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The nonlocal boundary value problem, with p-Laplacian of the form (Φp(u�))�(t)+h(t)f(t, u(t)) =
0, t ∈ [t1, tm)T, u

�(t1) −
∑n

j=1 θju
�(ηj) −

∑m−2
i=1 εiu(ξi) = 0, u�(tm) = 0, has been considered. Two

existence criteria of at least one and three positive solutions are presented. The first one is based
on the Four functionals fixed point theorem in the work of R. Avery et al. (2008), and the second
one is based on the Five functionals fixed point theorem. Meanwhile an example is worked out to
illustrate the main result.

1. Introduction

Due to the unification of the theory of differential and difference equations, there have
been many investigations working on the existence of positive solutions to boundary value
problems for dynamic equations on time scales. Also there is much attention paid to the study
of multipoint boundary value problem with p-Laplacian; see [1–10].

For convenience, throughout this paper we denote Φp(s) as the p-Laplacian operator,
that is, Φp(s) = |s|p−2s, p > 1. (Φp)

−1 = Φq, where 1/p + 1/q = 1.
In [11], the author discussed the positive solutions of a m-point boundary value

problem for a second-order dynamic equation on a time scale

u��(t) + q(t)f(u(t)) = 0, t ∈ [0, T]
T
,

u�(0) =
m−2∑

i=1

biu
�(ξi), u(T) =

m−2∑

i=1

aiu(ξi),
(1.1)
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where ai, bi ≥ 0 (i = 1, 2, . . . , m − 2), and ξi ∈ (0, ρ(T))
T
with 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T).

And he got the existence of at least two positive solutions of the above problem by means of
a fixed point theorem in a cone.

Zhao and Ge [9] considered the following multi-point boundary value problem with
one-dimensional p-Laplacian:

(
Φp

(
x′(t)

))′ + f(t, x(t)) = 0, 0 < t < 1,

x′(0) −
m−1∑

i=1

aix(ξi) = 0, x′(1) +
m−1∑

i=1

βix
(
ηi
)
= 0,

(1.2)

where ai, βi > 0, 0 <
∑m−1

i=1 aiξi ≤ 1, 0 <
∑m−1

i=1 βi(1 − ηi) ≤ 1, i = 1, 2, . . . , m − 1, 0 = ξ1 < ξ2 < · · · <
ξm−1 < η1 < η2 < · · · < ηm−1 = 1. By using a fixed point theorem in a cone, they obtained the
existence of at least one, two, or three positive solutions under some sufficient conditions.

Motivated by the above results, in this paper, we investigate the nonlocal boundary
value problem with p-Laplacian

(
Φp(u�)

)�(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, tm)T,

u�(t1) −
n∑

j=1

θju
�(ηj

) −
m−2∑

i=1

εiu(ξi) = 0, u�(tm) = 0,
(1.3)

where 0 ≤ t1 < ξ1 < ξ2 < · · · < ξm−2 < tm and t1 < η1 < η2 < · · · < ηn < tm < +∞.
For convenience, we list the following hypotheses:

(H1) εi > 0, i = 1, 2, . . . , m − 2, θj ≥ 0, j = 1, 2, . . . , n,
∑m−2

i=1 εiξi +
∑n

j=1 θj < 1;

(H2) f(t, u) ∈ C([t1, tm]T × [0,+∞), [0,+∞)) and f is not identically zero on any compact
subinterval of [t1, tm]T × [0,+∞);

(H3) h(t) ∈ Crd([t1, tm]T, [0,+∞)) and h is not identically zero on any compact
subinterval of [t1, tm]T, also it satisfies

Φq

(∫ tm

t1

h(τ)�τ

)

< +∞,

∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s < +∞. (1.4)

By using the Four functionals fixed point theorem and Five functionals fixed point
theorem, we obtain the existence criteria of at least one positive solution and three positive
solutions for the BVP (1.3). As an application, an example is worked out finally. The
remainder of this paper is organized as follows. Section 2 is devoted to some preliminary
discussions. We give and prove our main results in Section 3.

2. Preliminaries

The basic definitions and notations on time scales can be found in [12, 13]. In the following,
we will provide some background materials on the theory of cones in Banach spaces. For
more details, please refer to [14, 15].



Advances in Difference Equations 3

Definition 2.1. Let E be a Banach space. A nonempty, closed set P ⊂ E is said to be a cone
provided that the following hypotheses are satisfied:

(1) if x, y ∈ P , α, β ≥ 0, then αx + βy ∈ P ;

(2) if x ∈ P , x /= θ, then x ∈ P.

Every cone P ⊂ E induces a partial ordering “≤” on E defined by x ≤ y if and only if
y − x ∈ P.

Definition 2.2. Amap α is said to be a nonnegative continuous concave functional on a cone P
of a real Banach space E if α : P → [0,∞) is continuous and α(tx+(1−t)y) ≥ tα(x)+(1−t)α(y)
for all x, y ∈ P and t ∈ [0, 1]. Similarly, we say that the map β is a nonnegative continuous
convex functional on a cone P of a real Banach space E if β : P → [0,∞) is continuous and
β(tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y) for all x, y ∈ P and t ∈ [0, 1].

Let α and Ψ be nonnegative continuous concave functionals on P , and let β and θ be
nonnegative continuous convex functionals on P ; then for positive numbers r, ι, υ, and R,
define the sets

Q
(
α, β, r, R

)
=
{
x ∈ P : r ≤ α(x), β(x) ≤ R

}
,

U(Ψ, ι) =
{
x ∈ Q

(
α, β, r, R

)
: ι ≤ Ψ(x)

}
,

V (θ, υ) =
{
x ∈ Q

(
α, β, r, R

)
: θ(x) ≤ υ

}
.

(2.1)

The following lemma can be found in [16].

Lemma 2.3 (four functionals fixed point theorem). If P is a cone in a real Banach space E, α and
Ψ are nonnegative continuous concave functionals on P , β, and θ are nonnegative continuous convex
functionals on P , and there exist nonnegative positive numbers r, ι, υ, and R, such that

A : Q
(
α, β, r, R

) −→ P (2.2)

is a completely continuous operator, and Q(α, β, r, R) is a bounded set. If

(i) {x ∈ U(Ψ, ι) : β(x) < R} ∩ {x ∈ V (θ, υ) : r < α(x)}/= ∅,

(ii) α(Ax) ≥ r, for all x ∈ Q(α, β, r, R), with α(x) = r and υ < θ(Ax),

(iii) α(Ax) ≥ r, for all x ∈ V (θ, υ), with α(x) = r,

(iv) β(Ax) ≤ R, for all x ∈ Q(α, β, r, R), with β(x) = R and Ψ(Ax) < ι,

(v) β(Ax) ≤ R, for all x ∈ U(Ψ, ι), with β(x) = R,

then A has a fixed point x in Q(α, β, r, R).
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We are now in a position to present the Five functionals fixed point theorem (see
[17]). Let γ, β, θ be nonnegative continuous convex functionals on P and α, ϕ nonnegative
continuous concave functionals on P . For nonnegative numbers h, a, b, d, and c, define the
following convex sets:

P
(
γ, c
)
=
{
x ∈ P : γ(x) < c

}
,

P
(
γ, α, a, c

)
=
{
x ∈ P : a ≤ α(x), γ(x) ≤ c

}
,

Q
(
γ, β, d, c

)
=
{
x ∈ P : β(x) ≤ d, γ(x) ≤ c

}
,

P
(
γ, θ, α, a, b, c

)
=
{
x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c

}
,

Q
(
γ, β, ϕ, h, d, c

)
=
{
x ∈ P : h ≤ ϕ(x), β(x) ≤ d, γ(x) ≤ c

}
.

(2.3)

Lemma 2.4 (five functionals fixed point theorem). Let P be a cone in a real Banach space E.
Suppose that there exist nonnegative numbers c and M, nonnegative continuous concave functionals
α and ϕ on P , and nonnegative continuous convex functionals γ, β, and θ on P , with

α(x) ≤ β(x), ‖x‖ ≤ Mγ(x) ∀x ∈ P
(
γ, c
)
. (2.4)

Suppose that A : P(γ, c) → P(γ, c) is completely continuous and there exist nonnegative numbers
h, a, k, b, with 0 < a < b such that

(i) {x ∈ P(γ, θ, α, b, k, c) : α(x) > b}/= ∅ and α(A(x)) > b for x ∈ P(γ, θ, α, b, k, c),

(ii) {x ∈ Q(γ, β, ϕ, h, a, c) : β(x) < a}/= ∅ and β(A(x)) < a for x ∈ Q(γ, β, ϕ, h, a, c),

(iii) α(A(x)) > b for x ∈ P(γ, α, b, c) with θ(A(x)) > k,

(iv) β(A(x)) < a for x ∈ Q(γ, β, a, c) with ϕ(A(x)) < h,

then A has at least three fixed points x1, x2, x3 ∈ P(γ, c) such that

β(x1) < a, α(x2) > b, β(x3) > a with α(x3) < b. (2.5)

Consider the Banach space E = C[t1, σ(tm)]T equipped with the norm ‖u‖ =
maxt∈[t1,σ(tm)]T |u(t)|. Suppose �, η ∈ Twith t1 < � < η < σ(tm). For the sake of convenience, we
take the notations

� =
m−2∑

i=1

εi, h0 = Φq

(∫ tm

t1

h(τ)�τ

)

, M0 =
∫�

t1

Φq

(∫η

�

h(τ)�τ

)

�s,

M� =
∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s,

Mη =
∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s, Mσ(tm) =
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s.

(2.6)
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Define a cone

P =

⎧
⎨

⎩
u ∈ E : u(t) ≥ 0, u�(t1) −

n∑

j=1

θju
�(ηj

) −
m−2∑

i=1

εiu(ξi) = 0,

for t ∈ [t1, σ(tm)]T and u��(t) ≤ 0, u�(t) ≥ 0 for t ∈ [t1, tm)T, u
�(tm) = 0

}
(2.7)

and an operator A : P → E by

Au =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)

�
−
∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫ t

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s.

(2.8)

Lemma 2.5. A : P → P .

Proof. For u ∈ P , t ∈ [t1, σ(tm)]T,

Au(t) ≥
1 −∑n

j=1 θj −
∑m−2

i=1 εiξi

�
Φq

(∫ tm

t1

h(τ)f(τ, u(τ))�τ

)

+
∫ t

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≥ 0.

(2.9)

From the definition of A, it is clear that

(Au)�(t) = Φq

(∫ tm

t

h(s)f(s, u(s))�s

)

≥ 0, t ∈ [t1, tm]T, (2.10)

is continuous, (Au)�(t1) −
∑n

j=1 θj(Au)�(ηj) −
∑m−2

i=1 εi(Au)(ξi) = 0, and (Au)(σ(tm)) is the
maximum value of Au(t) on [t1, σ(tm)]T.

Let g(t) =
∫ tm
t h(s)f(s, u(s))�s, then g : R → R is continuous, g : T → R is delta

differentiable on [t1, tm]Tk , and Φq : R → R is continuously differentiable. Moreover Φq(s) is
monotonically increasing for s ≥ 0 and g�(t) = −h(t)f(t, u(t)) ≤ 0. Then by the chain rule [12,
Theorem 1.87, page 31], we obtain

(Au)��(t) = Φ′
q

(
g(c)

)
g�(t) ≤ 0, (2.11)

where c is in the interval [t, σ(t)]. So, A : P → P . This completes the proof.
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3. Main Results and an Example

Theorem 3.1. Assume that (H1), (H2), and (H3) hold, if there exist constants r, ι, υ, R with R >
max{(h0+�Mσ(tm))/�M0, (σ(tm)−t1)/(�−t1)}ι, υ ≥ max{((h0+�Mη)/�M�)ι, ((η−t1)/(�−
t1))r}, r < ι and suppose that f(t, u) satisfies the following conditions:

(A1) f(t, u) ≤ Φp(R�/(h0 +�Mσ(tm))) for all (t, u) ∈ [t1, tm]T × [0, R],

(A2) f(t, u) ≥ Φp(r/M0) for all (t, u) ∈ [�, η]
T
× [r, υ],

then the BVP (1.3) has a fixed point u ∈ P such that

min
t∈[�,η]

T

u(t) ≥ r, max
t∈[t1,σ(tm)]T

u(t) ≤ R. (3.1)

Define maps

α(u) = Ψ(u) = min
t∈[�,η]

T

u(t), θ(u) = max
t∈[�,η]

T

u(t), β(u) = max
t∈[t1,σ(tm)]T

u(t), (3.2)

and let Q(α, β, r, R), U(Ψ, ι) and V (θ, υ) be defined by (2.1).
In order to complete the proof of Theorem 3.1, we first need to prove the following

lemma.

Lemma 3.2. Q(α, β, r, R) is bounded and A : Q(α, β, r, R) → P is completely continuous.

Proof. For all u ∈ Q(α, β, r, R), ‖u‖ = maxt∈[t1,σ(tm)]T |u(t)| = β(u) ≤ R, which means that
Q(α, β, r, R) is a bounded set.

According to Lemma 2.5, it is clear that A : Q(α, β, r, R) → P .
In view of the continuity of f , there exists a constant C > 0 such that f(t, u) < Φp(C),

for all t ∈ [t1, σ(tm)]T, u ∈ Q(α, β, r, R). Consider

‖Au‖ = Au(σ(tm)) ≤
(
h0

�
+Mσ(tm)

)

C, (3.3)

which means that AQ(α, β, r, R) is uniformly bounded.
In addition, for all t1 ≤ t ≤ t∗ ≤ σ(tm), we have

∣
∣
∣Au

(
t
)
−Au(t∗)

∣
∣
∣ =

∣
∣
∣
∣
∣

∫ t∗

t

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

∣
∣
∣
∣
∣
≤ Ch0

∣
∣
∣t − t∗

∣
∣
∣. (3.4)

Applying the Arzelà-Ascoli theorem on time scales [18], one can show that AQ(α, β, r, R) is
relatively compact.

Now we prove that A : Q(α, β, r, R) → P is continuous. Let {un}n∈N be a sequence
in Q(α, β, r, R) which converges to u0 ∈ Q(α, β, r, R) uniformly on [t1, σ(tm)]T. Because



Advances in Difference Equations 7

AQ(α, β, r, R) is relatively compact, the sequence {Aun} admits a subsequence {Aunm}
converging to v(t) uniformly on [t1, σ(tm)]T. In addition,

0 ≤ Aun(t) ≤ C

(
h0

ω
+Mσ(tm)

)

. (3.5)

Observe that

Aun(t) =
Φq

(∫ tm
t1
h(τ)f(τ, un(τ))�τ

)

�
−
∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, un(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, un(τ))�τ

)

�
+
∫ t

t1

Φq

(∫ tm

s

h(τ)f(τ, un(τ))�τ

)

�s.

(3.6)

Hence, by the Lebesgue’s dominated convergence theorem on time scales [19], insert unm into
the above equality and then let m → ∞, we obtain

v(t) =
Φq

(∫ tm
t1
h(τ)f(τ, u0(τ))�τ

)

�
−
∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u0(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u0(τ))�τ

)

�
+
∫ t

t1

Φq

(∫ tm

s

h(τ)f(τ, u0(τ))�τ

)

�s.

(3.7)

From the definition of A, we know that v(t) = Au0(t) on [t1, σ(tm)]T. This shows that
each subsequence of {Aun(t)}∞n=1 uniformly converges to Au0(t). Therefore the sequence
{Aun(t)}∞n=1 uniformly converges to Au0(t). This means that A is continuous at u0 ∈
Q(α, β, r, R). So,A is continuous onQ(α, β, r, R) since u0 is arbitrary. Thus,A : Q(α, β, r, R) →
P is completely continuous. This completes the proof.

Proof of Theorem 3.1. Let

u0 =
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− ι

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

ι

M�

∫ t

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s.

(3.8)
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Clearly, u0 ∈ P . By direct calculation,

Ψ(u0) =
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− ι

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

ι

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≥ ι

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s = ι,

β(u0) =
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− ι

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

ι

M�

∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

<
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)Δτ

)

�
+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎟
⎠ ≤ R,

θ(u0) =
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− ι

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

ι

M�

∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≤ ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎟
⎠ ≤ υ,

α(u0) =
ι

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− ι

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

ι

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

>
ι

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s > r.

(3.9)
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So, u0 ∈ {u ∈ U(Ψ, ι) : β(u) < R}∩{u ∈ V (θ, υ) : r < α(u)},which means that (i) in Lemma 2.3
is satisfied.

For all u ∈ Q(α, β, r, R), with α(u) = r and υ < θ(Au), we have α(Au) = Au(�) ≥
((� − t1)/(η − t1))Au(η) = ((� − t1)/(η − t1))θ(Au) > ((� − t1)/(η − t1))υ > r, and for all
u ∈ Q(α, β, r, R),with β(u) = R and Ψ(Au) < ι, we obtain that β(Au) = Au(σ(tm)) ≤ ((σ(tm) −
t1)/(� − t1))Au(�) = ((σ(tm) − t1)/(� − t1))Ψ(Au) < ((σ(tm) − t1)/(� − t1))ι < R. Hence, (ii)
and (iv) in Lemma 2.3 are fulfilled.

For any u ∈ V (θ, υ),with α(u) = r,

α(Au) =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n−2

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫�

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≥
∫�

t1

Φq

(∫η

�

h(τ)f(τ, u(τ))�τ

)

�s ≥
∫�

t1

Φq

(∫η

�

h(τ)Φp

(
r

M0

)

�τ

)

�s = r,

(3.10)

and for all u ∈ U(Ψ, ι),with β(u) = R,

β(Au) =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n−2

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≤
Φq

(∫ tm
t1
h(τ)Φp

(
R�/

(
h0 +�Mσ(tm)

))
�τ
)

�

+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)Φp

(
R�

h0 +�Mσ(tm)

)

�τ

)

�s

= R.

(3.11)

Thus (iii) and (v) in Lemma 2.3 hold true. So, by Lemma 2.3, the BVP (1.3) has a fixed point
u in Q(α, β, r, R). This completes the proof.

Theorem 3.3. Assume that (H1), (H2), and (H3) hold. If there exist constants h, a, b, c, k, with b <
a�M0/(h0 +�Mη), c > ((h0 +�Mσ(tm))/(h0 +�Mη))a, k < ((h0 +�Mη)/(h0 +�Mσ(tm)))c,
k ≥ max{(η−t1)/(�−t1), (h0+�Mη)/�M�}b, a ≥ max{(η−t1)/(�−t1), (h0+�Mη)/�M�}h,
further suppose that f(t, u) satisfies the following conditions:

(B1) f(t, u) < Φp(a�/(h0 +�Mη)) for all (t, u) ∈ [t1, tm]T × [0, c],

(B2) f(t, u) ≥ Φp(b/M0) for all (t, u) ∈ [�, η]
T
× [b, k],
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then the BVP (1.3) has at least three positive solutions u1, u2 and u3 such that

max
t∈[�,η]

T

u1(t) < a < max
t∈[�,η]

T

u3(t), min
t∈[�,η]

T

u3(t) < b < min
t∈[�,η]

T

u2(t). (3.12)

Proof. Define these maps

α(u) = ϕ(u) = min
t∈[�,η]

u(t), β(u) = θ(u) = max
t∈[�,η]

u(t), γ(u) = max
t∈[t1,σ(tm)]

u(t), (3.13)

and let P(γ, c), P(γ, α, b, c), Q(γ, β, a, c), P(γ, θ, α, b, k, c) and Q(γ, β, ϕ, h, a, c) be defined by
(2.3). It is clear that

α(u) ≤ β(u), ‖u‖ ≤ γ(u), ∀u ∈ P(γ, c). (3.14)

Using similar methods as those in Lemma 3.2, we obtain that A : P(γ, c) → P is
completely continuous. Thus, we only need to show that A : P(γ, c) → P(γ, c). Let u ∈
P(γ, c), then

γ(Au) =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)

�
−
∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≤
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)

�
+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≤
Φq

(∫ tm
t1
h(τ)Φp

(
a�/

(
h0 +�Mη

))
�τ
)

�

+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)Φp

(
a�

h0 +�Mη

)

�τ

)

�s

≤ c,

(3.15)

which implies that A(P(γ, c)) ⊂ P(γ, c).
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Let N = h0/� +Mη and

u1 =
b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− b

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

b

M�

∫ t

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s,

u2 =
a

N

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− a

N

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

a

N

∫ t

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s,

(3.16)

we can verify that u1, u2 ∈ P . By calculation,

α(u1) =
b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− b

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

b

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≥ b

M�

⎛

⎝
1 −∑n

j=1 θj −
∑m−2

i=1 εiξi

�
Φq

(∫ tm

t1

h(τ)�τ

)

+
∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎠

>
b

M�

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s = b,

θ(u1) =
b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− b

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

b

M�

∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≤ b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎟
⎠ ≤ k,
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γ(u1) =
b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− b

M�

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

b

M�

∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≤ b

M�

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)

�
+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎟
⎠ ≤ c,

β(u2) =
a

N

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− a

N

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

a

N

∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

<
a

N

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎟
⎠ = a,

ϕ(u2) =
a

N

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− a

N

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

a

N

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≥ a

N

⎛

⎝
1 −∑n

j=1 θj −
∑m−2

i=1 εiξi

�
Φq

(∫ tm

t1

h(τ)�τ

)

+
∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎞

⎠

>
a

N

∫�

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s > h,

γ(u2) =
a

N

⎛

⎜
⎝

Φq

(∫ tm
t1
h(τ)�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)�τ

)
�s

�

⎞

⎟
⎠

− a

N

⎛

⎜
⎝

∑n
j=1 θjΦq

(∫ tm
ηj
h(τ)�τ

)

�

⎞

⎟
⎠ +

a

N

∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

≤ a

N

⎡

⎢
⎣
Φq

(∫ tm
t1
h(τ)�τ

)

�
+
∫σ(tm)

t1

Φq

(∫ tm

s

h(τ)�τ

)

�s

⎤

⎥
⎦ < c.

(3.17)
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So, u1 ∈ P(γ, θ, α, b, k, c), α(u1) > b, u2 ∈ Q(γ, β, ϕ, h, a, c), β(u2) < a, which means that
{u ∈ P(γ, θ, α, b, k, c) : α(u) > b} and {u ∈ Q(γ, β, ϕ, h, a, c) : β(u) < a} are not empty.

For u ∈ P(γ, θ, α, b, k, c),

α(Au) =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫�

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≥
1 −∑n

j=1 θj −
∑m−2

i=1 εiξi

�
Φq

(∫ tm

t1

h(τ)f(τ, u(τ))�τ

)

+
∫�

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

>

∫�

t1

Φq

(∫η

�

h(τ)f(τ, u(τ))�τ

)

�s

≥
∫�

t1

Φq

(∫η

�

h(τ)Φp

(
b

M0

)

�τ

)

�s = b,

(3.18)

and for u ∈ Q(γ, β, ϕ, h, a, c),

β(Au) =
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)
−∑m−2

i=1 εi
∫ ξi
t1
Φq

(∫ tm
s h(τ)f(τ, u(τ))�τ

)
�s

�

−
∑n

j=1 θjΦq

(∫ tm
ηj
h(τ)f(τ, u(τ))�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

≤
Φq

(∫ tm
t1
h(τ)f(τ, u(τ))�τ

)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)f(τ, u(τ))�τ

)

�s

<
Φq

(∫ tm
t1
h(τ)Φp

(
a�/

(
h0+�Mη

))
�τ
)

�
+
∫η

t1

Φq

(∫ tm

s

h(τ)Φp

(
a�

h0+�Mη

)

�τ

)

�s = a.

(3.19)

Thus (i) and (ii) in Lemma 2.4 hold.
On the other hand, for u ∈ P(γ, α, b, c) with θ(Au) > k, we have α(Au) = Au(�) ≥

((� − t1)/(η − t1))(Au(η)) = ((� − t1)/(η − t1))θ(Au) > ((� − t1)/(η − t1))k > b. And for
u ∈ P(γ, β, a, c) with ϕ(Au) < h, we can obtain β(Au) = Au(η) ≤ ((η − t1)/(� − t1))Au(�) =
((η − t1)/(� − t1))ϕ(Au) < ((η − t1)/(� − t1))h < a. Thus, (iii) and (iv) in Lemma 2.4 hold.
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So, by Lemma 2.4, we obtain that the BVP (1.3) has at least three positive solutions
u1, u2, u3 ∈ P(γ, c) such that

max
t∈[�,η]

T

u1(t) < a < max
t∈[�,η]

T

u3(t), min
t∈[�,η]

T

u3(t) < b < min
t∈[�,η]

T

u2(t). (3.20)

This completes the proof.

Remark 3.4. Let R = c, r = b, υ = k, we can find that the conditions of Theorem 3.1 are
contained in Theorem 3.3.

Example 3.5. Let T = {0.1, 0.18} ∪ [0.2, 1] ∪ {1.2} ∪ [1.5, 2], p = 2, consider the following eight-
point BVP:

(
Φp(u�)

)�(t) + h(t)f(t, u(t)) = 0, t ∈ (0.1, 2)
T
,

u�(0.1) −
3∑

j=1

θju
�(ηj

) −
3∑

i=1

εiu(ξi) = 0, u�(2) = 0,
(3.21)

where h(t) = t + σ(t), θ1 = 1/12, θ2 = 1/7, θ3 = 1/42, ε1 = 1/6, ε2 = 1/24, ε3 = 1/8, ξ1 = 0.33,
ξ2 = 0.45, ξ3 = 1.65, η1 = 0.88, η2 = 1.86, η3 = 1.95, for all t ∈ T, and

f(t, u) =

⎧
⎨

⎩

0.00015, [0.4, 1.8]
T
× [0.0001, 0.055],

g(u), other,
(3.22)

where g(u) is continuous, 0 ≤ g(u) ≤ 0.0026, and g(0.0001) = g(0.055) = 0.00015.

Set � = 0.4, η = 1.8, by calculation,

3∑

j=1

θj =
1
4
,

3∑

i=1

εi =
1
3
, h0 = 3.99, M0 = 0.924,

M� =
3.539656

3
, Mη =

15.050656
3

, Mσ(tm) =
15.282656

3
,

(3.23)

and let b = 0.0001, k = 0.055, c = 0.102 585312, a = 0.045, h = 0.000125. Clearly, we can verify
that the conditions in Theorem 3.3 are fulfilled. Thus, by Theorem 3.3, the BVP (3.21) has at
least three positive solutions u1, u2 and u3 such that

max
t∈[�,η]

T

u1(t) < 0.045 < max
t∈[�,η]

T

u3(t), min
t∈[�,η]

T

u3(t) < 0.0001 < min
t∈[�,η]

T

u2(t). (3.24)

Remark 3.6. If we let R = 0.102 585312, r = 0.0001, ι = r + 10−5, υ = 0.055, we can also verify
that the conditions in Theorem 3.1 are satisfied.
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