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We systematically explore the periodicity of Liénard type p-Laplacian equations on time scales.
Sufficient criteria are established for the existence of periodic solutions for such equations, which
generalize many known results for differential equations when the time scale is chosen as the set
of the real numbers. The main method is based on the Mawhin’s continuation theorem.

1. Introduction

In the past decades, periodic problems involving the scalar p-Laplacianwere studied bymany
authors, especially for the second-order and three-order p-Laplacian differential equation,
see [1–8] and the references therein. Of the aforementioned works, Lu in [1] investigated the
existence of periodic solutions for a p-Laplacian Liénard differential equationwith a deviating
argument

(
ϕp

(
y′(t)

))′ + f
(
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)
y′(t) + h

(
y(t)

)
+ g

(
y(t − τ(t))

)
= e(t), (1.1)

by Mawhin’s continuation theorem of coincidence degree theory [3]. The author obtained a
new result for the existence of periodic solutions and investigated the relation between the
existence of periodic solutions and the deviating argument τ(t). Cheung and Ren [4] studied
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the existence of T -periodic solutions for a p-Laplacian Liénard equation with a deviating
argument

(
ϕp

(
x′(t)

))′ + f(x(t))x′(t) + g(x(t − τ(t))) = e(t), (1.2)

by Mawhin’s continuation theorem. Two results for the existence of periodic solutions were
obtained. Such equations are derived from many fields, such as fluid mechanics and elastic
mechanics.

The theory of time scales has recently received a lot of attention since it has a
tremendous potential for applications. For example, it can be used to describe the behavior
of populations with hibernation periods. The theory of time scales was initiated by Hilger
[9] in his Ph.D. thesis in 1990 in order to unify continuous and discrete analysis. By choosing
the time scale to be the set of real numbers, the result on dynamic equations yields a result
concerning a corresponding ordinary differential equation, while choosing the time scale as
the set of integers, the same result leads to a result for a corresponding difference equation.
Later, Bohner and Peterson systematically explore the theory of time scales and obtain many
perfect results in [10] and [11]. Many examples are considered by the authors in these books.

But the research of periodic solutions on time scales has not got much attention, see
[12–16]. The methods usually used to explore the existence of periodic solutions on time
scales are many fixed point theory, upper and lower solutions, Masseras theorem, and so on.
For example, Kaufmann and Raffoul in [12] use a fixed point theorem due to Krasnosel’ski
to show that the nonlinear neutral dynamic system with delay

xΔ(t) = −a(t)xσ(t) + c(t)xΔ(t − k) + q(t, x(t), x(t − k)), t ∈ T, (1.3)

has a periodic solution. Using the contraction mapping principle the authors show that the
periodic solution is unique under a slightly more stringent inequality.

The Mawhin’s continuation theorem has been extensively applied to explore the
existence problem in ordinary differential (difference) equations but rarely applied to
dynamic equations on general time scales. In [13], Bohner et al. introduce the Mawhin’s
continuation theorem to explore the existence of periodic solutions in predator-prey and
competition dynamic systems, where the authors established some suitable sufficient criteria
by defining some operators on time scales.

In [14], Li and Zhang have studied the periodic solutions for a periodic mutualism
model

xΔ(t) = r1(t)

[
k1(t) + α1(t) exp

{
y
(
t − τ2

(
t, y(t)

))}

1 + exp
{
y
(
t − τ2

(
t, y(t)

))} − exp{x(t − σ1(t, x(t)))}
]

,

yΔ(t) = r2(t)

[
k2(t) + α2(t) exp

{
x
(
t − τ1

(
t, y(t)

))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}
] (1.4)

on a time scale T by employing Mawhin’s continuation theorem, and have obtained three
sufficient criteria.
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Combining Brouwer’s fixed point theorem with Horn’s fixed point theorem, two
classes of one-order linear dynamic equations on time scales

xΔ(t) = a(t)x(t) + h(t),

xΔ(t) = f(t, x), with the initial condition x(t0) = x0,
(1.5)

are considered in [15] by Liu and Li. The authors presented some interesting properties of
the exponential function on time scales and obtain a sufficient and necessary condition that
guarantees the existence of the periodic solutions of the equation xΔ(t) = a(t)x(t) + h(t).

In [16], Bohner et al. consider the system

xΔ(t) = G

(

t, exp
{
x
(
g1(t)

)}
, exp

{
x
(
g2(t)

)}
, . . . , exp

{
x
(
gn(t)

)}
,

∫ t

−∞
c(t, s) exp{x(s)}Δs

)

,

(1.6)

easily verifiable sufficient criteria are established for the existence of periodic solutions of this
class of nonautonomous scalar dynamic equations on time scales, the approach that authors
used in this paper is based on Mawhin’s continuation theorem.

In this paper, we consider the existence of periodic solutions for p-Laplacian equations
on a time scales T

(
ϕp

(
xΔ(t)

))Δ
+ f(x(t))xΔ(t) + g(x(t)) = e(t), t ∈ T, (1.7)

where p > 2 is a constant, ϕp(s) = |s|p−2s, f, g ∈ C(R,R), e ∈ C(T, R), and e is a function with
periodic ω > 0. T is a periodic time scale which has the subspace topology inherited from
the standard topology on R. Sufficient criteria are established for the existence of periodic
solutions for such equations, which generalize many known results for differential equations
when the time scales are chosen as the set of the real numbers. The main method is based on
the Mawhin’s continuation theorem.

If T = R, (1.7) reduces to the differential equation

(
ϕp

(
x′(t)

))′ + f(x(t))x′(t) + g(x(t)) = e(t). (1.8)

We will use Mawhin’s continuation theorem to study (1.7).

2. Preliminaries

In this section, we briefly give some basic definitions and lemmas on time scales which are
used in what follows. Let T be a time scale (a nonempty closed subset of R). The forward
and backward jump operators σ, ρ : T → T and the graininess μ : T → R+ are defined,
respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)
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We say that a point t ∈ T is left-dense if t > inf T and ρ(t) = t. If t < supT and
σ(t) = t, then t is called right-dense. A point t ∈ T is called left-scattered if ρ(t) < t, while
right-scattered if σ(t) > t. If T has a left-scattered maximum m, then we set Tk = T \ {m},
otherwise set Tk = T. If T has a right-scattered minimumm, then set Tk = T \ {m}, otherwise
set Tk = T.

A function f : T → R is right-dense continuous (rd-continuous) provided that it is
continuous at right-dense point in T and its left side limits exist at left-dense points in T.
If f is continuous at each right-dense point and each left-dense point, then f is said to be
continuous function on T.

Definition 2.1 (see [10]). Assume f : T → R is a function and let t ∈ T
k.We define fΔ(t) to be

the number (if it exists) with the property that for a given ε > 0, there exists a neighborhood
U of t such that

∣∣∣
[
f(σ(t)) − f(s)

] − fΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s|, for all s ∈ U. (2.2)

We call fΔ(t) the delta derivative of f at t.

If f is continuous, then f is right-dense continuous, and if f is delta differentiable at t,
then f is continuous at t.

Let f be right-dense continuous. If FΔ(t) = f(t), for all t ∈ T, then we define the delta
integral by

∫ t

a

f(s)Δs = F(t) − F(a), for t, a ∈ T. (2.3)

Definition 2.2 (see [12]). We say that a time scale T is periodic if there is p > 0 such that if
t ∈ T, then t ± p ∈ T. For T/=R, the smallest positive p is called the period of the time scale.

Definition 2.3 (see [12]). Let T/=R be a periodic time scale with period p. We say that the
function f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t +ω) = f(t) for all t ∈ T, and ω is the smallest number such that f(t +ω) = f(t). If
T = R, we say that f is periodic with period ω > 0 if ω is the smallest positive number such
that f(t +ω) = f(t) for all t ∈ T.

Lemma 2.4 (see [10]). If a, b ∈ T, α, β ∈ R, and f, g ∈ C(T, R), then

(A1)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
af(t)Δt + β

∫b
ag(t)Δt;

(A2) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
af(t)Δt ≥ 0;

(A3) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then |∫baf(t)Δt| ≤ ∫b
ag(t)Δt.
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Lemma 2.5 (Hölder’s inequality [11]). Let a, b ∈ T. For rd-continuous functions f, g : [a, b] →
R, one has

∫b

a

∣
∣f(t)g(t)

∣
∣Δt ≤

(∫b

a

∣
∣f(t)

∣
∣pΔt

)1/p(∫b

a

∣
∣g(t)

∣
∣qΔt

)1/q

, (2.4)

where p > 1 and q = p/(p − 1).

For convenience, we denote

κ = min{[0,∞) ∩ T}, Iω = [κ, κ +ω] ∩ T, g =
1
ω

∫

Iω

g(s)Δs =
1
ω

∫κ+ω

κ

g(s)Δs, (2.5)

where g ∈ C(T, R) is an ω-periodic real function, that is, g(t +ω) = g(t) for all t ∈ T.
Next, let us recall the continuation theorem in coincidence degree theory. To do so, we

introduce the following notations.
Let X,Y be real Banach spaces, L : Dom L ⊂ X → Y a linear mapping, N : X → Y

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dimKerL = codimImL < +∞ and ImL is closed in Y. If L is a Fredholmmapping of index zero
and there exist continuous projections P : X → X, Q : Y → Y such that ImP = KerL, ImL =
KerQ = Im(I −Q), then it follows that L|DomL∩KerP : (I −P)X → ImL is invertible. We denote
the inverse of that map by KP. If Ω is an open bounded subset of X, the mapping N will be
called L-compact on Ω if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact. Since
ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

Lemma 2.6 (continuation theorem). Suppose that X and Y are two Banach spaces, and L :
DomL ⊂ X → Y is a Fredholm operator of index 0. Furthermore, let Ω ⊂ X be an open bounded set
and N : Ω → Y L-compact on Ω. If

(B1) Lx/=λNx, for all x ∈ ∂Ω ∩DomL, λ ∈ (0, 1),

(B2) Nx/∈ ImL, for all x ∈ ∂Ω ∩ KerL,

(B3) deg{JQN,Ω ∩ KerL, 0}/= 0, where J : ImQ → KerL is an isomorphism,

then the equation Lx = Nx has at least one solution in Ω ∩DomL.

Lemma 2.7 (see [13]). Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is ω-periodic, then

g(t) ≤ g(t1) +
∫κ+ω

κ

∣∣∣gΔ(s)
∣∣∣Δs, g(t) ≥ g(t2) −

∫κ+ω

κ

∣∣∣gΔ(s)
∣∣∣Δs. (2.6)

In order to use Mawhin’s continuation theorem to study the existence of ω-periodic
solutions for (1.7), we consider the following system:

xΔ
1 (t) = ϕq(x2(t)) = |x2(t)|q−2x2(t),

xΔ
2 (t) = −f(x1(t))ϕq(x2(t)) − g(x1(t)) + e(t),

(2.7)
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where 1 < q < 2 is a constant with 1/p + 1/q = 1. Clearly, if x(t) = (x1(t), x2(t))

 is an ω-

periodic solution to (2.7), then x1(t) must be an ω-periodic solution to (1.7). Thus, in order
to prove that (1.7) has an ω-periodic solution, it suffices to show that (2.7) has an ω-periodic
solution.

Now, we set Ψω = {(u, v) ∈ C(T, R2) : u(t + ω) = u(t), v(t + ω) = v(t), for all t ∈ T}
with the norm ‖(u, v)‖ = maxt∈Iω |u(t)| +maxt∈Iω |v(t)|, for (u, v) ∈ Ψω. It is easy to show that
Ψω is a Banach space when it is endowed with the above norm ‖ · ‖.

Let

Ψω
0 = {(u, v) ∈ Ψω : u = 0, v = 0},

Ψω
c =

{
(u, v) ∈ Ψω : (u(t), v(t)) ≡ (h1, h2) ∈ R2, for t ∈ T

}
.

(2.8)

Then it is easy to show that Ψω
0 and Ψω

c are both closed linear subspaces of Ψω. We
claim thatΨω = Ψω

0 ⊕Ψω
c , and dimΨω

c = 2. Since for any (u, v) ∈ Ψω
0 ∩Ψω

c ,we have (u(t), v(t)) =
(h1, h2) ∈ R2, and

u =
1
ω

∫κ+ω

κ

u(s)Δs = h1 = 0, v =
1
ω

∫κ+ω

κ

v(s)Δs = h2 = 0, (2.9)

so we obtain (u, v) = (h1, h2) = (0, 0).
Take X = Y = Ψω. Define

L : DomL =
{
x = (x1, x2)
 ∈ C1

(
T, R2

)
: x(t +ω) = x(t), xΔ(t +ω) = xΔ(t)

}
⊂ X → Y,

(2.10)

by

Lx(t) = xΔ(t) =

(
xΔ
1 (t)

xΔ
2 (t)

)

, (2.11)

and N : X → Y, by

Nx(t) =

(
ϕq(x2(t))

−f(x1(t))ϕq(x2(t)) − g(x1(t)) + e(t)

)

. (2.12)

Define the operator P : X → X and Q : Y → Y by

Px = P

(
x1

x2

)

=

(
x1

x2

)

, Qy = Q

(
y1

y2

)

=

(
y1

y2

)

, x ∈ X, y ∈ Y. (2.13)

It is easy to see that (2.7) can be converted to the abstract equation Lx = Nx.
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Then KerL = Ψω
c , ImL = Ψω

0 , and dimKerL = 2 = codim ImL. Since Ψω
0 is closed

in Ψω, it follows that L is a Fredholm mapping of index zero. It is not difficult to show that
P and Q are continuous projections such that ImP = KerL and ImL = KerQ = Im(I − Q).
Furthermore, the generalized inverse (to LP )KP : ImL → KerP ∩DomL exists and is given
by

KP

(
x1

x2

)

=

⎛

⎝
X1 −X1

X2 −X2

⎞

⎠, where Xi(t) =
∫ t

κ

xi(s)Δs, i = 1, 2. (2.14)

Since for every x ∈ KerP ∩DomL,we have

KPLx(t) = KP

(
xΔ
1 (t)

xΔ
2 (t)

)

=

⎛

⎜⎜⎜⎜⎜
⎝

∫ t

κ

xΔ
1 (s)Δs − 1

ω

∫κ+ω

κ

∫ t

κ

xΔ
1 (s)ΔsΔt

∫ t

κ

xΔ
2 (s)Δs − 1

ω

∫κ+ω

κ

∫ t

κ

xΔ
2 (s)ΔsΔt

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

x1(t) − x1(κ) − 1
ω

∫κ+ω

κ

(x1(t) − x1(κ))Δt

x2(t) − x2(κ) − 1
ω

∫κ+ω

κ

(x2(t) − x2(κ))Δt

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

x1(t) − 1
ω

∫κ+ω

κ

x1(t)Δt

x2(t) − 1
ω

∫κ+ω

κ

x2(t)Δt

⎞

⎟⎟⎟⎟⎟
⎠

,

(2.15)

from the definition of P and the condition that x ∈ KerP ∩ DomL, then (1/ω)
∫κ+ω
κ x1(t)Δt =

(1/ω)
∫κ+ω
κ x2(t)Δt = 0. Thus, we get KPLx(t) = x(t). Similarly, we can prove that LKPx(t) =

x(t), for every x(t) ∈ ImL. So the operator KP is well defined. Thus,

QN

(
x1

x2

)

=

⎛

⎜⎜
⎝

1
ω

∫κ+ω

κ

ϕq(x2(s))Δs

1
ω

∫κ+ω

κ

[−f(x1(s))ϕq(x2(s)) − g(x1(s)) + e(s)
]
Δs

⎞

⎟⎟
⎠. (2.16)
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Denote Nx1 = N1, Nx2 = N2. We have

KP (I −Q)N

(
x1

x2

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∫ t

κ

[
N1(s) − 1

ω

∫κ+ω

κ

N1(r)Δr

]
Δs − 1

ω

∫κ+ω

κ

∫ t

κ

[
N1(s) − 1

ω

∫κ+ω

κ

N1(r)Δr

]
ΔsΔt

∫ t

κ

[
N2(s) − 1

ω

∫κ+ω

κ

N2(r)Δr

]
Δs − 1

ω

∫κ+ω

κ

∫ t

κ

[
N2(s) − 1

ω

∫κ+ω

κ

N2(r)Δr

]
ΔsΔt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(2.17)

Clearly, QN and KP (I − Q)N are continuous. Since X is a Banach space, it is easy to

show that KP (I −Q)N(Ω) is a compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω)
is bounded. Thus, N is L-compact on Ω.

3. Main Results

In this section, we present our main results.

Theorem 3.1. Suppose that there exist positive constants d1 and d2 such that the following conditions
hold:

(i) u(σ(t))uΔ(t)f(u(t)) < 0, |u(σ(t))| > d1, t ∈ T,

(ii) u(σ(t))(g(u(t)) − e(t)) < 0, |u(σ(t))| > d2, t ∈ T,

then (1.7) has at least one ω-periodic solution.

Proof. Consider the equation Lx = λNx, λ ∈ (0, 1),where L andN are defined by the second
section. Let Ω1 = {x ∈ X : Lx = λNx, λ ∈ (0, 1)}.

If x =
(

x1(t)

x2(t)

)
∈ Ω1, then we have

xΔ
1 (t) = λϕq(x2(t)),

xΔ
2 (t) = −f(x1(t))xΔ

1 (t) − λg(x1(t)) + λe(t).
(3.1)

From the first equation of (3.1), we obtain x2(t) = ϕp((1/λ)xΔ
1 (t)), and then by

substituting it into the second equation of (3.1), we get

[
ϕp

(
1
λ
xΔ
1 (t)

)]Δ
= −f(x1(t))xΔ

1 (t) − λg(x1(t)) + λe(t). (3.2)
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Integrating both sides of (3.2) from κ to κ +ω, noting that x1(κ) = x1(κ +ω), xΔ
1 (κ) =

xΔ
1 (κ +ω), and applying Lemma 2.4, we have

∫κ+ω

κ

f(x1(t))xΔ
1 (t)Δt = −

∫κ+ω

κ

[
g(x1(t)) − e(t)

]
Δt, (3.3)

that is,

∫κ+ω

κ

[
f(x1(t))xΔ

1 (t) + g(x1(t)) − e(t)
]
Δt = 0. (3.4)

There must exist ξ ∈ Iω such that

f(x1(ξ))xΔ
1 (ξ) + g(x1(ξ)) − e(ξ) ≥ 0. (3.5)

From conditions (i) and (ii), when x(σ(ξ)) > max{d1, d2}, we have f(x1(ξ))xΔ
1 (ξ) < 0, and

g(x1(ξ))−e(ξ) < 0,which contradicts to (3.5). Consequently x(σ(ξ)) ≤ max{d1, d2}. Similarly,
there must exist η ∈ Iω such that

f
(
x1
(
η
))
xΔ
1

(
η
)
+ g

(
x1
(
η
)) − e

(
η
) ≤ 0. (3.6)

Then we have x(σ(η)) ≥ −max{d1, d2}. Applying Lemma 2.7, we get

−max{d1, d2} −
∫κ+ω

κ

∣∣∣xΔ
1 (s)

∣∣∣Δs ≤ x1(t) ≤ max{d1, d2} +
∫κ+ω

κ

∣∣∣xΔ
1 (s)

∣∣∣Δs. (3.7)

Let d = max{d1, d2}. Then (3.7) equals to the following inequality:

|x1(t)| ≤ d +
∫κ+ω

κ

∣∣∣xΔ
1 (s)

∣∣∣Δs. (3.8)

Let E1 = {t ∈ Iω : |x1(t)| ≤ d}, E2 = {t ∈ Iω : |x1(t)| > d}.
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Consider the second equation of (3.1) and (3.8), then we have

∫κ+ω

κ

xΔ
1 (t)x2(t)Δt = −

∫κ+ω

κ

x1(σ(t))xΔ
2 (t)Δt

=
∫κ+ω

κ

f(x1(t))xΔ
1 (t)x1(σ(t))Δt + λ

∫κ+ω

κ

x1(σ(t))
[
g(x1(t)) − e(t)

]
Δt

≤
∫κ+ω

κ

∣
∣f(x1(t))

∣
∣
∣∣
∣xΔ

1 (t)
∣∣
∣|x1(σ(t))|Δt + λ

∫

E1

x1(σ(t))
[
g(x1(t)) − e(t)

]
Δt

+ λ

∫

E2

x1(σ(t))
[
g(x1(t)) − e(t)

]
Δt

≤ sup
t∈Iω

∣∣f(x1(t))
∣∣
(
d +

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

)∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

+ λ

∫

E1

x1(σ(t))
[
g(x1(t)) − e(t)

]
Δt

≤ sup
t∈Iω

∣∣f(x1(t))
∣∣
(∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

)2

+ d sup
t∈Iω

∣∣f(x1(t))
∣∣
∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

+ λ

∫

E1

x1(σ(t))
[
g(x1(t)) − e(t)

]
Δt.

.

(3.9)

Applying Lemma 2.5, we obtain that

1
λp−1

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣
∣
p
Δt ≤ ω sup

t∈Iω

∣∣f(x1(t))
∣
∣
∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣
∣
2
Δt + d sup

t∈Iω

∣∣f(x1(t))
∣
∣
∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣
∣Δt

+ λ

(
d +

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

)∫κ+ω

κ

∣∣g(x1(t)) − e(t)
∣∣Δt

≤ Q1

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣
2
Δt +Q2

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt

+ λdω sup
t∈Iω

∣∣g(x1(t)) − e(t)
∣∣

≤ Q1

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣
2
Δt +Q2

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣Δt +Q3,

.

(3.10)
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where

Q1 = ω sup
t∈Iω

∣
∣f(x1(t))

∣
∣, Q2 = dsup

t∈Iω

∣
∣f(x1(t))

∣
∣ + λω sup

t∈Iω

∣
∣g(x1(t)) − e(t)

∣
∣,

Q3 = λdω sup
t∈Iω

∣
∣g(x1(t)) − e(t)

∣
∣.

(3.11)

That is,

1
λp−1

∫κ+ω

κ

∣
∣
∣xΔ

1 (t)
∣
∣
∣
p
Δt ≤ Q1

∫κ+ω

κ

∣
∣
∣xΔ

1 (t)
∣
∣
∣
2
Δt +Q2

∫κ+ω

κ

∣
∣
∣xΔ

1 (t)
∣
∣
∣Δt +Q3. (3.12)

Thus,

∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣
p
Δt ≤ λp−1Q1ω

(p−2)/p
(∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣
p
Δt

)2/p

+ λp−1Q2ω
(p−1)/p

(∫κ+ω

κ

∣∣∣xΔ
1 (t)

∣∣∣
p
Δt

)1/p

+ λp−1Q3.

(3.13)

Since p > 2, then we obtain that there exists a positive constant M1 such that

∣∣∣xΔ
1 (t)

∣∣∣ ≤ M1. (3.14)

Therefore,

|x1(t)| ≤ d +M1ω := M2, |x2(t)| ≤ M2
p−1

λp−1
:= M3. (3.15)

Let Ω2 = {x : x ∈ KerL, QNx = 0}. If x ∈ Ω2, then x ∈ R2 is a constant vector with

|x2(t)|q−2x2(t) = 0,

1
ω

∫κ+ω

κ

[
f(x1(t))xΔ

1 (t) + g(x1(t)) − e(t)
]
Δt = 0.

(3.16)

From the second equation of (3.16) we get

∫κ+ω

κ

f(x1(t))xΔ
1 (t)Δt = −

∫κ+ω

κ

[
g(x1(t)) − e(t)

]
Δt, (3.17)

that is,

∫κ+ω

κ

[
f(x1(t))xΔ

1 (t) + g(x1(t)) − e(t)
]
Δt = 0. (3.18)
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By assumptions (i) and (ii), we see that |x1(t)| ≤ M2 and x2(t) = 0, which implies
Ω2 ⊂ Ω1.

Now, we set Ω = {x : x = (x1, x2)

, |x1| < M2 + 1, |x2| < M3 + 1}. Then Ω1 ⊂ Ω. Thus

from (3.8) and (3.14), we see that conditions (B1) and (B2) of Lemma 2.6 are satisfied. The
remainder is verifying condition (B3) of Lemma 2.6. In order to do it, let

J : ImQ → KerL, J(x1, x2) = (x1, x2). (3.19)

Set

Δ0 =
{
x = (x1, x2)
 ∈ R2 : |x1| < M2 + 1, x2 = 0

}
. (3.20)

It is easy to see that the equation QN(x1, x2)

(t) = (0, 0)
, that is,

ϕq(x2(t)) = 0,

1
ω

∫κ+ω

κ

[
f(x1(t))ϕq(x2(t)) + g(x1(t)) − e(t)

]
Δt = 0,

(3.21)

has no solution in (Ω ∩ KerL) \Δ0. So deg{JQN, Ω ∩ Ker, 0} = deg{JQN,Δ0, 0}.
Let

QN0x(t) =

⎛

⎜
⎝

0

1
ω

∫κ+ω

κ

[
g(x1(t)) − e(t)

]
Δt

⎞

⎟
⎠. (3.22)

If x ∈ ∂Δ0, then we get

‖JQN0x − JQNx‖ = max
x2=0, |x1|=M2+1

∣∣ϕq(x2)
∣∣ +

1
ω

max
x2=0, |x1|=M2+1

∣∣∣∣

∫κ+ω

κ

f(x1(t))ϕq(x2)Δt

∣∣∣∣ = 0,

(3.23)

so we have

deg{JQN,Δ0, 0} = deg{JQN0,Δ0, 0}/= 0. (3.24)

Then we see that

deg{JQN,Ω ∩ KerL, 0} = deg{JQN0,Δ0, 0}/= 0, (3.25)

so the condition (B3) of Lemma 2.6 is satisfied, the proof is complete.

When
∫κ+ω
κ e(t)Δt = 0, g(x(t)) = β(t)x(t),where β(t) = β(t + T), t ∈ [0, T],we have the

following result.
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Corollary 3.2. Suppose that the following conditions hold:

(i) β(t) > 0, for all t ∈ Iω;

(ii) u(t)uΔ(t)f(u(t)) > 0, |u| > d,

then (1.7) has at least one ω-periodic solution.
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