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We investigate the existence of at least three solutions for a discrete nonlinear Neumann boundary
value problem involving the p-Laplacian. Our approach is based on three critical points theorems.

1. Introduction

In these last years, the study of discrete problems subject to various boundary value con-
ditions has been widely approached by using different abstract methods as fixed point
theorems, lower and upper solutions, and Brower degree (see, e.g., [1–3] and the reference
given therein). Recently, also the critical point theory has aroused the attention of many
authors in the study of these problems [4–12].

The main aim of this paper is to investigate different sets of assumptions which
guarantee the existence and multiplicity of solutions for the following nonlinear Neumann
boundary value problem

−Δ(
φp(Δuk−1)

)
+ qkφp(uk) = λf(k, uk), k ∈ [1,N],

Δu0 = ΔuN = 0,
(Pf

λ )

where N is a fixed positive integer, [1,N] is the discrete interval {1, . . . ,N}, qk > 0 for all
k ∈ [1,N], λ is a positive real parameter, Δuk := uk+1 − uk, k = 0, 1, . . . ,N + 1, is the forward
difference operator, φp(s) := |s|p−2s, 1 < p < +∞, and f : [1,N] × � → � is a continuous
function.
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In particular, for every λ lying in a suitable interval of parameters, at least three
solutions are obtained under mutually independent conditions. First, we require that the
primitive F of f is p-sublinear at infinity and satisfies appropriate local growth condition
(Theorem 3.1). Next, we obtain at least three positive solutions uniformly bounded with
respect to λ, under a suitable sign hypothesis on f , an appropriate growth conditions on F in a
bounded interval, and without assuming asymptotic condition at infinity on f (Theorem 3.4,
Corollary 3.6). Moreover, the existence of at least two nontrivial solutions for problem (Pf

λ ) is
obtained assuming that F is p-sublinear at zero and p-superlinear at infinity (Theorem 3.5).

It is worth noticing that it is the first time that this type of results are obtained for
discrete problem with Neumann boundary conditions; instead of Dirichlet problem, similar
results have been already given in [6, 9, 13]. Moreover, in [14], the existence of multiple
solutions to problem (Pf

λ
) is obtained assuming different hypotheses with respect to our

assumptions (see Remark 3.7).
Investigation on the relation between continuous and discrete problems are available

in the papers [15, 16]. General references on difference equations and their applications in
different fields of research are given in [17, 18]. While for an overview on variationalmethods,
we refer the reader to the comprehensive monograph [19].

2. Critical Point Theorems and Variational Framework

Let X be a real Banach space, let Φ,Ψ : X → � be two functions of class C1 on X, and let λ
be a positive real parameter. In order to study problem (Pf

λ
), our main tools are critical points

theorems for functional of type Φ−λΨwhich insure the existence at least three critical points
for every λ belonging to well-defined open intervals. These theorems have been obtained,
respectively, in [6, 20, 21].

Theorem 2.1 (see [11, Theorem 2.6]). Let X be a reflexive real Banach space, Φ : X → � be a
coercive, continuously Gâteaux differentiable and sequentially weakly lower semicontinuous func-
tional whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X → � be a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact such that

Φ(0) = Ψ(0) = 0. (2.1)

Assume that there exist r > 0 and v ∈ X, with r < Φ(v) such that

(a1) supΦ(u)≤rΨ(u)/r < Ψ(v)/Φ(v),

(a2) for each λ ∈ Λr :=]Φ(v)/Ψ(v), r/supΦ(u)≤r Ψ(u)[ the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr , the functional Φ − λΨ has at least three distinct critical points in X.

Theorem 2.2 (see [7, Corollary 3.1]). Let X be a reflexive real Banach space, Φ : X → � be a
convex, coercive, and continuously Gâteaux differentiable functional whose Gâteaux derivative admits
a continuous inverse on X∗, and let Ψ : X → � be a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact such that

inf
X

Φ = Φ(0) = Ψ(0) = 0. (2.2)
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Assume that there exist two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) < r2/2 such that

(b1) supΦ(u)≤r1Ψ(u)/r1 < (2/3)(Ψ(v)/Φ(v)),

(b2) supΦ(u)≤r2Ψ(u)/r2 < (1/3)(Ψ(v)/Φ(v)),

(b3) for each λ ∈ Λ′ := ](3/2)(Φ(v)/Ψ(v)), min{r1/supΦ(u)≤r1Ψ(v), r2/2supΦ(u)≤r2Ψ(u)}[
and for every u1, u2 ∈ X, which are local minima for the functional Φ − λΨ such that
Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, and one has inft∈[0,1] Ψ(tu1 + (1 − t)u2) ≥ 0.

Then, for each λ ∈ Λ′, the functional Φ − λΨ admits at least three critical points which lie in
Φ−1(] −∞, r2[).

Finally, for all r > infX Φ, we put

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
supu∈(Φ−1]−∞,r[)Ψ(u)

)
−Ψ(u)

r −Φ(u)
,

λ∗ :=
1

inf{r>infXΦ} ϕ(r)
,

(2.3)

where we read 1/0 := +∞ if this case occurs.

Theorem 2.3 (see [8, Theorem 2.3]). Let X be a finite dimensional real Banach space. Assume that
for each λ ∈]0, λ∗[ one has

(e) lim‖u‖→∞Φ − λΨ = −∞.

Then, for each λ ∈]0, λ∗[, the functional Φ − λΨ admits at least three distinct critical points.

Remark 2.4. It is worth noticing that whenever X is a finite dimensional Banach space,
a careful reading of the proofs of Theorems 2.1 and 2.2 shows that regarding to the regularity
of the derivative of Φ and Ψ, it is enough to require only that Φ′ and Ψ′ are two continuous
functionals on X∗.

Now, consider the N-dimensional normed space W = {u : [0,N + 1] → � : Δu0 =
ΔuN = 0} endowed with the norm

‖u‖ :=

(
N+1∑

k=1

|Δuk−1|p +
N∑

k=1

qk|uk|p
)1/p

, ∀u ∈ W. (2.4)

In the sequel, we will use the following inequality:

max
k∈[0,N+1]

|uk| ≤ ‖u‖
q1/p

, ∀u ∈ W where q := min
k∈[1,N]

qk. (2.5)

Moreover, put

Φ(u) :=
‖u‖p
p

, Ψ(u) :=
N∑

k=1

F(k, uk), ∀u ∈ W, (2.6)
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where F(k, t) :=
∫ t
0 f(k, ξ)dξ for every (k, t) ∈ [1,N] × �. It is easy to show that Φ and Ψ are

two C1-functionals on W .
Next lemma describes the variational structure of problem (Pf

λ
), for the reader

convenience we give a sketch of the proof, see also [14],

Lemma 2.5. (W, ‖ · ‖) is a Banach space. Let u ∈ W , u be a solution of problem (Pf

λ ) if and only if u
is a critical point of the functional Φ − λΨ.

Proof. Bearing in mind both that a finite dimensional normed space is a Banach space and
the following partial sum:

−
N∑

k=1

Δ
(
φp(Δuk−1)

)
vk =

N+1∑

k=1

(
φp(Δuk−1)

)
Δvk−1, (2.7)

for every u and v ∈ W , standard variational arguments complete the proof.

Finally, we point out the following strong maximum principle for problem (Pf

λ
).

Lemma 2.6. Fix u ∈ W such that

−Δ(
φp(Δuk−1)

)
+ qk|uk|p−2uk ≥ 0 ∀k ∈ [1,N]. (2.8)

Then, either u > 0 in [1,N], or u ≡ 0.

Proof. Let j ∈ [1,N] be such that uj = mink∈[1,N] uk. An immediate computation gives

Δuj ≥ 0, Δuj−1 ≤ 0. (2.9)

From this, by (2.8), we obtain

qj
∣∣uj

∣∣p−2uj ≥
∣∣Δuj

∣∣p−2Δuj −
∣∣Δuj−1

∣∣p−2Δuj−1 ≥ 0, (2.10)

so uj ≥ 0, that is u ≥ 0. Moreover, assuming that uj = 0, from the preciding inequality and
nonnegativity of uj−1, uj+1, one has

0 ≤ ∣
∣Δuj

∣
∣p−2(uj+1

)
+
∣
∣Δuj−1

∣
∣p−2(uj−1

) ≤ 0, (2.11)

so uj−1 = uj+1 = 0. Thus, repeating these arguments, the conclusion follows at once.

3. Main Results

For each positive constants c and d, we write

A(c) :=
∑N

k=1 max|t|≤c F(k, t)
cp

, B(d) :=
∑N

k=1 F(k, d)
dp

, Q :=
N∑

k=1

qk. (3.1)
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Now, we give the main results.

Theorem 3.1. Assume that there exist three positive constants c, d, and s with c < d, and s < p such
that

(i1) A(c) < (q/Q)B(d),

(i2) maxk∈[1,N]lim sup|t|→+∞(F(k, t)/|t|s) < +∞.

Then, for every

λ ∈
]
Q

p

1
B(d)

,
q

p

1
A(c)

[
, (3.2)

problem (Pf

λ
) admits at least three solutions.

Proof. We apply Theorem 2.1, by putting Φ and Ψ defined as in (2.6) on the space W . An
easy computation ensures the regularity assumptions required on Φ and Ψ; see Remark 2.4.
Therefore, it remains to verify assumptions (a1) and (a2). To this hand, we put

r =
q

p
cp, (3.3)

and we pick v ∈ W , defined by putting

vk = d for every k ∈ [1,N]. (3.4)

Clearly, since c < d, one has r < Φ(v) = (Q/p)dp , and in addition, by (2.5), we have

supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤

sup‖u‖∞≤cΨ
(
q/p

)
cp

≤ p

q
A(c). (3.5)

On the other hand, we compute

Ψ(v)
Φ(v)

=
p

Q
B(d). (3.6)

Therefore, by (i1), combining (3.5) and (3.6), it is clear that (a1) holds. Moreover, one has

]
Q

p

1
B(d)

,
q

p

1
A(c)

[
⊂ Λr . (3.7)

Now, fix λ as in the conclusion; first, we observe that for every 1 ≤ s ≤ p, one has

N∑

k=1

|uk|s ≤ Nq(−s/p)‖u‖s, ∀u ∈ W. (3.8)
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Next, by (i2), there exist two positive constants M1 andM2 such that

F(k, ξ) ≤ M1|ξ|s +M2, ∀(k, ξ) ∈ [1,N] × �. (3.9)

Hence, for every u ∈ W , we get

Φ(u) − λΨ(u) ≥ ‖u‖p
p

− λM1

N∑

1

|uk|s − λNM2

≥ ‖u‖p
p

− λM1
N

qs/p
‖u‖s − λNM2.

(3.10)

At this point, since s < p, it is clear that the functional Φ − λΨ turns out to be coercive.

Remark 3.2. We note that hypothesis (i2) can be replaced with the following:

(i′2) maxk∈[1,N] lim sup|t|→+∞F(k, t)/|t|p < A(c)/N.

Arguing as before, there exist two constant L1 < A(c)/N and L2 such that

F(k, ξ) ≤ L1|ξ|p + L2, ∀(k, ξ) ∈ [1,N] × �. (3.11)

Hence, for every u ∈ W , it easy to see that

Φ(u) − λΨ(u) ≥ ‖u‖p
p

− q

p

1
A(c)

L1
N

q
‖u‖p − λNL2 ≥ 1

p

(
1 − NL1

A(c)

)
‖u‖p − λNL2, (3.12)

with (1 −NL1/A(c)) > 0.

Remark 3.3. It is worth noticing that a careful reading of the proof of Theorem 3.1 shows
that, provided that A(c) = 0 and under the only condition (i2), problem (Pf

λ ) admits at least
one solution for every λ > 0 and at least three solutions for every λ ∈](Q/p)(1/B(d)),+∞[,
whenever there exists d > 0 for which B(d) > 0.

Theorem 3.4. Let f be a continuous function in [1,N] × [0,+∞[ such that f(k, 0)/= 0 for some
k ∈ [1,N]. Assume that there exist three positive constants c1, d, and c2 with (2q/Q)1/pc1 < d <

((1/2)(q/Q))1/pc2 such that

(j1) f(k, ξ) ≥ 0 for each (k, ξ) ∈ [1,N] × [0, c2],

(j2) max{B(c1), 2B(c2)} < (2/3)(q/Q)B(d).

Then, for each λ ∈](3/2)(Q/p)(1/B(d)), (q/p)min{1/B(c1), 1/2B(c2)}[, problem (Pf

λ
) admits at

least three positive solutions ui, i = 1, 2, 3, such that

ui
k < c2, (3.13)

for all k ∈ [1,N], i = 1, 2, 3.
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Proof. Consider the auxiliary problem

−Δ(
φp(Δuk−1)

)
+ qkφp(uk) = λf̂(k, uk), k ∈ [1,N],

Δu0 = ΔuN = 0,
(Pf̂

λ
)

where f̂ : [1,N] × � → � is a continuous function defined putting

f̂(k, ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(k, 0), if ξ < 0,

f(k, ξ), if 0 ≤ ξ ≤ c2,

f(k, c2), if ξ > c2.

(3.14)

From (j1), owing to Lemma 2.6, any solution of problem (Pf

λ
) is positive. In addition, if

it satisfies also the condition 0 ≤ uk ≤ c2, and for every k ∈ [1,N], clearly it turns
to be also a positive solution of (Pf

λ ). Therefore, for our goal, it is enough to show that

our conclusion holds for (Pf

λ
). In this connection, our aim is to apply Theorem 2.2. Fix

λ in ](3/2)(Q/p)(1/B(d)), (q/p)min{1/B(c1), 1/2B(c2)}[ and let Φ, Ψ and W as before.
Now, take

r1 =
q

p
c
p

1 , r2 =
q

p
c
p
2 . (3.15)

From (2.5), arguing as before, we obtain

max
k∈[1,T]

|uk| ≤ c1, (3.16)

for all u ∈ W such that ‖u‖ ≤ (pr1)
1/p, and

max
k∈[1,T]

|uk| ≤ c2, (3.17)

for all u ∈ W such that ‖u‖ ≤ (pr2)1/p.
Therefore, one has

supu∈Φ−1(]−∞,r1[)Ψ(u)

r1
=
sup‖u‖<(pr1)1/p

∑N
k=1 F(k, u(k))

r1
≤
∑N

k=1 F(k, c1)
r1

=
p

q
B(c1), (3.18)

as well as

supu∈Φ−1(]−∞,r2[)Ψ(u)

r2
≤ p

q
B(c2). (3.19)



8 Advances in Difference Equations

On the other hand, pick v ∈ W , defined as in (3.4), bearing in mind (3.6), and from
(2q/Q)1/pc1 < d < ((1/2)(q/Q))1/pc2, we obtain 2r1 < Φ(v) < c2/2 Moreover, taking into
account (3.18), (3.19), from (j1), assumptions (b1) and (b2) follow. Further, again from (3.18),
(3.19), and (3.6), one has that

λ ∈
]
3
2
Q

p

1
B(d)

,
q

p
min

{
1

B(c1)
,

1
2B(c2)

}[
⊂ Λ′. (3.20)

Now, let u1 and u2 be two local minima forΦ− λΨ such thatΨ(u1) ≥ 0 andΨ(u2) ≥ 0. Owing
to Lemmas 2.5 and 2.6, they are two positive solutions for (Pf

λ
) so tu1

k
+ (1 − t)u2

k
≥ 0, for all

k ∈ [1,N] and for all t ∈ [0, 1]. Hence, since one has Ψ(tu1 + (1 − t)u2) ≥ 0 for all t ∈ [0, 1],
(b3) is verified.

Therefore, the functionalΦ−λΨ admits at least three critical points ui, i = 1, 2, 3, which
are three positive solutions of (Pf

λ
). Finally, from (2.5), for i = 1, 2, 3, one has

max
k∈[1,N]

∣∣∣ui
k

∣∣∣ ≤ c2, (3.21)

and the proof is completed.

Theorem 3.5. Let f : [1,N] × � → � be a continuous function such that f(k, 0)/= 0 for some
k ∈ [1,N]. Assume that there exist four constants M1, M2, s, and α, with M1 > 0, s > p and
0 ≤ α < s such that

(l) F(k, ξ) ≥ M1|ξ|s −M2|ξ|α, for all (k, ξ) ∈ [1,N] × �.

Then, for each λ ∈]0, λ∗[, where

λ∗ :=
q

p

1
supc>0A(c)

, (3.22)

problem (Pf

λ
) admits at least three nontrivial solutions.

Proof. Our aim is to apply Theorem 2.3 withΦ andΨ as above. Fix λ ∈]0, λ[, and there is c > 0
such that λ < (q/p)(1/A(c)). Setting r = (q/p)cp and arguing as in the proof of Theorem 3.1,
one has

1
λ∗ ≤ ϕ(r) ≤

supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤ p

q
A(c) <

1
λ
, (3.23)

that is λ < λ∗. Moreover, denote

q = max
k∈[1,N]

qk, (3.24)
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it is a simple matter to show that for each u ∈ W , one has

N∑

k=1

|u(k)|s ≥ ‖u‖s
[
(N + 1)2p + q

]s/p
N(s−p)/p

,
N∑

k=1

|u(k)|α ≤ Nq−α/p‖u‖α. (3.25)

Hence, from (l), for each u ∈ W , we get

Φ(u) − λΨ(u) ≤ ‖u‖p
p

− λM1
[
(N + 1)2p + q

]s/p
N(s−p)/p

‖u‖s + λM2Nq−α/p‖u‖α. (3.26)

Therefore, since s > p and s > α, condition (e) is verified. Hence, from Theorem 2.3, the
functional Φ − λΨ admits three critical points, which are three solutions for (Pf

λ ). Since
f(k, 0)/= 0 for some k ∈ [1,N], they are nontrivial solutions, and the conclusion is proved.

Corollary 3.6. Let f : [1,N] × � → � be a continuous function such that f(k, 0)/= 0 for some
k ∈ [1,N]. Assume that there exist four constants M1, M2, c, and α with M1 > 0 and 0 ≤ α < p
such that

(l1) A(c) < qM1/[(N + 1)2p + q],

(l2) F(k, ξ) ≥ M1|ξ|p −M2|ξ|α, for all (k, ξ) ∈ [1,N] × �.

Then, for every

λ ∈
][

(N + 1)2p + q
]

pM1
,
q

p

1
A(c)

[

, (3.27)

problem (Pf

λ
) admits at least three solutions.

Proof. Our claim is to prove that condition (e) of Theorem 2.3 holds for every λ ∈][(N+1)2p+
q]/pM1, (q/p)(1/A(c))[⊂]0, λ∗[. Indeed, from (l1), arguing as in (3.23), one has that λ < λ∗.
Moreover, by (l2), from (3.26) with s = p, for every u ∈ W , we have

Φ(u) − λΨ(u) ≤ ‖u‖p
p

− λM1[
(N + 1)2p + q

]‖u‖p + λM2Nq−α/p‖u‖α

≤
(

1
p
− λM1[

(N + 1)2p + q
]

)

‖u‖p + λM2Nq−α/p‖u‖α,
(3.28)

where (1/p − λM1/[(N + 1)2p + q]) < 0, which implies condition (e).

Remark 3.7. In [14], by Mountain Pass Theorem, the authors established the existence of at
least one solution for problem (Pf

λ
) requiring the following conditions:

(θ1) f(k, t) = ◦(|t|p−1) for t → 0 uniformly in k ∈ [1,N],
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(θ2) there exist two positive constants ρ and swith s > p such that

0 < sF(k, t) ≤ tf(k, t), (3.29)

for every |t| > ρ and (k, ξ) ∈ [1,N] × �.
Moreover, they remember that the above conditions imply, respectively, the following:

(θ3) F(k, t) = ◦(|t|p) for t → 0 uniformly in k ∈ [1,N],

(θ4) there exist two positive constantsM1 andM2 such that

F(k, ξ) ≥ M1|ξ|s −M2, ∀(k, ξ) ∈ [1,N] × �. (3.30)

Next result shows that undermore general conditions than (θ3) and (θ4), problem (Pf

1 )
has at least two nontrivial solutions.

Theorem 3.8. Assume that (l2) holds and in addition

(θ5) maxk∈[1,N] lim sup|t|→ 0(F(k, t)/|t|p) < +∞.

Then, problem (Pf

1 ) has at least two nontrivial solutions.

Proof. We claim that the functionalΦ−Ψ admits a local minimum at zero and a local nonzero
maximum. To this end, we observe that by (θ5), there exist M > 0 and ρ > 0 such that

F(k, t) ≤ M1|t|p, for every |t| ≤ ρ, k ∈ [1,N]. (3.31)

Hence, bearing in mind Lemma 2.5 and (3.25), with s = p, for every u ∈ W with ‖u‖ ≤ ρ p
√
q,

we get

Φ(u) −Ψ(u) ≥
(
1
p
− MN

q

)‖u‖p
p

≥ 0 = Φ(0) −Ψ(0), (3.32)

that is, 0 is a local minimum. Moreover, by (l2), by now, it is evident that the functional
Φ −Ψ is anticoercive in W . Hence, by the regularity of Φ − Ψ, there exists u ∈ W which is a
global maximum for the functional. Therefore, since it is not restrictive to suppose that u/= 0
(otherwise, there are infinitely many critical points), our conclusion follows: if dim(X) ≥ 2,
from Corollary 2.11 of [22] which ensures a third critical point different from 0 and u and by
standards arguments if dim(X) = 1.
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