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Based on the fixed-point index theory for a Banach space, positive periodic solutions are
found for a system of delay difference equations. By using such results, the existence of
nontrivial periodic solutions for delay difference equations with positive and negative
terms is also considered.

1. Introduction

The existence of positive periodic solutions for delay difference equations of the form

xn+1 = anxn +hn f
(
n,xn−τ(n)

)
, n∈ Z= {. . . ,−2,−1,0,1,2, . . .}, (1.1)

has been studied by many authors, see, for example, [1, 3, 5, 7, 8, 9] and the references
contained therein. The above equation may be regarded as a mathematical model for a
number of dynamical processes. In particular, xn may represent the size of a population
in the time period n. Since it is possible that the population may be influenced by an-

other factor of the form −ĥn f2(n,xn−τ(n)), we are therefore interested in a more general
equation of the form

xn+1 = anxn +hn f1
(
n,xn−τ(n)

)− ĥn f2
(
n,xn−τ(n)

)
, (1.2)

which includes the so-called difference equations with positive and negative terms (see,
e.g., [6]).

In this paper, we will approach this equation (see Section 4) by treating it as a special
case of a system of difference equations of the form

un =
n+ω−1∑
s=n

G(n,s)hs f1
(
s,us−τ(s)− vs−τ(s)

)
,

vn =
n+ω−1∑
s=n

Ĝ(n,s)ĥs f2
(
s,us−τ(s)− vs−τ(s)

)
,

(1.3)
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where n ∈ Z. We will assume that ω is a positive integer, G and Ĝ are double sequences
satisfying G(n,s) = G(n+ω,s+ω) and Ĝ(n,s) = Ĝ(n+ω,s+ω) for n,s ∈ Z, h= {hn}n∈Z
and ĥ = {ĥn}n∈Z are positive ω-periodic sequences, {τ(n)}n∈Z is an integer-valued ω-
periodic sequence, f1, f2 : Z×R→R are continuous functions, and f1(n+ω,u)= f1(n,u)
as well as f2(n+ω,u)= f2(n,u) for any u∈R and n∈ Z.

By a solution of (1.3), we mean a pair (u,v) of sequences u= {un}n∈Z and v = {vn}n∈Z
which renders (1.3) into an identity for each n∈ Z after substitution. A solution (u,v) is
said to be ω-periodic if un+ω = un and vn+ω = vn for n∈ Z.

Let X be the set of all real ω-periodic sequences of the form u = {un}n∈Z and en-
dowed with the usual linear structure and ordering (i.e., u≤ v if un ≤ vn for n∈ Z). When
equipped with the norm

‖u‖ = max
0≤n≤ω−1

∣∣un∣∣, u∈ X , (1.4)

X is an ordered Banach space with cone Ω0 = {u= {un}n∈Z ∈ X | un ≥ 0, n∈ Z}. X ×X
will denote the product (Banach) space equipped with the norm

∥∥(u,v)∥∥=max
{‖u‖,‖v‖}, u,v ∈ X , (1.5)

and ordering defined by (u,v)≤ (x, y) if u≤ x and v ≤ y for any u,v,x, y ∈ X .
We remark that a recent paper [4] is concerned with the differential system

y′ = −a(t)y(t) + f
(
t, y
(
t− τ(t)

))
,

x′ = −a(t)x(t) + f
(
t,x
(
t− τ(t)

))
.

(1.6)

There are some ideas in the proof of Theorem 2.1 which are similar to those in [4]. But
the techniques in the other results are new.

2. Main result

In this section, we assume that

0 <m≤G(n,s)≤M < +∞, n≤ s≤ n+ω− 1,

0 <m′ ≤ Ĝ(n,s)≤M′ < +∞, n≤ s≤ n+ω− 1.
(2.1)

Then,

Ω=
{{

un
}
n∈Z ∈ X : un � σ‖u‖, n∈ Z

}
, where σ =min

{
m

M
,
m′

M′

}
(2.2)

is a cone in X and Ω×Ω is a cone in X ×X .
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Theorem 2.1. In addition to the assumptions imposed on the functionsG, Ĝ, h, ĥ, f1, and f2
in Section 1, suppose that G and Ĝ satisfy (2.1). Suppose further that f1, f2 are nonnegative
and satisfy f1(n,0)= 0= f2(n,0) for n∈ Z as well as

lim
|x|→0

f1(n,x)
|x| = +∞, (2.3)

lim
|x|→0

f2(n,x)
|x| < +∞, (2.4)

lim
x→+∞

f1(n,x)
x

= 0, (2.5)

lim
|x|→+∞

f2(n,x)
|x| = 0, (2.6)

uniformly with respect to all n ∈ Z. Then (1.3) has an ω -periodic solution (u,v) in Ω×
Ω such that ‖(u,v)‖ > 0. In the sequel, (Ω×Ω)α will denote the set {(u,v) ∈ Ω×Ω |
‖(u,v)‖ = α}.
Proof. Let A1,A2 :Ω×Ω→ X and A :Ω×Ω→ X ×X be defined, respectively, by

(
A1(u,v)

)
n =

n+ω−1∑
s=n

G(n,s)hs f1
(
s,us−τ(s)− vs−τ(s)

)
, n∈ Z,

(
A2(u,v)

)
n =

n+ω−1∑
s=n

Ĝ(n,s)ĥs f2
(
s,us−τ(s)− vs−τ(s)

)
, n∈ Z,(

A(u,v)
)
n =

(
A1(u,v)n,A2(u,v)n

)
, n∈ Z,

(2.7)

for u,v ∈Ω. For any n, ň∈ Z, we have

(
A1(u,v)

)
n =

n+ω−1∑
s=n

G(n,s)hs f1
(
s,us−τ(s)− vs−τ(s)

)
≤M

ω−1∑
s=0

hs f1
(
s,us−τ(s)− vs−τ(s)

)
,

(
A1(u,v)

)
ň =

ň+ω−1∑
s=ň

G(ň,s)hs f1
(
s,us−τ(s)− vs−τ(s)

)
�m

ω−1∑
s=0

hs f1
(
s,us−τ(s)− vs−τ(s)

)
� σ

(
A1(u,v)

)
n.

(2.8)

Similarly, we can prove that (A2(u,v))ň � σ(A2(u,v))n for any n, ň∈ Z. Thus,A :Ω×Ω→
Ω×Ω. Furthermore, in view of the boundedness ofG and Ĝ, and the continuity of f1 and
f2, it is not difficult to show that A is completely continuous. Indeed, A(B) is a bounded
set for any bounded subset B of X ×X . Since X ×X is made up of ω-periodic sequences,
thus A(B) is precompact. Consequently, A is completely continuous.
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We will show that there exist r∗, r∗ which satisfy 0 < r∗ < r∗ such that the fixed point
index

i
(
A, (Ω×Ω)r∗\(Ω×Ω)r∗ ,Ω×Ω

)= 1. (2.9)

To see this, we first infer from (2.4) that there exist β > 0 and r1 > 0 such that

ĥs f2(s,x)≤ β|x| for |x| ≤ r1, s∈ Z. (2.10)

Let

0 < ε <min

{
1,

σ

2(1+M′βω)

}
,

Fη(s;u,v)=
{
s≤ n≤ s+ω− 1 :

∣∣un− vn
∣∣≥ η

}
, u,v ∈Ω.

(2.11)

Then the number of elements in Fεr(s;u,v), denoted by #, satisfies

#Fεr(s;u,v)≥min
{
ω,

σ

2M′β

}
, (2.12)

when ‖(u,v)‖ = r ≤ r1 and A2(u,v) = v. Indeed, if |un − vn| ≥ εr for any n ∈ Z, then
(2.12) is obvious. If there exists n1 ∈ Z such that |un1 − vn1| < εr, then ‖v‖ ≥ vn1 > un1 −
εr ≥ σ‖u‖− εr. Thus ‖v‖ > (σ − ε)r. Assume that vn2 = ‖v‖. Then from A2(u,v)= v and
(2.10), we have

(σ − ε)r ≤ vn2 =
n2+ω−1∑
s=n2

Ĝ
(
n2,s

)
ĥs f2

(
s,us−τ(s)− vs−τ(s)

)
≤M′β

( ∑
s∈Fεr (n2;u,v)

+
∑

s∈F(n2)\Fεr (n2;u,v)

)∣∣us−τ(s)− vs−τ(s)
∣∣

≤M′βr
[
#Fεr

(
n2;u,v

)
+ ε#

(
F
(
n2
)\Fεr(n2;u,v))],

(2.13)

where F(n2)= {n∈ Z : n2 ≤ n≤ n2 +ω− 1}. It is now not difficult to check that #Fεr(s;u,
v)≥ σ/2M′β, that is, (2.12) holds.

Next choose α such that α≥ 1/maε, where

a=min
{
ω,σ\(2M′β)

}
. (2.14)

Then in view of (2.3), there exists r∗ ≤ r1 such that

hs f1(s,x)≥ α|x|, for |x| ≤ r∗, s∈ Z. (2.15)

Set

Hn =
n+ω−1∑
s=n

G(n,s), n∈ Z. (2.16)
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Then H = {Hn}n∈Z ∈Ω, and for any (u,v)∈ ∂(Ω×Ω)r∗ and t ≥ 0, we assert that

(u,v)−A(u,v) 	= t(H ,0). (2.17)

To see this, assume to the contrary that there exist (u0,v0)∈ ∂(Ω×Ω)r∗ and t0 ≥ 0 such
that

u0−A1
(
u0,v0

)= t0H , (2.18)

v0−A2
(
u0,v0

)= 0. (2.19)

We may assume that t0 > 0, for otherwise (u0,v0) is a fixed point of A. From (2.19), we
know that (2.12) holds for the above ε. From (2.15), we have u0 ≥ t0H . Set t∗ = sup{t |
u0 ≥ tH}. Then t∗ ≥ t0 > 0. Furthermore, from (2.12), (2.15), and (2.18), we have

u0n = t0Hn +A1
(
u0,v0

)
n

= t0Hn +
n+ω−1∑
s=n

G(n,s)hs f1
(
s,u0s−τ(s)− v0s−τ(s)

)
≥ t0Hn +

∑
s−τ(s)∈Fεr(n−τ(n);u,v)

G(n,s)hs f1
(
s,u0s−τ(s)− v0s−τ(s)

)
≥ t0Hn +α

∑
s−τ(s)∈Fεr (n−τ(n);u,v)

G(n,s)
∣∣∣u0s−τ(s)− v0s−τ(s)

∣∣∣
≥ t0Hn +mαεr · #Fεr

(
n− τ(n);u,v

)
≥ t0Hn +maαεt∗Hn

≥ (t0 + t∗
)
Hn,

(2.20)

which is contrary to the definition of t∗. Thus (2.17) holds. Consequently (see, e.g., [2]),

i
(
A, (Ω×Ω)r∗ ,Ω×Ω

)= 0. (2.21)

Next, we will prove that there exists r∗ > 0 such that

A(u,v) � (u,v) for (u,v)∈ ∂(Ω×Ω)r∗ . (2.22)

To see this, pick c such that 0 < c <min{σ/Mω,σ/M′ω}. In view of (2.5) and (2.6), there
exists r0 such that hs f1(s,u)≤ cu for u≥ r0 and ĥs f2(s,v)≤ c|v| for |v| ≥ r0, where s∈ Z.
Set

T0 =max

{
sup

0≤u≤r0,s∈Z
hs f1(s,u), sup

0≤|v|≤r0,s∈Z
ĥs f2(s,v)

}
. (2.23)
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Then

hs f1(s,u)≤ cu+T0 for u≥ 0, (2.24)

ĥs f2(s,v)≤ c|v|+T0 for v ∈R. (2.25)

Take

r∗ >max
{
r∗,r0,

ωMT0

σ − cMω
,
ωM′T0

σ − cM′ω

}
. (2.26)

We assert that (2.22) holds. In fact, let ‖(u,v)‖ = r∗ and u≥ v. Then

(
A1(u,v)

)
n =

n+ω−1∑
s=n

G(n,s)hs f1
(
s,us−τ(s)− vs−τ(s)

)
≤

n+ω−1∑
s=n

G(n,s)
[
c
(
us−τ(s)− vs−τ(s)

)
+T0

]
≤Mr∗cω+MT0ω

< σr∗ < r∗ = ‖u‖

(2.27)

by (2.24). Thus A1(u,v) � u. That is, A(u,v) � (u,v). If there exists n0 ∈ Z such that
un0 < vn0 , then ‖v‖ ≥ σr∗. Hence, we have

A2(u,v)n =
n+ω−1∑
s=n

Ĝ(n,s)ĥs f2
(
s,us−τ(s)− vs−τ(s)

)
≤

n+ω−1∑
s=n

Ĝ(n,s)
[
c
∣∣us−τ(s)− vs−τ(s)

∣∣+T0
]

≤M′r∗cω+ωM′T0

< σr∗ ≤ ‖v‖

(2.28)

by (2.25). Thus A2(u,v) � v. That is, A(u,v) � (u,v).
From (2.22), we have

i
(
A, (Ω×Ω)r∗ ,Ω×Ω

)= 1, (2.29)

and from (2.21) and (2.29), we have i(A, (Ω×Ω)r∗\(Ω×Ω)r∗ ,Ω×Ω)= 1 as required.
Thus, there exists (u∗,v∗)∈ (Ω×Ω)r∗\(Ω×Ω)r∗ such that A(u

∗,v∗)= (u∗,v∗). The
proof is complete. �
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3. Sublinear f1 and f2

It is possible to find periodic solutions of (1.3) without the assumptions (2.3) through
(2.6). One such case arises when functions f1 and f2 satisfy the assumptions

f1(n,x− y)≤ anx+ bn, x � 0, y � 0, n∈ Z, (3.1)

f2(n,x− y)≤ cny +dn(x), x � 0, y � 0, n∈ Z, (3.2)

where a= {an}n∈Z, b = {bn}n∈Z, and c = {cn} are positive ω-periodic sequences, and for
each n∈ Z, the function dn(x) is continuous, nonnegative, and dn+ω(x)= dn(x) for x ≥ 0.

Let Ω0 = {u∈ X | u≥ 0}. Define K1,K2 : X → X by

(
K1u

)
n =

n+ω−1∑
s=n

G(n,s)hsasus−τ(s), u∈ X ,

(
K2u

)
n =

n+ω−1∑
s=n

Ĝ(n,s)ĥscsus−τ(s), u∈ X ,

(3.3)

respectively. Then under conditions (2.1), it is not difficult to show that K1 and K2 are
completely continuous linear operators on X , and K1, K2 map Ω0 into Ω0.

Theorem 3.1. In addition to the assumptions imposed on the functionsG, Ĝ, h, ĥ, f1, and f2
in Section 1, suppose that f1 and f2 satisfy (3.1) and (3.2). Suppose further that the operators
defined by (3.3) satisfy ρ(K1) < 1 and ρ(K2) < 1. Then (1.3) has at least one periodic solution.

Proof. Note that Ω0×Ω0 is a normal solid cone of X ×X . Let A1, A2, and A be the same
operators in the proof of Theorem 2.1. Set

gn =
n+ω−1∑
s=n

G(n,s)hsbs, n∈ Z. (3.4)

Then g = {gn}n∈Z ∈Ω0. ρ(K1) < 1 implies that (I −K1)−1 exists and that

(
I −K1

)−1 = I +K1 +K2
1 + . . . . (3.5)

Thus, we have (I − K1)−1(Ω0) ⊂ Ω0 and it is increasing. Then u− K1u ≤ g for u ∈ X
implies that u≤ (I −K1)−1g. Let

r0 = max
s∈[0,ω]

(
I −K1

)−1
gs, (3.6)

we get that u≤ K1u+ g for any u∈Ω0, which satisfies ‖u‖ ≤ r0.
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Let d∗ =max{dn(x) | n∈ Z,0≤ x ≤ r0}. Then from (3.2), we have

f2(n,x− y)≤ cny +d∗, y � 0, 0≤ x ≤ r0, n∈ Z. (3.7)

Let

qn = d∗
n+ω−1∑
s=n

Ĝ(n,s)ĥs, n∈ Z. (3.8)

Then q = {qn}n∈Z ∈ Ω0 and A2(u,v) ≤ K2(v) + q. If for any (u,v) ∈ X ×X , there exists
λ0 ∈ [0,1] such that v = λ0A2(u,v), then, we have

|v| = λ0
∣∣A2(u,v)

∣∣≤ ∣∣A2(u,v)
∣∣≤ K2

(|v|)+ q. (3.9)

Note that if |v| ∈Ω0 and ρ(K2) < 1, we have |v| ≤ (I −K1)−1q. Choose

r∗ >max
{
r0,
∥∥∥(I −K1

)−1
q
∥∥∥}. (3.10)

Then for any open set Ψ ⊂ Ω0 ×Ω0 that satisfies Ψ ⊃ (Ω0 ×Ω0)r∗ , A2(u,v) 	= µv for
(u,v)∈ ∂Ψ and µ� 1.

Consequently,

A(u,v) 	= µ(u,v) (3.11)

for any (u,v) ∈Ω0 ×Ω0, ‖(u,v)‖ = r∗, and µ � 1. Indeed, if there exist (u0,v0) ∈Ω0 ×
Ω0, ‖(u0,v0)‖ = r∗, and µ0 � 1 such that A(u0,v0) = µ0(u0,v0), then from A2(u0,v0) =
µ0v0, r∗ > r0, and (3.2), we have ‖u‖ > r0. But from (3.1), we know that un ≤ µ0un =
(A1(u,v))n ≤ K1un + gn, this is contrary to the fact that ‖u‖ ≤ r0 as shown above.

Thus i(A, (Ω0 ×Ω0)r∗ ,Ω0 ×Ω0) = 1, which shows that there exists (u∗,v∗) ∈ (Ω0 ×
Ω0)r∗ such that A(u∗,v∗)= (u∗,v∗). The proof is complete. �

Theorem 3.2. In addition to the assumptions imposed on the functions G, Ĝ, h, ĥ, f1, and
f2 in Section 1, suppose that f1 and f2 satisfy

f1(n,x− y)≤ any + bn(x), x � 0, y � 0, n∈ Z,

f2(n,x− y)≤ cnx+dn, x � 0, y � 0, n∈ Z,
(3.12)

where a = {an}n∈Z, b = {bn}n∈Z, and c = {cn} are positive ω-periodic sequences, and for
each n∈ Z, bn = bn(x) is continuous, nonnegative, and bn+ω(x)= bn(x) for x ≥ 0. Suppose
further that the operators defined by (3.3) satisfy ρ(K1) < 1 and ρ(K2) < 1. Then (1.3) has at
least one periodic solution.

The proof is similar to that of Theorem 3.1 and hence omitted.
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4. Applications

We now turn to the existence of nontrivial periodic solutions for the delay difference
equation

xn+1 = anxn +hn f1
(
n,xn−τ(n)

)− ĥn f2
(
n,xn−τ(n)

)
, n∈ Z, (4.1)

where {hn}n∈Z and {ĥn}n∈Z are positive ω-periodic sequences, {τ(n)}n∈Z is an integer-
valued ω-periodic sequence, and f1, f2 are real continuous functions which satisfy f1(n+
ω,u)= f1(n,u) and f2(n+ω,u)= f2(n,u) for any u∈R1 and n∈ Z.

We proceed formerly from (4.1) and obtain

∆

{
xn

n−1∏
k=q

1
ak

}
=

n∏
k=q

1
ak

[
hn f1

(
n,xn−τ(n)

)− ĥn f2
(
n,xn−τ(n)

)]
. (4.2)

Then summing the above formal equation from n to n+ω-1, we obtain

xn =
n+ω−1∑
s=n

G(n,s)
[
hs f1

(
s,xs−τ(s)

)− ĥs f2
(
s,xs−τ(s)

)]
, n∈ Z, (4.3)

where

G(n,s)=
( s∏

k=n

1
ak

)(ω−1∏
k=0

1
ak
− 1

)−1
, n,s∈ Z, (4.4)

which is positive if {an}n∈Z is a positive ω-periodic sequence which satisfies
∏ω−1

s=0 a−1s > 1.
It is not difficult to check that any ω-periodic sequence {xn}n∈Z that satisfies (4.3) is

also an ω-periodic solution of (4.1). Furthermore, note that

G(n,n)=
(
1
an

)(ω−1∏
k=0

1
ak
− 1

)−1
=G(n+ω,n+ω),

G(n,n+ω− 1)=
(ω−1∏

k=0

1
ak

)(ω−1∏
k=0

1
ak
− 1

)−1
=G(0,ω− 1),

0 < N ≡ min
n≤i≤n+ω−1

G(n,s)≤G(n,s)≤ max
n≤i≤n+ω−1

G(n, i)≡M, n≤ s≤ n+ω− 1.

(4.5)

Theorem 4.1. Suppose that {hn}n∈Z and {ĥn}n∈Z are positive ω-periodic sequences,
{τ(n)}n∈Z is an integer-valued ω-periodic sequence, and f1, f2 are nonnegative continuous
functions which satisfy f1(n +ω,u) = f1(n,u) and f2(n +ω,u) = f2(n,u) for any u ∈ R1

and n ∈ Z. Suppose further that {an}n∈Z is a real sequence which satisfies
∏ω−1

s=0 a−1s > 1. If
f1 and f2 satisfy the additional conditions f1(n,0)= 0= f2(n,0) for n∈ Z as well as (2.3),
(2.4), (2.5), and (2.6) uniformly with respect to all n∈ Z, then (4.1) has at least a nontrivial
periodic solution.
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Indeed, let A1, A2, and A be defined as in the proof of Theorem 2.1. Then from
Theorem 2.1, we know that there exists (u∗,v∗) 	= (0,0), such that A(u∗,v∗)= (u∗,v∗),
that is,

u∗n =
n+ω−1∑
s=n

G(n,s)hs f1
(
s,u∗s−τ(s)− v∗s−τ(s)

)
,

v∗n =
n+ω−1∑
s=n

G(n,s)ĥs f2
(
s,u∗s−τ(s)− v∗s−τ(s)

)
.

(4.6)

Since f1(n,0) = 0 = f2(n,0) for n ∈ Z, we know that u∗ 	= v∗. (Indeed, if u∗ = v∗, then
u∗ = v∗ = 0, which is contrary to the fact that (u∗,v∗) 	= (0,0).) Thus u∗ − v∗ is a non-
trivial periodic solution of (4.3), and also a nontrivial periodic solution of (4.1).

Next, we illustrate Theorem 3.1 by considering the delay difference equations

xn+1 = anxn + f
(
n,xn−τ(n)

)
, n∈ Z, (4.7)

where {an}n∈Z is a positive ω-periodic sequence but
∏ω−1

s=0 a−1s > 1, {τ(n)}n∈Z is integer-
valued ω-periodic sequence, f (n,u) is a real continuous function, and f (n + ω,u) =
f (n,u) for any u∈R and n∈ Z.

The existence of positive periodic solutions for (4.7) have been studied extensively by
a number of authors (see, e.g., [1, 3, 5, 7, 8, 9]). Here, we proceed formerly from (4.7)
and obtain

∆

{
xn

n−1∏
k=q

1
ak

}
=

n∏
k=q

1
ak

f
(
n,xn−τ(n)

)
. (4.8)

Then summing the above formal equation from n to n+ω-1, we obtain

xn =
n+ω−1∑
s=n

G(n,s) f
(
s,xs−τ(s)

)
, n∈ Z, (4.9)

where

G(n,s)=
( s∏

k=n

1
ak

)(ω−1∏
k=0

1
ak
− 1

)−1
. (4.10)

Set λ0 = (
∏ω−1

k=0 (1/ak)− 1), then G(n,s)= (1/λ0)(
∏s

k=n(1/ak)). It is not difficult to check
that any ω-periodic sequence {xn}n∈Z that satisfies (4.9) is also an ω-periodic solution of
(4.7).

Choose

f (n,x)= λsinx+ pn,

f1(n,x)= λ
|sinx|+ sinx

2
+ pn,

f2(n,x)= λ
|sinx|− sinx

2
,

(4.11)
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where λ > 0 and {pn} is a positive ω-periodic sequence. Then f1(n,x− y)≤ λx+2λ+ pn
and f2(n,x− y)≤ λy +2λ for x, y � 0. Set

(
Kiu
)
n = λ

n+ω−1∑
s=n

G(n,s)us−τ(s), i= 1,2, (4.12)

then

∥∥Kiu
∥∥= max

0≤n≤ω−1

∣∣∣∣∣λ
n+ω−1∑
s=n

G(n,s)us−τ(s)

∣∣∣∣∣
= max

0≤n≤ω−1

∣∣∣∣∣ λ

λ0

n+ω−1∑
s=n

( s∏
k=n

1
ak

)
us−τ(s)

∣∣∣∣∣
≤ max

0≤n≤ω−1

∣∣∣∣∣ λ

λ0
‖u‖

n+ω−1∑
s=n

s∏
k=n

1
ak

∣∣∣∣∣
= λ

λ0
‖u‖ max

0≤n≤ω−1

n+ω−1∑
s=n

( s∏
k=n

1
ak

)
(4.13)

for i= 1,2. Thus

∥∥Ki

∥∥≤ λ

λ0
max

0≤n≤ω−1

n+ω−1∑
s=n

( s∏
k=n

1
ak

)
, i= 1,2. (4.14)

Since ρ(Ki)≤ ‖Ki‖, thus ρ(Ki)≤ ‖Ki‖ < 1 for

λ < λ0

[
max

0≤n≤ω−1

n+ω−1∑
s=n

( s∏
k=n

1
ak

)]−1
. (4.15)

Under this condition, Theorem 3.1 asserts that (4.7) has at least one periodic solution.
Note that 0 is not its solution. Thus, our periodic solution is nontrivial.
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