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A new and general existence and uniqueness theorem of almost automorphic solutions is obtained
for the semilinear fractional differential equation Dα

t u(t) = Au(t) + Dα−1
t f(t, u(t)) (1 < α < 2), in

complex Banach spaces, with Stepanov-like almost automorphic coefficients. Moreover, an application
to a fractional relaxation-oscillation equation is given.

1. Introduction

In this paper, we investigate the existence and uniqueness of almost automorphic solutions
to the following semilinear abstract fractional differential equation:

Dα
t u(t) = Au(t) +Dα−1

t f(t, u(t)), t ∈ R, (1.1)

where 1 < α < 2, A : D(A) ⊂ X → X is a sectorial operator of type ω in a Banach space
X, and f : R × X → X is Stepanov-like almost automorphic in t ∈ R satisfying some kind
of Lipschitz conditions in x ∈ X. In addition, the fractional derivative is understood in the
Riemann-Liouville’s sense.

Recently, fractional differential equations have attracted more and more attentions
(cf. [1–8] and references therein). On the other hand, the Stepanov-like almost automorphic
problems have been studied by many authors (cf., e.g., [9, 10] and references therein).
Stimulated by these works, in this paper, we study the almost automorphy of solutions to
the fractional differential equation (1.1) with Stepanov-like almost automorphic coefficients.
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A new and general existence and uniqueness theorem of almost automorphic solutions to the
equation is established. Moreover, an application to fractional relaxation-oscillation equation
is given to illustrate the abstract result.

Throughout this paper, we denote by N the set of positive integers, by R the set of real
numbers, and byX a complex Banach space. In addition, we assume 1 ≤ p < +∞ if there is no
special statement. Next, let us recall some definitions of almost automorphic functions and
Stepanov-like almost automorphic functions (for more details, see, e.g., [9–11]).

Definition 1.1. A continuous function f : R → X is called almost automorphic if for every
real sequence (sm), there exists a subsequence (sn) such that

g(t) := lim
n→∞

f(t + sn) (1.2)

is well defined for each t ∈ R and

lim
n→∞

g(t − sn) = f(t) (1.3)

for each t ∈ R. Denote by AA(X) the set of all such functions.

Definition 1.2. The Bochner transform fb(t, s), t ∈ R, s ∈ [0, 1], of a function f(t) on R, with
values in X, is defined by

fb(t, s) := f(t + s). (1.4)

Definition 1.3. The space BSp(X) of all Stepanov bounded functions, with the exponent p,
consists of all measurable functions f on Rwith values in X such that

∥
∥f

∥
∥
Sp := sup

t∈R

(∫ t+1

t

∥
∥f(τ)

∥
∥
p
dτ

)1/p

< +∞. (1.5)

It is obvious that Lp(R;X) ⊂ BSp(X) ⊂ L
p

loc(R;X) and BSp(X) ⊂ BSq(X) whenever
p ≥ q ≥ 1.

Definition 1.4. The space ASp(X) of Sp-almost automorphic functions (Sp-a.a. for short)
consists of all f ∈ BSp(X) such that fb ∈ AA(Lp(0, 1;X)). In other words, a function f ∈
L
p

loc(R;X) is said to be Sp-almost automorphic if its Bochner transform fb : R → Lp(0, 1;X)
is almost automorphic in the sense that for every sequence of real numbers (s′n), there exist
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a subsequence (sn) and a function g ∈ L
p

loc(R;X) such that

lim
n→∞

(∫1

0

∥
∥f(t + sn + s) − g(t + s)

∥
∥
p
ds

)1/p

= 0,

lim
n→∞

(∫1

0

∥
∥g(t − sn + s) − f(t + s)

∥
∥
p
ds

)1/p

= 0,

(1.6)

for each t ∈ R.

Remark 1.5. It is clear that if 1 ≤ p < q < ∞ and f ∈ L
q

loc(R;X) is Sq-almost automorphic,
then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is Sp-almost automorphic for
any 1 ≤ p < ∞.

Definition 1.6. A function f : R × X → X, (t, u) 	→ f(t, u) with f(·, u) ∈ L
p

loc(R, X) for each
u ∈ X is said to be Sp-almost automorphic in t ∈ R uniformly for u ∈ X, if for every sequence
of real numbers (s′n), there exists a subsequence (sn) and a function g : R × X → X with
g(·, u) ∈ L

p

loc(R, X) such that

lim
n→∞

(∫1

0

∥
∥f(t + sn + s, u) − g(t + s, u)

∥
∥
p
ds

)1/p

= 0,

lim
n→∞

(∫1

0

∥
∥g(t − sn + s, u) − f(t + s, u)

∥
∥
p
ds

)1/p

= 0,

(1.7)

for each t ∈ R and for each u ∈ X. We denote by ASp(R ×X,X) the set of all such functions.

2. Almost Automorphic Solution

First, let us recall that a closed and densely defined linear operatorA is called sectorial if there
exist 0 < θ < π/2, M > 0, and ω ∈ R such that its resolvent exists outside the sector

ω + Sθ :=
{

ω + λ : λ ∈ C,
∣
∣arg(−λ)∣∣ < θ

}

,

∥
∥
∥(λI −A)−1

∥
∥
∥ ≤ M

|λ −ω| , λ /∈ω + Sθ.
(2.1)

Recently, in [3], Cuesta proved that if A is sectorial operator for some 0 < θ < π(1 − α/2)
(1 < α < 2),M > 0, and ω < 0, then there exits C > 0 such that

‖Eα(t)‖ ≤ CM

1 + |ω|tα , t ≥ 0, (2.2)
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where

Eα(t) :=
1

2πi

∫

γ

eλtλα−1(λα −A)−1dλ, (2.3)

where γ is a suitable path lying outside the sector ω + Sθ.
In addition, by [2], we have the following definition.

Definition 2.1. A function u : R → X is called amild solution of (1.1) if s → Eα(t−s)f(s, u(s))
is integrable on (−∞, t) for each t ∈ R and

u(t) =
∫ t

−∞
Eα(t − s)f(s, u(s))ds, t ∈ R. (2.4)

Lemma 2.2. Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous family of bounded and linear operators
such that

‖S(t)‖ ≤ φ(t), t ∈ R
+, (2.5)

where φ ∈ L1(R+) is nonincreasing. Then, for each f ∈ AS1(X),

∫ t

−∞
S(t − s)f(s)ds ∈ AA(X). (2.6)

Proof. For each n ∈ N, let

fn(t) :=
∫ t−n+1

t−n
S(t − s)f(s)ds =

∫n

n−1
S(s)f(t − s)ds, t ∈ R. (2.7)

In addition, for each n ∈ N, by the principle of uniform boundedness,

Mn := sup
n−1≤s≤n

‖S(s)‖ < +∞. (2.8)

Fix n ∈ N and t ∈ R. We have

∥
∥fn(t + h) − fn(t)

∥
∥ ≤

∫n

n−1
‖S(s)‖ · ∥∥f(t + h − s) − f(t − s)

∥
∥ds

≤ Mn ·
∫ t−n+1

t−n

∥
∥f(s + h) − f(s)

∥
∥ds.

(2.9)

In view of f ∈ L1
loc(R;X), we get

lim
h→ 0

∫ t−n+1

t−n

∥
∥f(s + h) − f(s)

∥
∥ds = 0, (2.10)
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which yields that

lim
h→ 0

∥
∥fn(t + h) − fn(t)

∥
∥ = 0. (2.11)

This means that fn(t) is continuous.
Fix n ∈ N. By the definition of AS1(X), for every sequence of real numbers (s′m), there

exist a subsequence (sm) and a function g ∈ L1
loc(R;X) such that

lim
m→∞

∫1

0

∥
∥f(t + sm + s) − g(t + s)

∥
∥ds = lim

m→∞

∫1

0

∥
∥g(t − sm + s) − f(t + s)

∥
∥ds = 0, (2.12)

for each t ∈ R. Combining this with

∥
∥
∥
∥
fn(t + sm) −

∫n

n−1
S(s)g(t − s)ds

∥
∥
∥
∥
≤ Mn ·

∫n

n−1

∥
∥f(t + sm − s) − g(t − s)

∥
∥ds

= Mn ·
∫1

0

∥
∥f(t − n + sm + s) − g(t − n + s)

∥
∥ds,

(2.13)

we get

lim
m→∞

fn(t + sm) =
∫n

n−1
S(s)g(t − s)ds (2.14)

for each t ∈ R. Similar to the above proof, one can show that

lim
m→∞

∫n

n−1
S(s)g(t − sm − s)ds = fn(t) (2.15)

for each t ∈ R. Therefore, fn ∈ AA(X) for each n ∈ N.
Noticing that

∥
∥fn(t)

∥
∥ ≤

∫n

n−1
φ(s) · ∥∥f(t − s)

∥
∥ds ≤ φ(n − 1) · ∥∥f∥∥S1 ,

∞∑

n=1

φ(n − 1) · ∥∥f∥∥S1 ≤
(

φ(0) +
∞∑

n=2

∫n−1

n−2
φ(t)dt

)

· ∥∥f∥∥S1

≤
(

φ(0) +
∥
∥φ

∥
∥
L1(R+)

)

· ∥∥f∥∥S1 < +∞,

(2.16)

we know that
∑∞

n=1 fn(t) is uniformly convergent on R. Thus

∫ t

−∞
S(t − s)f(s)ds =

∞∑

n=1

fn(t) ∈ AA(X). (2.17)
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Remark 2.3. For the case of f ∈ AA(X), the conclusion of Lemma 2.2 was given in [1, Lemma
3.1].

The following theoremwill play a key role in the proof of our existence and uniqueness
theorem.

Theorem 2.4 (see [11]). Assume that

(i) f ∈ ASp(R ×X,X) with p > 1;

(ii) there exists a nonnegative function L ∈ ASr(R) with r ≥ max{p, p/(p − 1)} such that for
all u, v ∈ X and t ∈ R,

∥
∥f(t, u) − f(t, v)

∥
∥ ≤ L(t)‖u − v‖; (2.18)

(iii) x ∈ ASp(X) and K = {x(t) : t ∈ R} is compact in X.

Then there exists q ∈ [1, p) such that f(·, x(·)) ∈ ASq(X).

Now, we are ready to present the existence and uniqueness theorem of almost
automorphic solutions to (1.1).

Theorem 2.5. Assume that A is sectorial operator for some 0 < θ < π(1 − α/2), M > 0 and ω < 0;
and the assumptions (i) and (ii) of Theorem 2.4 hold. Then (1.1) has a unique almost automorphic mild
solution provided that

‖L‖S1 <
α sin(π/α)

CM
(

α sin(π/α) + |ω|−1/απ
) . (2.19)

Proof. For each ϕ ∈ AA(X), let

F
(

ϕ
)

(t) :=
∫ t

−∞
Eα(t − s)f

(

s, ϕ(s)
)

ds, t ∈ R. (2.20)

In view of {ϕ(t) : t ∈ R} which is compact in X, by Theorem 2.4, there exists q ∈ [1, p) such
that f(·, ϕ(·)) ∈ ASq(X). On the other hand, by (2.2), we have

‖Eα(t)‖ ≤ CM

1 + |ω|tα , t ≥ 0. (2.21)

Since 1 < α < 2, CM/(1 + |ω|tα) ∈ L1(R+) and is nonincreasing. So Lemma 2.2 yields that
F(ϕ) ∈ AA(X). This means that Fmaps AA(X) into AA(X).
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For each ϕ, ψ ∈ AA(X) and t ∈ R, we have

∥
∥F

(

ϕ
)

(t) − F
(

ψ
)

(t)
∥
∥ ≤

∫ t

−∞
‖Eα(t − s)‖ · ∥∥f(s, ϕ(s)) − f

(

s, ψ(s)
)∥
∥ds

≤
∫ t

−∞

CM

1 + |ω|(t − s)α
L(s)ds · ∥∥ϕ − ψ

∥
∥

≤
∫+∞

0

CM

1 + |ω|sα L(t − s)ds · ∥∥ϕ − ψ
∥
∥

=
∞∑

k=0

∫k+1

k

CM

1 + |ω|sα L(t − s)ds · ∥∥ϕ − ψ
∥
∥

≤
∞∑

k=0

CM

1 + |ω|kα

∫k+1

k

L(t − s)ds · ∥∥ϕ − ψ
∥
∥

≤
∞∑

k=0

CM

1 + |ω|kα
· ‖L‖S1 ·

∥
∥ϕ − ψ

∥
∥

≤
(

CM +
∞∑

k=1

∫k

k−1

CM

1 + |ω|sα ds
)

· ‖L‖S1 ·
∥
∥ϕ − ψ

∥
∥

=
(

CM +
∫+∞

0

CM

1 + |ω|sα ds
)

· ‖L‖S1 ·
∥
∥ϕ − ψ

∥
∥

= CM

(

1 +
|ω|−1/απ

α sin(π/α)

)

· ‖L‖S1 ·
∥
∥ϕ − ψ

∥
∥,

(2.22)

which gives

∥
∥F

(

ϕ
) − F

(

ψ
)∥
∥ ≤ CM

(

1 +
|ω|−1/απ

α sin(π/α)

)

· ‖L‖S1 ·
∥
∥ϕ − ψ

∥
∥. (2.23)

In view of (2.19), F is a contraction mapping. On the other hand, it is well known thatAA(X)
is a Banach space under the supremum norm. Thus, F has a unique fixed point u ∈ AA(X),
which satisfies

u(t) =
∫ t

−∞
Eα(t − s)f(s, u(s))ds, (2.24)

for all t ∈ R. Thus (1.1) has a unique almost automorphic mild solution.

In the case of L(t) ≡ L, by following the proof of Theorem 2.5 and using the standard
contraction principle, one can get the following conclusion.
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Theorem 2.6. Assume that A is sectorial operator for some 0 < θ < π(1 − α/2), M > 0 and ω < 0;
and the assumptions (i) and (ii) of Theorem 2.4 hold with L(t) ≡ L, then (1.1) has a unique almost
automorphic mild solution provided that

L <
α sin(π/α)

CM|ω|−1/απ
. (2.25)

Remark 2.7. Theorem 2.6 is due to [2, Theroem 3.4] in the case of f(t, u) being almost
automorphic in t. Thus, Theorem 2.6 is a generalization of [2, Theroem 3.4].

At last, we give an application to illustrate the abstract result.

Example 2.8. Let us consider the following fractional relaxation-oscillation equation given by

∂αt u(t, x) = ∂2xu(t, x) − μu(t, x) + ∂α−1t [a(t) sin(u(t, x))], t ∈ R, x ∈ [0, π], (2.26)

with boundary conditions

u(t, 0) = u(t, π) = 0, t ∈ R, (2.27)

where 1 < α < 2, μ > 0, and

a(t) =

⎧

⎨

⎩

sin
1

2 + cosn + cosπn
, t ∈ (n − ε, n + ε), n ∈ Z,

0, otherwise,
(2.28)

for some ε ∈ (0, 1/2).
Let X = L2[0, π], Au = u

′′ − μu with

D(A) =
{

u ∈ L2[0, π] : u
′′ ∈ L2[0, π], u(0) = u(π) = 0

}

, (2.29)

and f(t, ϕ)(s) = a(t) sin(ϕ(s)) for ϕ ∈ X and s ∈ [0, π]. Then (2.26) is transformed into (1.1).
It is well known that A is a sectorial operator for some 0 < θ < π/2, M > 0 and ω < 0. By
[10, Example 2.3], a(t) ∈ AS2(R). Then f ∈ AS2(R × X,X). In addition, for each t ∈ R and
u, v ∈ X,

∥
∥f(t, u) − f(t, v)

∥
∥ =

(∫π

0
|a(t) sin(u(s)) − a(t) sin(v(s))|2ds

)1/2

≤ |a(t)| · ‖u − v‖. (2.30)

Since

‖|a(·)|‖S1 = sup
t∈R

∫ t+1

t

|a(s)|ds ≤ 2ε, (2.31)
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by Theorem 2.5, there exists a unique almost automorphic mild solution to (2.26) provided
that 1 < α < 2(1 − θ/π) and ε is sufficiently small.

Remark 2.9. In the above example, for any ε > 0, f(t, u) is Lipschitz continuous about
u uniformly in t with Lipschitz constant L ≡ 1, this means that f(t, u) has a better
Lipschitz continuity than (2.30). However, one cannot ensure the unique existence of almost
automorphic mild solution to (2.26) when

α sin(π/α)

CM|ω|−1/απ
≤ 1, (2.32)

by using Theorem 2.6. On the other hand, it is interesting to note that one can use Theorem 2.5
to obtain the existence in many cases under this restriction.
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