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The classical Nambumechanics is generalized to involve fractional derivatives using two different
methods. The first method is based on the definition of fractional exterior derivative and the
second one is based on extending the standard velocities to the fractional ones. Fractional Nambu
mechanics may be used for nonintegrable systems with memory. Further, Lagrangian which is
generate fractional Nambu equations is defined.

1. Introduction

Derivatives and integrals of fractional-order have found many applications in recent studies
in mechanics and physics, for example, in chaotic dynamics, quantum mechanics, plasma
physics, anomalous diffusion, and so many fields of physics [1–12]. Fractional mechanics
describes both conservative and nonconservative systems [13, 14]. In mechanics, Riewe has
shown that Lagrangian involving fractional time derivatives leads to equation of motion with
nonconservative classical derivatives such as friction [13, 14]. Motivated by this approach
many researchers have explored this area giving new insight into this problem [15–37].
Agrawal has presented fractional Euler-Lagrangian equation involving Riemann-Liouville
derivatives [16, 17]. Further fractional single and multi-time Hamiltonian formulation has
been developed by Baleanu and coworkers [38].

In 1973, Nambu generalized Hamiltonian mechanics which is called now Nambu
mechanics. This formalism is shown that provide a suitable framework for the odd
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dimensional phase space and nonintegrable systems [39–43]. By this motivation the authors
have fractionalized this formalism [21].

In this work twomethods are introduced for fractionalizing of Nambumechanics. The
first method is based on the definition of fractional exterior derivative and fractional forms.
The second methods is based on fractionalizing of classical velocity. The resulted equations
using these methods may use for complex memorial systems.

This paper is organized as follows.
Section 2 is devoted to a brief review of the fractional derivative definitions

and fractional forms. Section 3 contains the classical Nambu mechanics. Section 4 deals
with fractionalizing Hamiltonian mechanics using fractional differential forms. Using two
different methods in Section 5 the Nambu mechanics has been fractionalized. In Section 6
is defined a Lagrangian which its variation gives the fractional Hamiltonian equations. In
Section 7 we present our conclusions.

2. Basic Tools

The following subsections contain all mathematical tools used in this manuscript.

2.1. Fractional Derivatives

In this section it is briefly presented the definition of the left and the right fractional
derivatives of Riemann-Liouville as well as Caputo [6, 7]. The left Riemann-Liouville
fractional derivative is defined as

aD
α
t f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

a

f(τ)

(t − τ)α+1−n
dτ, (2.1)

and the right Riemann-Liouville fractional derivative,

tD
α
bf(t) =

1
Γ(n − α)

(
− d

dt

)n ∫b

t

f(τ)

(τ − t)α+1−n
dτ, (2.2)

where the order α fulfills n − 1 ≤ α < n and Γ represent the gamma function. An
alternative definition of Riemann-Liouville fractional derivative called Caputo derivative that
introduced by Caputo in 1967. The left Caputo derivative defined as

C
aD

α
t f(t) =

1
Γ(n − α)

∫ t

a

(t − τ)n−α−1
(

d

dτ

)n

f(τ)dτ, (2.3)

and the right Caputo fractional derivative

C
t D

α
bf(t) =

1
Γ(n − α)

∫b

t

(τ − t)n−α−1
(
− d

dτ

)n

f(τ)dτ, (2.4)
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where the order α satisfies n − 1 ≤ α < n. The Riemann-Liouville derivative of constant isn’t
zero, but the Caputo derivative of a constant is zero.

2.2. Fractional Forms

The calculus of classical differential forms is a powerful tool in applied mathematics. There
are so many books that give a clear introduction to this field [44]. In calculus when a new
function appears in the scene, it is natural to ask what its derivative is. Similarly with form,
it is reasonable to ask what its exterior derivative is. For example a 1-form, integer-order one,
can be shown as follows:

ω =
n∑
i=1

aidxi. (2.5)

The classical exterior derivative is defined as

d = dxi
∂

∂xi
. (2.6)

In [45, 46] the author generalizes the definition of integer-order vector spaces form to
fractional-order one, and denotes it by F(ν,m, n). In this notation ν is the order of differential
form, m the number of coordinate differential appearing in the basis elements, n the number
of coordinates. For instance (2.5) is an element of F(1, 1, n).

The Definition of Fractional Exterior Derivative

If the partial derivative in the definition of the classical exterior derivative, is replaced by the
fractional-order, definition of fractional exterior derivative is obtained,

dν =
n∑
i=1

dxν
i 0D

ν
xi
, (2.7)

where 0D
ν
x is left fractional derivative. Let σ ∈ F(ν, 1, n),

σ =
n∑
i=1

σidx
ν
i , (2.8)

and consider its fractional exterior derivative

dνσ =
n∑
i=1

dν(σidx
ν
i

)
. (2.9)
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Using the product rule of exterior fractional derivative,

dνσ =
n∑
i=1

n∑
j=1

0D
ν
xjσidx

ν
j ∧ dxν

i . (2.10)

If dνσ = 0, then

0D
ν
xjσi −0D

ν
xiσj = 0. (2.11)

Note that in the following equations, the ∧ sign is omitted between the differential forms.

3. Nambu Mechanics

Consider the Hamilton equations

q̇ =
∂H

∂p
,

ṗ = −∂H
∂p

.

(3.1)

In another notation

q̇ =
∂q

∂q

∂H

∂p
− ∂H

∂q

∂q

∂p
=

∂
(
q,H

)
∂
(
q, p

) ,

ṗ =
∂p

∂q

∂H

∂p
− ∂H

∂q

∂p

∂p
=

∂
(
p,H

)
∂
(
q, p

) .

(3.2)

Nambu generalized these equations to triplet p, q, r dynamical variables with two Hamilto-
nians H1,H2 as follows:

q̇ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂q

∂q
0 0

∂H1

∂q

∂H1

∂p

∂H1

∂r

∂H2

∂q

∂H2

∂p

∂H2

∂r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂
(
q,H1,H2

)
∂
(
q, p, r

) ,
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ṗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∂p

∂p
0

∂H1

∂q

∂H1

∂p

∂H1

∂r

∂H2

∂q

∂H2

∂p

∂H2

∂r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂
(
q,H1,H2

)
∂
(
q, p, r

) ,

ṙ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
∂r

∂r

∂H1

∂q

∂H1

∂p

∂H1

∂r

∂H2

∂q

∂H2

∂p

∂H2

∂r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂
(
q,H1,H2

)
∂
(
q, p, r

) . (3.3)

Considering these equations in terms of differential from, take the following 1-form:

Ω(1) = pdq −H
(
p, q

)
dt. (3.4)

The exterior derivative of Ω(1) is

dΩ(1) =
(
dp +

∂H

∂q
dt

)
∧
(
dq − ∂H

∂p
dt

)
. (3.5)

The Pfaffian equations is obtained, and then the Hamiltonian equations are resulted.
Now in terms of differential forms the Nambu mechanics is obtained using the

following form:

Ω(2) = qdp ∧ dr −H1dH2 ∧ dt. (3.6)

The exterior derivative of this form is as follows:

dΩ(2) =

(
dq − ∂(H1,H2)

∂
(
p, r

) dt

)
∧
(
dp − ∂(H1,H2)

∂
(
r, q

) dt

)
∧
(
dr − ∂(H1,H2)

∂
(
q, p

) dt

)
= θ ∧ ρ ∧ σ,

(3.7)
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where

θ = dq − ∂(H1,H2)
∂
(
p, r

) dt,

ρ = dp − ∂(H1,H2)
∂
(
r, q

) dt,

θ = dr − ∂(H1,H2)
∂
(
q, p

) dt.

(3.8)

Now the Paffian equations. Equating themwith zero we lead to Nambumechanics equations.

4. Fractional Hamilton’s Equations

The fractional generalization of (3.4) can be defined by

Ω(1)
α = p

(
dq

)α −H
(
p, q

)
(dt)α. (4.1)

The fractional exterior derivative of this form is as follows:

dα
(
Ω(1)

α

)
= dα(p) ∧ (

dq
)α − dαH

(
p, q

) ∧ (dt)α. (4.2)

Taking

dαp =
p1−α

Γ(2 − α)
(
dp

)α
,

dαH =
∂αH

∂pα
(
dp

)α + ∂αH

∂qα
(
dq

)α
,

(4.3)

we have

dα
(
Ω(1)

α

)
=

pα−1

Γ(2 − α)
(
dp

)α ∧ (
dq

)α − ∂αH

∂pα
(
dp

)α ∧ (dt)α +
∂αH

∂qα
(
dq

)α ∧ (dt)α,

=

(
p1−α

Γ(2 − α)
(
dp

)α − ∂αH

∂qα
(dt)α

)
∧
((

dq
)α − Γ(2 − α)

p1−α
∂αH

∂pα
(dt)α

)
.

(4.4)

The fractional Pfaffian equations are as follows:

θα =
p1−α

Γ(2 − α)
(
dp

)α − ∂αH

∂qα
(dt)α,

ρα =
(
dp

)α − Γ(2 − α)
p1−α

∂αH

∂pα
(dt)α.

(4.5)
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The fractional Hamiltonian equations is resulted

p1−α

Γ(2 − α)
(
dp

)α =
∂αH

∂qα
(dt)α,

(
dq

)α =
Γ(2 − α)
p1−α

∂αH

∂pα
(dt)α.

(4.6)

5. Fractional Nambu Mechanics

Method 1. In this part, we present the fractional Nambu mechanic based on fractional
generalization of the form (3.6). As a result, we obtain

Ω(2)
α = q

(
dp

)α ∧ (dr)α −H1
(
dαH2 − (dt)α

)
. (5.1)

Taking

dα =
∂α

∂pα
(
dp

)α + ∂α

∂qα
(
dq

)α
,

∂αq

∂qα
=

q1−α

Γ(2 − α)
,

(5.2)

the exterior of this form is

dαΩ(2)
α =

(
q1−α

Γ(2 − α)
(
dq

)α − ∂α(H1,H2)
∂α

(
p, r

) (dt)α
)

∧
((

dp
)α − Γ(2 − α)

q1−α
∂α(H1,H2)
∂α

(
q, r

) (dt)α
)

∧
(
(dr)α − Γ(2 − α)

q1−α
∂α(H1,H2)
∂α

(
q, p

) (dt)α
)
.

(5.3)

We lead to Pfaffian equations

q1−α

Γ(2 − α)
(
dq

)α − ∂α(H1,H2)
∂α

(
p, r

) (dt)α = 0,

(
dp

)α − Γ(2 − α)
q1−α

∂α(H1,H2)
∂α

(
q, r

) (dt)α = 0,

(dr)α − Γ(2 − α)
q1−α

∂α(H1,H2)
∂α

(
q, p

) (dt)α = 0.

(5.4)

It can be generalized as follows:

Ω(n−1)
α = x1(dx2)

α ∧ · · · ∧ (dxn)
α −H1d

αH2 ∧ · · · ∧ dαHn−1 ∧ (dt)α. (5.5)
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Method 2. In this part we present the fractional Nambu mechanics based on two Lagrangian
formulation. In simple fractional Hamiltonian equations we have

aD
α
t q =

∂H

∂p
=

∂
(
q,H

)
∂
(
q, p

) ,

− tD
α
bp =

∂H

∂q
=

∂
(
p,H

)
∂
(
q, p

) .

(5.6)

If we generalize these equations to Nambu fractional:

aD
α
t q =

∂
(
q,H1,H2

)
∂
(
q, p, r

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂q

∂q
0 0

∂H1

∂q

∂H1

∂p

∂H1

∂r

∂H2

∂q

∂H2

∂p

∂H2

∂r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∂H1

∂p

∂H2

∂r
− ∂H2

∂r

∂H1

∂p
,

− tD
α
bp =

∂
(
p,H1,H2

)
∂
(
q, p, r

) ,

− tD
α
b r =

∂(r,H1,H2)
∂
(
q, p, r

) .

(5.7)

In classical mechanics only variable, q, is considered as a configuration variables and
variables, p, r are first and second canonical variables, respectively. Suppose that it could
be existed as many Lagrangian as the number of Hamiltonian. In the simplest case suppose
that L1(q, aD

α
t q) and L2(q, aD

α
t q)

δ

∫
L1

(
q, aD

α
t q

)
dt,

δ

∫
L2

(
q, aD

α
t q

)
dt.

(5.8)

Then the Fractional Euler-Lagrangian equations are

∂L1

∂q
+ tD

α
b

∂L1

∂aD
α
t q

= 0,

∂L2

∂q
+ tD

α
b

∂L2

∂aD
α
t q

= 0.

(5.9)
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Next are defined the first and second canonical momentum p, r

p =
∂L1

∂aD
α
t q

,

r =
∂L2

∂aD
α
t q

,

(5.10)

and then the fractional Euler-Lagrange equations are

t D
α
bp =

∂L1

∂q
,

tD
α
b r =

∂L2

∂q
.

(5.11)

Now we define two Hamiltonians H1 and H2 as follows:

1

aD
α
t q

d
[
paD

α
t q − L1

] ∧ d
[
raD

α
t q − L2

]
= dH1 ∧ dH2. (5.12)

Therefore we obtain

aD
α
t qdp ∧ dr + tD

α
bpdr ∧ dq + tD

α
b rdq ∧ dp = dH1 ∧ dH2. (5.13)

By expanding the right hand and by comparing the coefficients of form we lead to fractional
Nambu mechanic equations.

This result can be generalized to the n-dimensional case, namely L1(q, aD
α
t q),

. . . , Ln−1(q, aD
α
t q). As before we calculate the momenta p1 = ∂L1/∂aD

α
t q, . . . , pn = ∂L(n −

1)/∂aDα
t q, and so on

dH1 ∧ · · ·dHn−1 =
1(

aD
α
t q

)n−2d
(
p1a D

α
t q − L1

) ∧ · · ·d(pn−1a Dα
t q − Ln−1

)
. (5.14)

6. A Fractional Lagrangian Formulation

Let us assumed that the functions q(t′, t), p(t′, t), r(t′, t) are of two variable t, t′. Then the
corresponding Lagrangian is given by the following form:

L =
∫[

q

(
tD

α
bp

∂r

∂t′
− ∂p

∂t′ t
Dα

b r

)
−H1

(
∂H2

∂q

∂q

∂t′
+
∂H2

∂p

∂p

∂t′
+
∂H2

∂r

∂r

∂t′

)]
dt′. (6.1)

Imposing

δS = 0, (6.2)
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we obtain

δS =
∫∫[

δq

(
t D

α
bp

∂r

∂t′
− ∂p

∂t′ t D
α
b r

)
− δH1

(
∂H2

∂q

∂q

∂t′
+
∂H2

∂p

∂p

∂t′
+
∂H2

∂r

∂r

∂t′

)

−H1δ

(
∂H2

∂q

∂q

∂t′
+
∂H2

∂p

∂p

∂t′
+
∂H2

∂r

∂r

∂t′

)]
dt′dt,

(6.3)

or

δS =
∫∫[

δq

(
−∂p
∂t′ t

Dα
b r + tD

α
bp

∂r

∂t′

)
− ∂H1

∂q
δq

(
∂H2

∂q

∂q

∂t′
+
∂H2

∂p

∂p

∂t′
+
∂H2

∂r

∂r

∂t′

)

−H1

(
∂2H2

∂q2
δq

∂q

∂t′
+
∂H2

∂q

∂

∂t′
δq +

∂2H2

∂p∂q

∂p

∂t′
δq +

∂2H2

∂r∂q

∂r

∂t′
δq

)]
dt′dt.

(6.4)

After some calculations, we obtain

δS =
∫∫{[(

tD
α
b r −

∂(H1,H2)
∂
(
q, p

)
)

∂p

∂t′
−
(

tD
α
bp − ∂(H1,H2)

∂
(
r, q

)
)

∂r

∂t′

]
δq

+

[(
aD

α
t q −

∂(H1,H2)
∂
(
p, r

)
)

∂r

∂t′
−
(

tD
α
b r −

∂(H1,H2)
∂
(
q, p

)
)

∂q

∂t′

]
δp

+

[(
tD

α
bp − ∂(H1,H2)

∂
(
r, q

)
)

∂q

∂t′
−
(

aD
α
t q −

∂(H1,H2)
∂
(
p, r

)
)

∂p

∂t′

]
δr

}
dt′dt.

(6.5)

We conclude that if (5.7) is satisfied, then δS = 0 for arbitrary variations of δq, δp and δr.

7. Conclusions

In this paper, we defined new equations corresponding to the complex systems described by
the Nambu mechanics within the languages of the fractional differential forms. It is shown
that variation of the corresponding new action using fractional Lagrangian gives fractional
Nambu equations. The equivalent methods presented in this manuscript can be applied to
investigate the dynamics of the complex nonintegrable systems with memory. The classical
results are obtained in the limiting case α → 1.
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