect to the family of

projections {P(t)}t∈R and the constants K, ν > 0. Then, we have that L := supt∈R‖P(t)‖ < ∞
(see, e.g., [13]).
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Let v ∈ V (R, X). We consider the function

f : R −→ X, f(t) =
∫ t

−∞
U(t, s)P(s)v(s)ds −

∫∞

t

U(s, t)−1| (I − P(s))v(s)ds, (3.29)

where for every s > t, U(s, t)−1| denotes the inverse of the operator U(s, t)| : kerP(t) →
kerP(s).

If V ∈ O(R), then using Proposition 2.4 we obtain that f ∈ V (R, X). Since V ⊂ W we
deduce that f ∈ W(R, X).

If W ∈ O(R) then, since V ⊂ W we have that v ∈ W(R, X). Using Proposition 2.4 it
follows that f ∈ W(R, X).

An easy computation shows that the pair (f, v) satisfies (EU). The uniqueness of
f is immediate (see, e.g., [16, the Necessity part of Theorem5.3]). In conclusion, the pair
(W(R, X), V (R, X)) is admissible for the evolution family U.

The natural question arises whether the hypotheses from Theorem 3.11 can be
dropped and also if the conditions given by this theorem are the most general in this topic.
The answers are given by the following example.

Example 3.12. Let W ∈ H(R) and V ∈ T(R) be such that W /∈W(R) and V /∈V(R). Then
V ⊂ L1(R,R) and according to Lemma 2.8 we have that C0(R,R) ⊂ W .

We consider the function

ϕ : R −→ R, ϕ(t) =

⎧
⎪⎨

⎪⎩

1
t + 1

, t ≥ 0,

1 − t, t < 0.
(3.30)

Then ϕ is a decreasing function.
Let X = R

2 endowed with the norm ‖(x1, x2)‖ := |x1| + |x2|, for all (x1, x2) ∈ R
2. For

every t ≥ s we consider the operator

U(t, s) : X −→ X, U(t, s)(x1, x2) =
(
ϕ(t)
ϕ(s)

x1, e
t−sx2

)
. (3.31)

Then U = {U(t, s)}t≥s is an evolution family on X.
We prove that the pair (W(R, X), V (R, X)) is admissible for U. Let v = (v1, v2) ∈

V (R, X). Then v1, v2 ∈ L1(R,R). We consider the function

f : R −→ X, f(t) =

(∫ t

−∞

ϕ(t)
ϕ(τ)

v1(τ)dτ,−
∫∞

t

e−(τ−t)v2(τ)dτ

)

. (3.32)
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We have that f is correctly defined and an easy computation shows that the pair (f, v) satisfies
(EU). We set

f1(t) =
∫ t

−∞

ϕ(t)
ϕ(s)

v1(s)dτ, f2(t) = −
∫∞

t

e−(τ−t)v2(τ)dτ, ∀t ∈ R. (3.33)

We prove that f1 ∈ C0(R,R). Since v1 ∈ L1(R,R), from

∣
∣f1(t)

∣
∣ ≤

∫ t

−∞
|v1(τ)|dτ, ∀t ∈ R, (3.34)

we have that limt→−∞f1(t) = 0. Let ε > 0. Then, there is δ > 0 such that
∫∞
δ |v1(τ)|dτ < ε. It

follows that

∣∣f1(t)
∣∣ ≤

ϕ(t)
ϕ(δ)

∫δ

−∞

ϕ(δ)
ϕ(τ)

|v1(τ)|dτ +
∫ t

δ

|v1(τ)|dτ <
δ + 1
t + 1

‖v1‖1 + ε, ∀t ≥ δ. (3.35)

The above inequality implies that limt→∞ |f1(t)| ≤ ε. Since ε > 0 was arbitrary we obtain
that there exists limt→∞f1(t) = 0. Using similar arguments with those in (3.34) we deduce
that limt→∞f2(t) = 0.

Let ε > 0. Then there is γ < 0 such that
∫γ
−∞|v2(τ)|dτ < ε. It follows that

∣∣f2(t)
∣∣ ≤ et−γ

∫∞

γ

eγ−τ |v2(τ)|dτ +
∫ γ

t

|v2(τ)|dτ < et−γ‖v2‖1 + ε, ∀t ≤ γ. (3.36)

From this inequality we have that limt→−∞ |f2(t)| ≤ ε. Since ε > 0 was arbitrary, it follows
that there exists limt→−∞f2(t) = 0. Thus, we deduce that f ∈ C0(R, X), so f ∈ W(R, X).

To prove the uniqueness of f , let f̃ ∈ W(R, X) be such that the pair (f̃ , v) satisfies (EU).
Setting g = f̃ − f we have that g ∈ W(R, X) and g(t) = U(t, s)g(s), for all t ≥ s. If g = (g1, g2),
then we deduce that

g1(t) =
ϕ(t)
ϕ(s)

g1(s), ∀t ≥ s, (3.37)

g2(t) = et−sg2(s), ∀t ≥ s. (3.38)

Let t ∈ R. Using Lemma 2.6 and integrating in (3.37)we have that

∣∣g1(t)
∣∣ =

∫s+1

s

ϕ(t)
ϕ(τ)

∣∣g1(τ)
∣∣dτ ≤

ϕ(t)
ϕ(s + 1)

∥∥g
∥∥
M1(R,X) ∀s ≤ t − 1. (3.39)

For s → −∞ in (3.39) we obtain that g1(t) = 0.
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From relation (3.38) we have that

g2(t) = e−(τ−t)g2(τ), ∀τ ≥ t. (3.40)

Integrating in relation (3.40) on [τ, τ + 1] and using Lemma 2.6, we deduce that

∣
∣g2(t)

∣
∣ =

∫ τ+1

τ

e−(ξ−t)
∣
∣g2(ξ)

∣
∣dξ ≤ e−(τ−t)

∥
∥g

∥
∥
M1(R,X), ∀τ ≥ t. (3.41)

For τ → ∞ in (3.41) it follows that g2(t) = 0. Since t ∈ R was arbitrary we have that g = 0, so
f̃ = f . Thus, the pair (W(R, X), V (R, X)) is admissible for the evolution family U.

Suppose that U is exponentially dichotomic with respect to the family of projections
{P(t)}t∈R and the constantsK, ν > 0. According to [13, Proposition 3.1]we have that Im P(t) =
{x ∈ X : supτ≥t‖U(τ, t)x‖ < ∞}, which implies that ImP(t) = R × {0}, for all t ∈ R. Then, we
obtain that

∣∣∣∣
ϕ(t)
ϕ(s)

x1

∣∣∣∣ ≤ Ke−ν(t−s)|x1|, ∀t ≥ s, ∀x1 ∈ R (3.42)

or equivalently

ϕ(t)
ϕ(s)

≤ Ke−ν(t−s), ∀t ≥ s (3.43)

which is absurd. In conclusion, the pair (W(R, X), V (R, X)) is admissible for U, but, for all
that, the evolution family U is not exponentially dichotomic.

4. Applications to the Case of C0-Semigroups

In this section, by applying the central theorems from the Section 3 we deduce several
consequences of the main results for the study of exponential dichotomy of C0-semigroups.
Let X be a real or complex Banach space.

Definition 4.1. A family T = {T(t)}t≥0 of bounded linear operators on X is said to be a C0-
semigroup if the following properties are satisfied:

(i) T(0) = Id, the identity operator on X;

(ii) T(t + s) = T(t)T(s), for all t, s ≥ 0;

(iii) limt↘0T(t)x = x, for every x ∈ X.
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Definition 4.2. A C0-semigroup T = {T(t)}t≥0 is said to be exponentially dichotomic if there exist
a projection P ∈ B(X) and two constants K ≥ 1 and ν > 0 such that

(i) PT(t) = T(t)P , for all t ≥ 0;

(ii) ‖T(t)x‖ ≤ Ke−νt‖x‖, for all x ∈ ImP and all t ≥ 0;

(iii) ‖T(t)x‖ ≥ (1/K)eνt‖x‖, for all x ∈ kerP and all t ≥ 0;

(iv) the restriction T(t)| : kerP → kerP is an isomorphism, for every t ≥ 0.

Remark 4.3. (i) If T = {T(t)}t≥0 is a C0-semigroup, we can associate to T an evolution family
UT = {UT (t, s)}t≥s, by UT (t, s) = T(t − s), for every t ≥ s.

(ii) A C0-semigroup T = {T(t)}t≥0 is exponentially dichotomic if and only if
the associated evolution family UT = {UT (t, s)}t≥s is exponentially dichotomic (see [12,
Proposition 4.4]).

Let W,V be two Banach function spaces such thatW ∈ H(R) and V ∈ T(R).

Definition 4.4. The pair (W(R, X), V (R, X)) is said to be admissible for the C0-semigroup T =
{T(t)}t≥0 if for every v ∈ V (R, X) there is a unique f ∈ W(R, X) such that

f(t) = T(t − s)f(s) +
∫ t

s

T(t − τ)v(τ)dτ, ∀t ≥ s. (ET )

Theorem 4.5. Let T = {T(t)}t≥0 be a C0-semigroup on the Banach space X and let W,V be two
Banach function spaces with W ∈ H(R) and V ∈ T(R). If W ∈ W(R) or V ∈ V(R), then the
following assertions hold:

(i) if the pair (W(R, X), V (R, X)) is admissible for T, then T is uniformly exponentially
dichotomic;

(ii) if V ⊂ W and one of the spaces V,W belongs to the class O(R), then T is exponentially
dichotomic if and only if the pair (W(R, X), V (R, X)) is admissible for T.

Proof. This follows from Theorem 3.11 and Remark 4.3(ii).

Remark 4.6. According to the example given in the previous section we deduce that the
hypothesis W ∈ W(R) or V ∈ V(R) cannot be removed. Moreover, Theorem 4.5 provides a
complete answer concerning the study of exponential dichotomy of semigroups using input-
output techniques with respect to the associated integral equation.
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