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This paper is concerned with a class of nonlinear delay partial difference equations with positive
and negative coefficients, which also contains forcing terms. Bymaking use of frequencymeasures,
some new oscillatory criteria are established.

1. Introduction

Partial difference equations are difference equations that involve functions with two or more
independent integer variables. Such equations arise from considerations of random walk
problems, molecular structure problems, and numerical difference approximation problems.
Recently, there have been a large number of papers devoted to partial difference equations,
and the problem of oscillatory of solutions and frequent oscillatory solutions for partial
difference equations is receiving much attention.

In [1], authors considered oscillatory behavior of the partial difference equations with
positive and negative coefficients of the form

Am+1,n +Am,n+1 −Am,n + p(m,n)Am−k,n−l − q(m,n)Am−k′,n−l′ = 0, (1.1)

but they have not discussed frequent oscillations of this equation.
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In [2], authors considered oscillatory behavior for nonlinear partial difference
equations with positive and negative coefficients of the form

ωf(m,n,Am−σ,n−τ , Am−u,n−v) +Am−1,n +Am,n−1 −Am,n + pAm+k,n+l − qAm+k′,n+l′ = 0,

ωm,nf(m,n,Am−σ,n−τ , Am−u,n−v) +Am−1,n +Am,n−1 −Am,n + pmnAm+k,n+l − qmnAm+k′,n+l′ = 0
(1.2)

In [3], authors considered frequent oscillation in the nonlinear partial difference
equation

um,n = um+1,n + um,n+1 + pm,n|um−k1,n−l1 |α sgnum−k1,n−l1

+ qm,n|um−k2,n−l2 |β sgnum−k2,n−l2 = 0.
(1.3)

In [4], authors considered oscillations of the partial difference equations with several
nonlinear terms of the form,

um+1,n + um,n+1 − um,n +
h∑

i=1

pi(m,n)|um−ki,n−li |αi sgnum−ki,n−li = 0, (1.4)

and in [5] authors considered frequent oscillations of these equations.
In [6], authors considered unsaturated solutions for partial difference equations with

forcing terms

Δ1u
(
i − 1, j

)
+ Δ2u

(
i, j − 1

)
+ P1
(
i, j
)
u
(
i − 1, j

)
+ P2
(
i, j
)
u
(
i, j − 1

)
+ P3
(
i, j
)
u
(
i, j
)
= f
(
i, j
)
.

(1.5)

Let Z be the set of integers, Z[k, l] = {i ∈ Z | i = k, k + 1, . . . , l}, and Z[k,∞] = {i ∈ Z |
i = k, k + 1, . . .}.

In this paper, we will consider the equation of the following form:

um+1,n + um,n+1 − um,n +
h∑

i=1

pi(m,n)um−ki,n−li −
g∑

j=1

qj(m,n)um−sj ,n−tj = f(m,n), (1.6)

where m,n ∈ Z[0,∞), pi(m,n) ≥ 0 (i = 1, 2, . . . , h), qj(m,n) ≥ 0 (j = 1, 2, . . . , g) and

(H1) ki, li(i = 1, 2, . . . , h); sj , tj (j = 1, 2, . . . , g) are nonnegative integers;

(H2) pi = {pi(m,n)}m,n∈Z[0,∞) (i = 1, 2, . . . , h), qj = {qj(m,n)}
m,n∈Z[0,∞) (j = 1, 2, . . . , g),

f(m,n) are real double sequences.

The usual concepts of oscillation or stability of steady state solutions do not catch all
their fine details, and it is necessary to use the concept of frequency measures introduced in
[7] to provide better descriptions. In this paper, by employing frequencymeasures, some new
oscillatory criteria of (1.6) are established.
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Let

k = max
1≤i≤h
1≤j≤g

{
ki, sj

}
> 0, l = max

1≤i≤h
1≤j≤g

{
li, tj
}
> 0,

ρ = min{um−ki,n−li}, θ = max
{
um−sj ,n−tj

}
,

σ = max{um−ki,n−li}, τ = min
{
um−sj ,n−tj

}
.

(1.7)

In addition to (H1) and (H2), we also assume

(H3) ρ ≥ θ, σ ≤ τ ;

(H4)
∑h

i=1 pi(m,n) −∑g

j=1 qj(m,n) ≥ 0, i = 1, 2, . . . , h; j = 1, 2, . . . , g.

For the sake of convenience, Z[−k,∞) × Z[−l,∞) will be denoted by Ω in the sequel.
Given a double sequence {um,n}, the partial differences um+1,n − um,n and um,n+1 − um,n will be
denoted by Δ1um,n and Δ2um,n, respectively.

To the best of our knowledge, nothing is known regarding the qualitative behaviour
of the solutions of (1.6), because these equations contain positive and negative coefficients,
and also contain forcing terms.

Our plan is as follows. In the next section, we will recall some of the basic results
related to frequency measures. Then we obtain several criteria for all solutions of (1.6) to be
frequently oscillatory and unsaturated. In the final section, we give one example to illustrate
our results.

2. Preliminary

The union, intersection, and difference of two sets A and B will be denoted by A + B,A · B,
and A \ B, respectively. The number of elements of a set S will be denoted by |S|. Let Φ be a
subset of Ω, then

XmΦ =
{(

i +m, j
) ∈ Ω | (i, j) ∈ Φ

}
,

YmΦ =
{(

i, j +m
) ∈ Ω | (i, j) ∈ Φ

} (2.1)

are the translations of Φ. Let α, β, λ, and δ be integers satisfying α ≤ β and λ ≤ δ. The union
∑β

i=α
∑δ

j=λ X
iY jΦ will be denoted by X

β
αY

δ
λΦ. Clearly,

(
i, j
) ∈ Ω \Xβ

αY
δ
λΦ ⇐⇒ (i − d, j − e

) ∈ Ω \Φ (2.2)

for α ≤ d ≤ β and λ ≤ e ≤ δ.
For any m,n ∈ Z[0,∞), we set

Φ(m,n) =
{(

i, j
) ∈ Φ | −k1 ≤ i ≤ m, −l1 ≤ j ≤ n

}
. (2.3)
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If

lim sup
m,n→∞

∣∣Φ(m,n)
∣∣

mn
(2.4)

exists, then the superior limit, denoted by μ∗(Φ), will be called the upper frequency measure
of Φ. Similarly, if

lim inf
m,n→∞

∣∣Φ(m,n)
∣∣

mn
(2.5)

exists, then the inferior limit, denoted by μ∗(Φ), will be called the lower frequency measure
of Φ. If μ∗(Φ) = μ∗(Φ), then the common limit is denoted by μ(Φ) and is called the frequency
measure of Φ.

Clearly, μ(∅) = 0, μ(Ω) = 1, and 0 ≤ μ∗(Φ) ≤ μ∗(Φ) ≤ 1 for any subset Φ of Ω;
furthermore, if Φ is finite, then μ(Φ) = 0.

The following results are concerned with the frequency measures and their proofs are
similar to those in [8].

Lemma 2.1. Let Φ and Γ be subsets of Ω. Then μ∗(Φ + Γ) ≤ μ∗(Φ) + μ∗(Γ). Furthermore, if Φ and
Γ are disjoint, then

μ∗(Φ) + μ∗(Γ) ≤ μ∗(Φ + Γ) ≤ μ∗(Φ) + μ∗(Γ) ≤ μ∗(Φ + Γ) ≤ μ∗(Φ) + μ∗(Γ), (2.6)

so that

μ∗(Φ) + μ∗(Ω \Φ) = 1. (2.7)

Lemma 2.2. Let Φ be a subset of Ω, and let α, β, λ, and δ be integers such that α ≤ β and λ ≤ δ.
Then

μ∗
(
X

β
αY

δ
λΦ
)
≤ (β − α + 1

)
(δ − λ + 1)μ∗(Φ),

μ∗
(
X

β
αY

δ
λΦ
)
≤ (β − α + 1

)
(δ − λ + 1)μ∗(Φ).

(2.8)
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Lemma 2.3. Let Φ1, . . . ,Φn be subsets of Ω. Then

μ∗
(

n∑
i=1
Φi

)
≤

n∑
i=1
μ∗(Φi) − (n − 1)μ∗

(
n∏
i=1

Φi

)
,

μ∗

(
n∑
i=1
Φi

)
≤ μ∗(Φ1) + μ∗

(
n∑
i=2
Φi

)
− (n − 1)μ∗

(
n∏
i=1

Φi

)
.

(2.9)

Lemma 2.4. Let Φ and Γ be subsets ofΩ. If μ∗(Φ) + μ∗(Γ) > 1, then the intersection Φ · Γ is infinite.

For any real double sequence {vi,j} defined on a subset of Ω, the level set {(i, j) ∈ Ω |
vi,j > c} is denoted by (v > c). The notations (v ≥ c), (v < c), and (v ≤ c) are similarly defined.
Let u = {ui,j}(i,j)∈Ω be a real double sequence. If μ∗(u ≤ 0) = 0, then u is said to be frequently
positive, and if μ∗(u ≥ 0) = 0, then u is said to be frequently negative.

u is said to be frequently oscillatory if it is neither frequently positive nor frequently
negative. If μ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated upper positive part, and
if μ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated lower positive part. u is said to
have unsaturated positive part if μ∗(u > 0) = μ∗(u > 0) = ω ∈ (0, 1).

The concepts of frequently oscillatory and unsaturated double sequences were
introduced in [5–11]. It was also observed that if a double sequence u = {ui,j}(i,j)∈Ω is
frequently oscillatory or has unsaturated positive part, then it is oscillatory; that is, u is not
positive for all large m and n, nor negative for all large m and n. Thus if we can show that
every solution of (1.6) is frequently oscillatory or has unsaturated positive part, then every
solution of (1.6) is oscillatory.

3. Frequently Oscillatory Solutions

Lemma 3.1. Suppose there existm0 ≥ 2k and n0 ≥ 2l such that

pi(m,n) ≥ 0 (i = 1, 2, . . . , h), qj(m,n) ≥ 0
(
j = 1, 2, . . . , g

)
(3.1)

for (m,n) ∈ Z[m0 − 2k ,m0 + 1] × Z[n0 − 2l, n0 + 1]. Let {um,n} be a solution of (1.6). If um,n ≥ 0,
f(m,n) ≤ 0 for (m,n) ∈ Z[m0 − 2k,m0 + 1] × Z[n0 − 2l, n0 + 1], then

Δ1um,n ≤ 0, Δ2um,n ≤ 0 for (m,n) ∈ Z
[
m0 − k,m0

]
× Z
[
n0 − l, n0

]
, (3.2)

and if um,n ≤ 0, f(m,n) ≥ 0 for (m,n) ∈ Z[m0 − 2k,m0 + 1] × Z[n0 − 2l, n0 + 1], then

Δ1um,n ≥ 0, Δ2um,n ≥ 0 for (m,n) ∈ Z
[
m0 − k,m0

]
× Z
[
n0 − l, n0

]
. (3.3)
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Proof. If um,n ≥ 0, f(m,n) ≤ 0 for (m,n) ∈ Z[m0 − 2k,m0 + 1] × Z[n0 − 2l, n0 + 1], it follows
from (1.6) and (H3) that

um,n = um+1,n + um,n+1 +
h∑

i=1

pi(m,n)um−ki,n−li −
g∑

j=1

qj(m,n)um−sj ,n−tj − f(m,n)

≥ um+1,n + um,n+1 + θ

⎡

⎣
h∑

i=1

pi(m,n) −
g∑

j=1

qj(m,n)

⎤

⎦ − f(m,n)

≥ um+1,n + um,n+1.

(3.4)

Hence Δ1um,n ≤ 0,Δ2um,n ≤ 0 for (m,n) ∈ Z[m0 − k,m0] × Z[n0 − l, n0].
Similarly, we also have Δ1um,n ≥ 0, Δ2um,n ≥ 0 for (m,n) ∈ Z[m0 − k,m0] × Z[n0 −

l, n0].

Theorem 3.2. Suppose that

μ∗(pi < 0
)
=ωi, (i=1, 2, . . . , h), μ∗(qj <0

)
=ωj,

(
j = 1, 2, . . . , g

)
, μ∗(f >0

)
=ω+

f ,

μ∗(f < 0
)
= ω−

f , μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
)
⎞

⎠ = ω+,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f < 0
)
⎞

⎠ = ω−,

μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠ > 4
(
k + 1

)(
l + 1
)
⎛

⎝
h∑

i=1

ωi +
g∑

j=1

ωj +ωf −
(
h + g

)
ω

⎞

⎠,

(3.5)

where ωf = max{ω+
f
, ω−

f
} and ω = min{ω+, ω−}. Then every nontrivial solution of (1.6) is

frequently oscillatory.

Proof. Suppose to the contrary that u = {um,n} is a frequently positive solution of (1.6). Then
μ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we have

1 = μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ μ∗

⎧
⎨

⎩X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭
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≤ μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ 4
(
k + 1

)(
l + 1
)

×
⎧
⎨

⎩μ∗

⎛

⎝
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
⎞

⎠ + μ∗(u ≤ 0)

⎫
⎬

⎭

≤ μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ 4
(
k + 1

)(
l + 1
)
⎛

⎝
h∑

i=1

ωi +
g∑

j=1

ωj +ωf −
(
h + g

)
ω

⎞

⎠

< μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠.

(3.6)

Therefore, by Lemma 2.4, the intersection

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭ ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠

(3.7)

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that

(
h∑
i=1
pi(m0, n0) −

g∑
j=1

qj(m0, n0)

)
> 1, (3.8)

pi(m,n) ≥ 0, (i = 1, 2, . . . , h), qj(m,n) ≥ 0,
(
j = 1, 2, . . . , g

)
,

f(m,n) ≤ 0, um,n > 0

(3.9)
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hold for (m,n) ∈ Z[m0 − 2k,m0 + 1] × Z[n0 − 2l, n0 + 1]. In view of (3.9) and Lemma 3.1, we
may see that Δ1um,n ≤ 0 and Δ2um,n ≤ 0 for (m,n) ∈ Z[m0 − k,m0] × Z[n0 − l, n0], and hence
θ ≥ um0,n0 , so by (3.9) and (H3), we have that

0 ≥ um0+1,n0 + um0,n0+1 − um0,n0 + ρ
h∑

i=1

pi(m0, n0) − θ
g∑

j=1

qj(m0, n0) − f(m0, n0)

≥ um0+1,n0 + um0,n0+1 − um0,n0 + θ

⎛

⎝
h∑

i=1

pi(m0, n0) −
g∑

j=1

qj(m0, n0)

⎞

⎠ − f(m0, n0)

≥ um0+1,n0 + um0,n0+1 − um0,n0 + um0,n0

⎛

⎝
h∑

i=1

pi(m0, n0) −
g∑

j=1

qj(m0, n0)

⎞

⎠ − f(m0, n0)

≥ um0,n0

⎛

⎝
h∑

i=1

pi(m0, n0) −
g∑

j=1

qj(m0, n0) − 1

⎞

⎠ > 0,

(3.10)

which is a contradiction.
In a similar manner, if u = {um,n} is a frequently negative solution of (1.6) such that

μ∗(u ≥ 0) = 0, then we may show that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)
+ (u ≥ 0)

⎤

⎦

⎫
⎬

⎭ ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠

(3.11)

is infinite. Again we may arrive at a contradiction as above. The proof is complete.

Theorem 3.3. Suppose that

μ∗(pi < 0
)
= ωi, (i = 1, 2, . . . , h), μ∗(qj < 0

)
= ωj,

(
j = 1, 2, . . . , g

)
, μ∗(f > 0

)
= ω+

f ,

μ∗(f < 0
)
= ω−

f , μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ = ω′,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω+,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f < 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω−,

ω >

∑h
i=1 ωi +

∑g

j=1 ωj +ωf +ω′

h + g + 1
− 1

4
(
h + g + 1

)(
k + 1

)(
l + 1
) ,

(3.12)
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where ωf = max{ω+
f , ω

−
f}, and ω = min{ω+, ω−}. Then every nontrivial solution of (1.6) is

frequently oscillatory.

Proof. Suppose to the contrary that u = {um,n} is frequently positive solution of (1.6). Then
μ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we know

μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ + (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

= 1 − μ∗

⎧
⎨

⎩X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi <0

)
+

g∑

j=1

(
qj <0

)
+
(
f >0
)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi−
g∑

j=1

qj

⎞

⎠≤1
⎞

⎠+(u≤0)
⎤

⎦

⎫
⎬

⎭

≥ 1 − 4
(
k + 1

)(
l + 1
)

×
⎧
⎨

⎩μ∗

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi−
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎤

⎦+μ∗(u ≤ 0)

⎫
⎬

⎭

≥ 1 − 4
(
k + 1

)(
l + 1
)
⎡

⎣
h∑

i=1

μ∗(pi < 0
)
+

g∑

j=1

μ∗(qj < 0
)

+ μ∗(f > 0
)
+ μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ − (h + g + 1
)

·μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi−
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠

⎤

⎦

> 0.
(3.13)

Therefore, by Lemma 2.4, we know that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ + (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

(3.14)

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that (3.8) and

pi(m,n) ≥ 0, (i = 1, 2, . . . , h), qj(m,n) ≥ 0,
(
j = 1, 2, . . . , g

)
,

f(m,n) ≤ 0, um,n > 0
(3.15)

hold for (m,n) ∈ Z[m0 − 2k,m0 + 1] ×Z[n0 − 2l, n0 + 1]. By similar discussions as in the proof
of Theorem 3.2, we may arrive at a contradiction against (3.8).
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In case u = {um,n} is a frequently negative solution of (1.6), then μ∗(u ≥ 0) = 0. In an
analogous manner, we may see that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ + (u ≥ 0)

⎤

⎦

⎫
⎬

⎭

(3.16)

is infinite. This can lead to a contradiction again. The proof is complete.

4. Unsaturated Solutions

The methods used in the above proofs can be modified to obtain the following results for
unsaturated solutions.

Theorem 4.1. Suppose there exists constant ω0 ∈ (0, 1) such that

μ∗(pi < 0
)
=ωi, (i = 1, 2, . . . , h), μ∗(qj <0

)
=ωj,

(
j = 1, 2, . . . , g

)
, μ∗(f >0

)
=ω+

f ,

μ∗(f < 0
)
= ω−

f , μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
)
⎞

⎠ = ω+,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f < 0
)
⎞

⎠ = ω−,

μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠ > 4
(
k + 1

)(
l + 1
)
⎛

⎝
h∑

i=1

ωi +
g∑

j=1

ωj +ωf +ω0 −
(
h + g

)
ω

⎞

⎠,

(4.1)

where ωf = max{ω+
f , ω

−
f}, and ω = max{ω+, ω−}. Then every nontrivial solution of (1.6) has

unsaturated upper positive part.

Proof. Let u = {um,n} be a nontrivial solution of (1.6). We assert that μ∗(u > 0) ∈ (ω0, 1).
Otherwise, then μ∗(u > 0) ≤ ω0 or μ∗(u > 0) = 1. In the former case, applying arguments
similar to the proof of Theorem 3.2, we may then arrive at the fact that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)
+ (u > 0)

⎤

⎦

⎫
⎬

⎭ ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠

(4.2)

is infinite and a subsequent contradiction.
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In the latter case, we have μ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we have

1 = μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ μ∗

⎧
⎨

⎩X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

≤ μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ 4
(
k + 1

)(
l + 1
)
⎧
⎨

⎩μ∗

⎛

⎝
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
⎞

⎠ + μ∗(u ≤ 0)

⎫
⎬

⎭

≤ μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ 4
(
k + 1

)(
l + 1
)
⎛

⎝
h∑

i=1

ωi +
g∑

j=1

ωj +ωf +ω0 −
(
h + g

)
ω

⎞

⎠

< μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭

+ μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠.

(4.3)

Therefore, by Lemma 2.4, we know that the set

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+ (u ≤ 0)

⎤

⎦

⎫
⎬

⎭ ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ > 1

⎞

⎠

(4.4)

is infinite. Then by discussions similar to these in the proof of Theorem 3.2 again, we may
arrive at a contradiction. The proof is complete.

Combining Theorems 3.3 and 4.1, we have the following Theorem 4.2 and the proof of
this theorem is omitted.
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Theorem 4.2. Suppose there exists constant ω0 ∈ (0, 1) such that

μ∗(pi <0
)
=ωi, (i = 1, 2, . . . , h), μ∗(qj <0

)
=ωj,

(
j = 1, 2, . . . , g

)
, μ∗(f >0

)
=ω+

f ,

μ∗(f < 0
)
= ω−

f , μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ = ω′,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω+,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f < 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω−,

ω >

∑h
i=1 ωi +

∑g

j=1 ωj +ωf +ω′ +ω0

h + g + 1
− 1

4
(
h + g + 1

)(
k + 1

)(
l + 1
) ,

(4.5)

where ωf = max{ω+
f
, ω−

f
}, and ω = min{ω+, ω−}. Then every nontrivial solution of (1.6) has

unsaturated upper positive part.

Theorem 4.3. Suppose there exists constant ω0 ∈ (0, 1) such that

μ∗(pi <0
)
=ωi, (i = 1, 2, . . . , h), μ∗(qj <0

)
=ωj,

(
j = 1, 2, . . . , g

)
, μ∗(f >0

)
=ω+

f ,

μ∗(f < 0
)
= ω−

f , μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ = ω′,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f > 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω+,

μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

) · (f < 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠ = ω−,

4
(
k + 1

)(
l + 1
)
⎛

⎝
h∑

i=1

ωi +
g∑

j=1

ωj +ωf +ω′ +ω0 −
(
h + g + 1

)
ω

⎞

⎠ < 1,

(4.6)

where ωf = max{ω+
f , ω

−
f}, and ω = min{ω+, ω−}. Then every nontrivial solution of (1.6) has an

unsaturated upper positive part.
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Proof. We claim that μ∗(u > 0) ∈ (ω0, 1). First, we prove that μ∗(u > 0) > ω0. Otherwise, if
μ∗(u > 0) ≤ ω0, by Lemmas 2.1–2.3, we have

μ∗

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)

+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎤

⎦

⎫
⎬

⎭ + μ∗
{
Ω \X2k

−1Y
2l
−1[(u > 0)]

}

= 2 − μ∗

⎧
⎨

⎩X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)

+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎤

⎦

⎫
⎬

⎭ − μ∗
{
X2k

−1Y
2l
−1[(u > 0)]

}

≥ 2 − 4
(
k + 1

)(
l + 1
)
⎧
⎨

⎩

h∑

i=1

μ∗(pi < 0
)
+

g∑

j=1

μ∗(qj < 0
)

+ μ∗(f < 0
)
+ μ∗

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠ + μ∗(u > 0)

− (h + g + 1
)
μ∗

⎛

⎝
h∏

i=1

(
pi < 0

) g∏

j=1

(
qj < 0

)

·(f < 0
) ·
⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎞

⎠

⎫
⎬

⎭ > 1.

(4.7)

Hence, by Lemma 2.4, we see that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f < 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎤

⎦

⎫
⎬

⎭

·
{
Ω \X2k

−1Y
2l
−1[(u > 0)]

}
(4.8)

is infinite. Then there exist m0 ≥ 2k and n0 ≥ 2l such that (3.8) and

pi(m,n) ≥ 0, (i = 1, 2, . . . , h), qj(m,n) ≥ 0,
(
j = 1, 2, . . . , g

)
,

f(m,n) ≤ 0, um,n ≤ 0
(4.9)
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hold for (m,n) ∈ Z[m0 − 2k,m0 + 1] × Z[n0 − 2l, n0 + 1]. Applying similar discussions as in
the proof of Theorem 3.2, we can get a contradiction. Next, we prove that μ∗(u > 0) < 1.
Otherwise, μ∗(u ≤ 0) = 0. Analogously, we see that

⎧
⎨

⎩Ω \X2k
−1Y

2l
−1

⎡

⎣
h∑

i=1

(
pi < 0

)
+

g∑

j=1

(
qj < 0

)
+
(
f > 0

)
+

⎛

⎝

⎛

⎝
h∑

i=1

pi −
g∑

j=1

qj

⎞

⎠ ≤ 1

⎞

⎠

⎤

⎦

⎫
⎬

⎭

·
{
Ω \X2k

−1Y
2l
−1[(u ≤ 0)]

}
(4.10)

is infinite. Then, we can also lead to a contradiction. The proof is complete.

We remark that every nontrivial solution of (1.6) has an unsaturated lower positive
part under the same conditions as Theorems 4.1, 4.2, or 4.3. So we can obtain that every
nontrivial solution of (1.6) has an unsaturated positive part.

5. Examples

We give one example to illustrate our previous results.

Example 5.1. Consider the partial difference equation

um+1,n + um,n+1 − um,n + p1(m,n)um−4,n−3 + p2(m,n)um−3,n−2 − q1(m,n)um−1,n−1 = f(m,n),
(5.1)

where

f(m,n) =

⎧
⎨

⎩
1, m = 30η, n = 10ξ, η, ξ ∈ N

0, otherwise
, p1(m,n) = 1, p2(m,n) = 3, (5.2)

and q1(m,n) = 2.
It is clear that μ∗(p1 < 0) = 0, μ∗(p2 < 0) = 0, μ∗(q1 < 0) = 0, μ∗(f > 0) = 1/300,

μ∗(f < 0) = 0, and μ∗((p1 + p2 + q1) > 1) = 1.
Moreover,

μ∗
((
p1 < 0

)(
p2 < 0

)(
q1 < 0

)(
f < 0

))
= 0, μ∗

((
p1 < 0

)(
p2 < 0

)(
q1 < 0

)(
f > 0

))
= 0,

μ∗((p1 + p2 + q1
)
> 1
)
= 1 > 4 × (4 + 1) × (3 + 1) × 1

300
= 4
(
k + 1

)(
l + 1
)
ωf.

(5.3)

Then according to Theorems 3.2 or 3.3, we know that every nontrivial solution of (5.1) is
frequently oscillatory. If ω0 ∈ (0, 11/1200), we see that all conditions in Theorems 4.1, 4.2, or
4.3 are satisfied. Thus, every nontrivial solution of (5.1) has an unsaturated upper positive
part.
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