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This paper discusses the existence of solutions to antiperiodic boundary value problem for
nonlinear impulsive fractional differential equations. By using Banach fixed point theorem,
Schaefer fixed point theorem, and nonlinear alternative of Leray-Schauder type theorem, some
existence results of solutions are obtained. An example is given to illustrate the main result.

1. Introduction

In this paper, we consider an antiperiodic boundary value problem for nonlinear fractional
differential equations with impulses

Du(t) = f(t,u(t)), te[0,T], t#tx, k=1,2,...,p,
Aulpey, = Ie(u(ty)), Al = k(u(te), k=12,...,p, (1.1)
u(0) +u(T) =0, u'(0) +1/(T) =0,

where T is a positive constant, 1 < a < 2, €D~ denotes the Caputo fractional derivative of
order a, f € C([0,T] x R,R), Iy, Jx : R — Rand {t;} satisfy that 0 =ty <t; <tp <--- <t, <
tpn =T, Auliy, = u(t)) —u(ty), Aw'|-,, = v/ () — ' (t), u(t]) and u(t,) represent the right
and left limits of u(t) at t = t.

Fractional differential equations have proved to be an excellent tool in the mathematic
modeling of many systems and processes in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control,
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electromagnetic, porous media, and so forth. In consequence, the subject of fractional
differential equations is gaining much importance and attention (see [1-6] and the references
therein).

The theory of impulsive differential equations has found its extensive applications
in realistic mathematic modeling of a wide variety of practical situations and has emerged
as an important area of investigation in recent years. For the general theory of impulsive
differential equations, we refer the reader to [7, 8]. Recently, many authors are devoted to the
study of boundary value problems for impulsive differential equations of integer order, see
[9-12].

Very recently, there are only a few papers about the nonlinear impulsive differential
equations and delayed differential equations of fractional order.

Agarwal et al. in [13] have established some sufficient conditions for the existence of
solutions for a class of initial value problems for impulsive fractional differential equations
involving the Caputo farctional derivative. Ahmad et al. in [14] have discussed some
existence results for the two-point boundary value problem involving nonlinear impulsive
hybrid differential equation of fractional order by means of contraction mapping principle
and Krasnoselskii’s fixed point theorem. By the similar way, they have also obtained the
existence results for integral boundary value problem of nonlinear impulsive fractional
differential equations (see [15]). Tian et al. in [16] have obtained some existence results for the
three-point impulsive boundary value problem involving fractional differential equations by
the means of fixed points method. Maraaba et al. in [17, 18] have established the existence and
uniqueness theorem for the delay differential equations with Caputo fractional derivatives.
Wang et al. in [19] have studied the existence and uniqueness of the mild solution for a
class of impulsive fractional differential equations with time-varying generating operators
and nonlocal conditions.

To the best of our knowledge, few papers exist in the literature devoted to the
antiperiodic boundary value problem for fractional differential equations with impulses. This
paper studies the existence of solutions of antiperiodic boundary value problem for fractional
differential equations with impulses.

The organization of this paper is as follows. In Section 2, we recall some definitions of
fractional integral and derivative and preliminary results which will be used in this paper. In
Section 3, we will consider the existence results for problem (1.1). We give three results, the
first one is based on Banach fixed theorem, the second one is based on Schaefer fixed point
theorem, and the third one is based on the nonlinear alternative of Leray-Schauder type. In
Section 4, we will give an example to illustrate the main result.

2. Preliminaries

In this section, we present some basic notations, definitions, and preliminary results which
will be used throughout this paper.

Definition 2.1 (see [4]). The Caputo fractional derivative of order a of a function f : [0, 0) —
R is defined as

CDf(t) = ﬁ ﬂ (t-s)" " fMW(s)ds, n-l<a<n n=[a]+1, (2.1)

where [a] denotes the integer part of the real number a.
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Definition 2.2 (see [4]). The Riemann-Liouville fractional integral of order & > 0 of a function
f(t),t>0,is defined as

1 t
IO = 5o fo (E- )" f(s)ds, (22)

provided that the right side is pointwise defined on (0, o0).

Definition 2.3 (see [4]). The Riemann-Liouville fractional derivative of order &« > 0 of a
continuous function f : (0,00) — Ris given by

a — 1 a\" ! n-a-1
D f(t) = m(—t> fO (t - S) f(S)dS, (23)

where n = [a] + 1 and [a] denotes the integer part of real number a, provided that the right
side is pointwise defined on (0, o).

For the sake of convenience, we introduce the following notation.

Let] = [O,T],]o = [0,1’1],],’ = (ti,ti+1],i = 1,2,...,p—1,]p = (i’p,T].]I = ]\{tl,tz,. ..,tp .
We define PC(J) = {u: [0,T] — R|u € C(J'),u(ty) and u(t,) exists, and u(t,) = u(ty), 1 <
k < p}. Obviously, PC(J) is a Banach space with the norm |[|u|| = suptejlu(t)l.
Definition 2.4. A function u € PC(J) is said to be a solution of (1.1) if u satisfies the equation
‘D*u(t) = f(t,u(t)) for t € J', the equations Aul,_, = Ix(u(ty)), Au'l, = Je(u(ty)), k =
1,2,...,p, and the condition u#(0) + u(T) =0, u'(0) + u'(T) = 0.

Lemma 2.5 (see [20]). Let a > 0; then
I“D*u(t) = u(t) + co + crt + o> + -+ + cuat"™, (2.4)

forsomec; € R, i=0,1,2,...,n—-1,n=[a] +1

Lemma 2.6 (nonlinear alternative of Leray-Schauder type [21]). Let E be a Banach space with
C C E closed and convex. Assume that U is a relatively open subset of C with 0 € Uand A : U — C
is continuous, compact map. Then either

(1) A has a fixed point in U, or
(2) there exists u € OU and A € (0,1) with u = AAu.

Lemma 2.7 (Schaefer fixed point theorem [22]). Let S be a convex subset of a normed linear space
Qand 0 € S. Let F: S — S be a completely continuous operator, and let

¢(F)={ueS:u=AFu, for some 0 <\ <1}. (2.5)

Then either {(F) is unbounded or F has a fixed point.
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Lemma 2.8. Assume that y € C([0,T],R), T >0, 1 < a < 2. A function u € PC(]) is a solution
of the antiperiodic boundary value problem
CD*u(t) =y(t), te[0,T], t#t, k=1,2,...,p,
Ault:tk = I (u(ty)), Au,lt:tk = Ji(u(ty)), k=1,2,.. P, (2.6)
u(0) +u(T) =0, ' (0) +u/(T) =

if and only if u is a solution of the integral equation

p+1
m)f - S’ds‘r() f (ti = )"y (s)ds
1 _
_mZ(T t‘)J‘tl1 (t; — 5)*y(s)ds
T -2t "“ t

o), G0 <s>ds——Z<T £) Ji (u(t:)

T2t

(u(ti) - ZI(u(t ), telot],

L _ oyl _ oyl
F(a),[t (t—1s) y(s)ds+r() J (ti—=s)" y(s)ds

0 5 i L 3 27)
u = 1 —g)* — t: .
ZT(a) jll(t s)* y(s)ds + e 1)§(t ti)
«f " (- oy (s)ds
21"(a 1) t)ft, 1 (ti — 5)"*y(s)ds

T-2t %4 s k
TIa-1)£ L,l““s) y(s)ds + 2 (¢ =t i(u(t)

)
St « 2 S )
i=1 i=1

k P
1
+ > Liu(t)) - EZL-(u(t,-)), tE (tk, tear], 1<k <p.
i=1 i=1
Proof. Assume that y satisfies (2.6). Using Lemma 2.5, for some constants cp, ¢ € R, we have

t
u(t) =I1"y(t) —co—cit = % fo (t- s)“_ly(s)ds —co—cit, te]0,t]. (2.8)
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Then, we obtain
u'(t) = = J‘t (t-s) (s)ds-c te[0,t] (2.9)
r( ]) 0 y 1, s *

If t € (11, t], then we have

t

ut)= g | -9 s —dy-ai-),
(2.10)

'(t)—%f (- 9)"2y(s)ds - d
u “Ta-1) , s)*y(s)ds — ds,
where dy, d; € R are arbitrary constants. Thus, we find that
u(t) = r( ) (t1 ~ )"y (s)ds — co — caty,
u(ti’) = —do,

(2.11)

u'(t]) = EE) ! 0 (t1 - 8)*?y(s)ds - c1,

”'(tT) =—d

In view of Aul,_;, = u(t]) —u(t]) = I (u(t)) and Auw'|,_, = u'(t]) —u'(t]) = J1(u(t1)), we have

ty
—do = ﬁ J‘O (t1 - S)aily(S)dS —Co — Cltl + Il (u(tl))/

t (2.12)
= g | (=9 — e+ Rt
Hence, we obtain
t
u(t) = e )f (t—s)™ 1y(s)ds+r( 5 (tl—s)”‘_ly(s)ds
s [ = s + - Gutn) =

+L(u(t)) —co—at, te(t, bl
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Repeating the process in this way, the solution u(t) for t € (t, tx+1] can be written as

u(t) = r(la) (t—s)"'y(s)ds + — r( 2 L (t; —s)" 'y (s)ds
1 k t; w2 k
+ mg‘(t ~t;) L (ti—=8)""y(s)ds + g‘(t —t:) Ji(u(t;)) (2.14)
k
+ ZIi(u(ti)) —co—cit, te€ (], k=1,2,.. P
i=1
On the other hand, by (2.14), we have
1 (T . 1 & .
u(T) = @ L (T - 5)*'y(s)ds + W; L_l (ti—s)*'y(s)ds
(1 ) “2y(s)ds + (T
2T f (=5)"y(s)ds + (T =t J(u(t)
+ i[i(u(ti)) —co-ciT, (2.15)
14 ti
u'(T) = e f (T -5)"?y(s)ds + ——— I -y ZI (t = s)* 2y (s)ds

( i=1 7 tic1

p
+ > Jilu(t) —ci.

i=1

By the boundary conditions #(0) + u(T) =0, #'(0) + #/(T) = 0, we obtain
p+1 . 1 P ti 5
c ti—s)* y(s)ds + T—tl-f ti—s)*y(s)ds
0= o2 fM( YO e ST [ - 9ye)

p+1 o Tp
4F(a 72 fl(t—s) y(s)ds — Z; (u(t;))

tie

(2.16)

| -

p
+ 5 2T = ) Ji(u(t) + Zuu(t))
i=1

P+1 a2
R E: f y(s)ds + ZL(a(t))

Substituting the values of ¢y and ¢; into (2.8), (2.14), respectively, we obtain (2.7).
Conversely, we assume that u is a solution of the integral equation (2.7). By a

direct computation, it follows that the solution given by (2.7) satisfies (2.6). The proof is

completed. O
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3. Main Result

In this section, our aim is to discuss the existence and uniqueness of solutions to the problem
(1.1).

Theorem 3.1. Assume that

(H1) there exists a constant Ly > 0 such that |f(t,u) — f(t,v)| < L1|u —v|, for each t € ] and
allu, v € R;

(H?2) there exist constants Ly, Lz > 0 such that Iy(u) — Ix(v) < Lylu —v|, Jr(u) — Jx(v) <
Lilu—v|, foreacht € Jandallu, veR, k=1,2,...,p.

If

L1<(3p+5)T“ +7(p+1>T“> p<3L +EL3) <1 3.1)

2T(a+1) AT (a) 2

then problem (1.1) has a unique solution on J.

Proof. We transform the problem (1.1) into a fixed point problem. Define an operator T :
PC(J) — PC(J) by

(Tu)(t) = r(la) (=) 1f(s,u<s>>ds+m0<tk<tftkl(tk—sy‘1 £(s,u(s))ds
p+1
ZF(zx) L (ti =) f(s,u(s))ds
F(a 5 2 (=t | " -9 (s u(s)ds
O<ti<t k-1
_1 L i a-2
_zr(a_l)Z(T_ti)f (ti—8)" 7 f(s,u(s))ds (3.2)
i=1 ti1
p+l
4FT(,X 2t1) f = )" f(s,u(s))ds

+ > (f—tk)]k(u(fk))——Z(T t)]z(u(t))+

O<ty<t

14
23 )
i=1

+ 3 Le(u(te) - 5 ZI (u(ts)),

O<tr<t
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where PC(]) is with the norm ||u|| = suptejlu(t)l. Let u, v € PC(J); then for each t € |, we
have

|(Tu)(t) = (To)(#)]

b r(la) (t S)a 1|f(s M(S)) f(s U(S )ldS
Y.t _
F(cx) 0<tZk<t th 1 (t =) | f(s,u(s)) — f(s,v(s))|ds

p+1 .
D) f (1= )" | (s, u(s)) ~ f(5,0(5))|ds

ty
LSt (-9 (s, u(s) - f(s,005))|ds

+ —_—
I(a-1) O<tr<t ti1

P t;
20 1 1)Z(T ~ ) L (ti = )| f (s, u(s)) - f(5,0(s))|ds

2t| p+l

4F(1x 1)< J; ) (ti =) 2| f(s,u(s)) = f(s,0(s))]|ds

(3.3)
+ D0 (=t e (ute) - Je(o(t)] +%Z(T_ti)|]i(u(ti)) = Ji(v(t:))]
i=1

O<ty<t

L= 2t|

ZIL( (1)) = i)+ D) (u(te)) — I(v (k)|

O<tr<t
1 p
+ §Z|Ii(u(ti)) - Li(o(t))]
i=1

1
Lijlu-o| (* 3141||u—v||p+

< t—s)lds+ —— % f (ti—s)* 'ds
['() tk( ) &),
7TLy||lu - v||"“f wo.  3p 7Tp
—L Py
D) S, (o) ds+ FLaluol+ P Ll
LSRRI L VR A o L Y
STar "™ N ey MO e ¢

3 7T
+ Llollu-ol + ZF Lslu -l

B Bp+5T* 7(p+1)T" 3 7T
_[L1<2F(a+1) T i) > P<2L2+ZL3>]””_U”‘
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Therefore,
Bp+5)T* 7(p+1)T* 3 7T
|ITu—-To| < [L1< T(a+ D) + e +p<§L2+ I]_@) || —v]|. (3.4)
Since
Bp+5)T* 7(p+1)T* 3 7T
L1< Zr(“+1) + 4r(a) p( L, + ZL?)) <1, (35)

consequently T is a contraction; as a consequence of Banach fixed point theorem, we deduce
that T has a fixed point which is a solution of the problem (1.1). O

Theorem 3.2. Assume that

(H3) the function f : ] x R — R is continuous and there exists a constant Ny > 0 such that
|f(t,u)] < Ny foreacht € Jandall u € R;

(H4) the functions I, Ji : R — R are continuous and there exist constants Np, N3 > 0 such
that |Ii (u)| < Na, |Jx(u)| < N3, forallu e R, k=1,2,...,p.

Then the problem (1.1) has at least one solution on J.

Proof. We will use Schaefer fixed-point theorem to prove T has a fixed point. The proof will
be given in several steps.

Step 1. T is continuous.
Let {u,} be a sequence such that u, — uin PC(J); we have

|(Tun) (t) = (Tu)(B)]

a-1
—1"() (t—S) | f (s, un(s)) = f(s,u(s))|ds

EPAY: 2 | _
r(a) O<t<t J‘tk 1 (tk S) |f(S, un(s)) f(S, u(S)) |ds

p+1 .
2r( ) &4 L =) | f (5, ua(s)) = f(s,u(s))|ds

b
i r(al— 1)0Z (t=ti) | (b =) | f(s,un(s)) = f(s,u(s))|ds

<t <t t

1 P ti
T a-1) E(T — ) L (ti = )" 2| f (s, un(5)) = f (s, u(s))|ds
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T-2 p+1
4|r(a t1|) L =9 2| f(s,un(s)) = f (s, u(s))|ds

+ > (=) Ji(un(t)) = Je(u(t)] + Z(T ti) | Ji (un (£1)) = Ji(u(t:))]

O<tr<t

210 = R+ 3% 1) = )
O<tr<t
1 4
b 3 DU (1)) ~ L (t)|
i=1
1 ' a-1
mf (t - )| £(5,100(5)) ~ f(5,u(s))]ds

p+l
2F(a) ’[ (ti = 8)" | f(s,un(s)) = f(5,u(s))|ds
p+1 s
4F(a 1)< L . = 8) 7| f(s,un(s)) = f(s,u(s))|ds

32 7T &
+Ezui(un(ti))_Ii(u(ti))|+TZ (un(ti)) = Ji(u(t))|.
i=1 i=1

(3.6)
Since f, I, J are continuous functions, then we have

|ITu, — Tul] — 0, n— oo. (3.7)

Step 2. T maps bounded sets into bounded sets in PC(]).

Indeed, it is enough to show that for any r > 0, there exists a positive constant L such
that, for each u € Q, = {u € PC(J) : ||u|| < r}, we have ||Tu|| < L. By (H3) and (H4), for each
t € J, we can obtain

|(Tw) )| < 57— T( ) (t—s )3 1|f(s M(S))|d5
_ o\a-l
l"(zx) 057« th 1 (tk =)™ | f (s, u(s))|ds

p+1 .
ZF( 72 L : (ti=s)* | f(s,u(s))|ds

Z (t—tx) ftk - 8)"2| f(s,u(s))|ds

<tp<t

r( _1)0

_ —f. L a\a2
2r( 1)§(T t’)Ll(fl )| f (s, u(s))|ds
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T —2¢ p+1 o
4|l"(cx 1|) Ll (t:i =)™ | f (5, u(s))|ds

+ > (= )k (u(t)| + Z(T ti) | Ji(u(ti))]

O<ti<t

L= 2t|

ZIL( )+ > i (u(t)| + le(u ti)l

O<ti<t

N, [t ) 3N, f’“ f .
<— t—s)" " ds+ ti—s)" ds
M ), 079 ), 9
7TN1 P+1f (t - )u Zd N pN AP 7Tp
T AT (as 1) 5) 45 4

(Bp+5)T%  7(p+1)T® 37T
S[Nl<21"(cx+1) T T AT (@) > p(zN”TM)]

(3.8)

Therefore,

Tu < [N1<(3p+5)T“ . 7(p+ 1)T“> p<3N2 . EM)] L (39)

2C(a+1) 4T (a) 2 4

Step 3. T maps bounded sets into equicontinuous sets in PC(J).
Let Q, be a bounded set of PC(]) as in Step 2, and let u € Q,. For each t € |, we can
estimate the derivative (Tu)'(t):

|(Tw)' (1)] <

t
_a\a2
T(a-1) _[tk (t=5)""| f(s,u(s))|ds

—1 . a-2
: I'(a - 1)0<tZk<t Itk_l (b = 5) |f(S,u(s))|ds
p+1
ZF(zx 1)2 f (ti =) 2| f(s,u(s))|ds

+ 3 Ukt + 22|L<u<t>

O<tr<t
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Ny ! 2 PH ) 3p
< - t—s)""d ti—s)"“ds+ —N
*Ta-1 tk( S) s+ It,l( S) s+2 3

a1 3 1) N T4
< NiT + (P * ) ! + 3—pN3
['(a) 2T () 2

_(Bp+5)T! 3P\ o
= (W N1 + ?Ng, =M.

Hence, lett', t' € J, ¢ <t’; we have

|(Tu) (¢ - (Tu) ()| = L |(Tuy'(s)|ds < M(#" ~ £).

(3.10)

(3.11)

So T(,) is equicontinuous in PC(J). As a consequence of Steps 1 to 3 together with the
Arzela-Ascoli theorem, we can conclude that T : PC(J) — PC(]J) is completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

¢(T)={uePC(J) : u=ATu for some 0 < A <1}

is bounded. Let u = ATu for some 0 < A < 1. Thus, for each t € |, we have

A

u(t) = F(a)

< ~o e eds + m 5. (=9 f (s u(s)ds

p+1 1
ZF(a) J‘tll (ti—s)" f(s,u(s))ds

> (-t (tk—s>“*2f<s,u<s>)ds

<tp<t t1

F(zx D,

ti
2 (a- 1)Z(T ”Ll (t: =) f (s, u(s))ds

p+l
iga 23 f (t: = )" f (s, u(s))ds

+AZ(t—tk>Jk(u(tk)>——Z<T ) Jiu(t)) + 2020

O<ty<t

_ P
W)
i=1

A0 T(u(t) - —ZI (u(t)).

O<tr<t

(3.12)

(3.13)
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For eacht € J, by (H3) and (H4), we have

3p+5)T* 7 1)T“
[lull < N1<(21r3(; +)1) + (Z;(a)) > +p<§N2 + %Na). (3.14)

This shows that the set {(T) is bounded. As a consequence of Schaefer fixed-point theorem,
we deduce that T has a fixed point which is a solution of the problem (1.1). O

In the following theorem we give an existence result for the problem (1.1) by applying

the nonlinear alternative of Leray-Schauder type and by which the conditions (H3) and (H4)
are weakened.

Theorem 3.3. Assume that (H2) and the following conditions hold.
(H5) There exists ¢ € C(J) and ¢ : [0,00) — (0, 00) continuous and nondecreasing such that

|f(tw)| < pOg(ul), te], ueR (3.15)

(H6) There exist ¢s*, ¢* : [0,00) — (0, 00) continuous and nondecreasing such that
@) < @™ (lul),  [J@)| < ¢*(jul), ueR. (3.16)
(H?7) There exists a number M* > 0 such that

M*
§ (M) ((3p + 5)T%/20 (a + 1)+7 (p+1)T* /4T (@) +p ((3/2)g* (M) + (7T/ 4" (M*) )

>1,
(3.17)

where ¢* = sup{p(t) : t € J}.
Then (1.1) has at least one solution on J.

Proof. Consider the operator T defined in Theorem 3.1. It can be easily shown that T is
continuous and completely continuous. For A € (0,1) and each t € ], let u = ATu. Then
from (H5) and (H6), and we have

|u(t) ( ) f(s,u(s))|ds

'-r() .

tx
! Zj (t - )| £ (5, u(s)) | ds

+ —_—
r(a) O<t<t ¥ tk1

p+1 .
e RO
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7%
! Z (t—tx) (tx —S)a_2|f(s,u(s))|ds

+ S —
1—‘(“ - 1) O<ti<t k-1

2F(a 1) Z(T t)f = 5)"2| f(s,u(s))|ds

T-2 2t| ak

T ir@-1)4 L =T *|f(s,u(s))]ds

+ D0 (=t Je(ulte)| + Z(T_ti)|]i(u(ti))|

O<ti<t z 1

T2 S i)+ S o)) + 5 Shnut)
im1 O<ti<t i=1
1

(@) (t )P (s)gr(u(s)))ds

I/\

_ oyl
F(“) 0<te<t ftk1 (te =5)" p(s)y(juls))ds

p+1
a2 f (=) p()g(uls)hds

t
S (t-t) f (b — )™ 2p()g (lu(s))ds

<t <t

F(ex D,

ZF(a 1)Z(T t)_[ (t = )" 2P (s)g (Ju(s)))ds

IT -2t %2

e f 9" (e ute) s

+ D (=)t (julto)) + Z(T—ti)W(lu(ti)l)

O<ti<t 1 1

IT -2t & —
e 2 () + 3 ¢ (ute)) + 5 qu (Ju(t:)])
i=1

O<ty<t

T® 3(p+1)T”

<y oy + 9D S
7(p+ )T 7pT

el Zo 0 T + L ()

3p+5)T* 7 T~ _
=¢*<p<||u||><(21’f(;+)1) + (’;@3 >+p(§qf*<nun>+%*(Hun)).

(3.18)
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Thus,

Jul
Pl ((3p + 5)Te /2T (& + 1)+7 (p+1)T /4T (@) +p((3/2)g5" (ul) + (7T /457 (ul))

<1.
(3.19)

Then by (H7), there exists M* such that ||u|| # M*. Let

U = {uePC(J) : lull < M*). (3.20)

The operator T : U — PC(J) is a continuous and completely continuous. From the choice of
U, there isno u € 0U such that u = ATu for some 0 < A < 1. As a consequence of the nonlinear
alternative of Leray-Schauder type, we deduce that T has a fixed point u in U which is a
solution of the problem (1.1). This completes the proof. O

4. Example

Leta =3/2,T =2, p = 1. We consider the following boundary value problem:

CD¥2u(t) = f(t,u(t)), 0<t<2m, t# 1,

Aty s = I<u(%)> Ay = <u<;>> 4.1)

u(0) +u(2xr) =0, u'(0) + 1/ (2r) = 0,

where
Fitu) = ﬁzzﬂ (t,u) € ] x [0,0),
" (4.2)
u u
W=t W=
Obviously L; =1/400, L, =1/10, L = 1/25. Further,
(Bp+5)T* 7(p+1)T" 3. 7T
L1< M(a+1) | 4l(a) p(zL” TL3>
(4.3)

32f 7
400< 3 14\fyr>+ﬁ+%<1
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Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, by the conclusion of
Theorem 3.1, the impulsive fractional antiperiodic boundary value problem has a unique
solution on [0, 2or].
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