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Difference schemes for two-point boundary value problems for systems of first-order
nonlinear ordinary differential equations are considered. It was shown in former papers
of the authors that starting from the two-point exact difference scheme (EDS) one can de-
rive a so-called truncated difference scheme (TDS) which a priori possesses an arbitrary
given order of accuracy �(|h|m) with respect to the maximal step size |h|. This m-TDS
represents a system of nonlinear algebraic equations for the approximate values of the
exact solution on the grid. In the present paper, new efficient methods for the imple-
mentation of an m-TDS are discussed. Examples are given which illustrate the theorems
proved in this paper.
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1. Introduction

This paper deals with boundary value problems (BVPs) of the form

u′(x) +A(x)u= f(x,u), x ∈ (0,1), B0u(0)+B1u(1)= d, (1.1)

where

A(x),B0,B1,∈Rd×d, rank
[
B0,B1

]= d, f(x,u),d,u(x)∈Rd, (1.2)

and u is an unknown d-dimensional vector-function. On an arbitrary closed irregular
grid

ω̂h =
{
xj : 0= x0 < x1 < x2 < ··· < xN = 1

}
, (1.3)
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2 Difference schemes for BVPs

there exists a unique two-point exact difference scheme (EDS) such that its solution co-
incides with a projection of the exact solution of the BVP onto the grid ω̂h. Algorithmical
realizations of the EDS are the so-called truncated difference schemes (TDSs). In [14] an
algorithm was proposed by which for a given integerm an associated TDS of the order of
accuracym (or shortlym-TDS) can be developed.

The EDS and the corresponding three-point difference schemes of arbitrary order of
accuracy m (so-called truncated difference schemes of rank m or shortly m-TDS) for
BVPs for systems of second-order ordinary differential equations (ODEs) with piecewise
continuous coefficients were constructed in [8–18, 20, 23, 24]. These ideas were further
developed in [14] where two-point EDS and TDS of an arbitrary given order of accuracy
for problem (1.1) were proposed. One of the essential parts of the resulting algorithmwas
the computation of the fundamental matrix which influenced considerably its complex-
ity. Another essential part was the use of a Cauchy problem solver (IVP-solver) on each
subinterval [xj−1,xj] where a one-step Taylor series method of the orderm has been cho-
sen. This supposes the calculation of derivatives of the right-hand side which negatively
influences the efficiency of the algorithm.

The aim of this paper is to remove these two drawbacks and, therefore, to improve
the computational complexity and the effectiveness of TDS for problem (1.1). We pro-
pose a new implementation of TDS with the following main features: (1) the complexity
is significantly reduced due to the fact that no fundamental matrix must be computed;
(2) the user can choose an arbitrary one-step method as the IVP-solver. In our tests we
have considered the Taylor series method, Runge-Kutta methods, and the fixed point it-
eration for the equivalent integral equation. The efficiency of 6th- and 10th-order ac-
curate TDS is illustrated by numerical examples. The proposed algorithm can also be
successfully applied to BVPs for systems of stiff ODEs without use of the “expensive”
IVP-solvers.

Note that various modifications of the multiple shooting method are considered to
be most efficient for problem (1.1) [2, 3, 6, 22]. The ideas of these methods are very
close to that of EDS and TDS and are based on the successive solution of IVPs on small
subintervals. Although there exist a priori estimates for all IVP-solver in use, to our best
knowledge only a posteriori estimates for the shooting method are known.

The theoretical framework of this paper allows to carry out a rigorous mathematical
analysis of the proposed algorithms including existence and uniqueness results for EDS
and TDS, a priori estimates for TDS (see, e.g., Theorem 4.2), and convergence results for
an iterative procedure of its practical implementation.

The paper is organized as follows. In Section 2, leaning on [14], we discuss the proper-
ties of the BVP under consideration including the existence and uniqueness of solutions.
Section 3 deals with the two-point exact difference schemes and a result about the exis-
tence and uniqueness of solutions. The main result of the paper is contained in Section 4.
We represent efficient algorithm for the implementation of EDS by TDS of arbitrary given
order of accuracy m and give its theoretical justification with a priori error estimates.
Numerical examples confirming the theoretical results as well as a comparison with the
multiple shooting method are given.
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2. The given BVP: existence and uniqueness of the solution

The linear part of the differential equation in (1.1) determines the fundamental matrix
(or the evolution operator) U(x,ξ) ∈ Rd×d which satisfies the matrix initial value prob-
lem (IVP)

∂U(x,ξ)
∂x

+A(x)U(x,ξ)= 0, 0≤ ξ ≤ x ≤ 1, U(ξ,ξ)= I , (2.1)

where I ∈Rd×d is the identity matrix. The fundamental matrix U satisfies the semigroup
property

U(x,ξ)U(ξ,η)=U(x,η), (2.2)

and the inequality (see [14])

∥
∥U(x,ξ)

∥
∥≤ exp

[
c1(x− ξ)

]
. (2.3)

In what follows we denote by ‖u‖ ≡ √uTu the Euclidean norm of u∈Rd and we will
use the subordinate matrix norm generated by this vector norm. For vector-functions
u(x)∈ C[0,1], we define the norm

‖u‖0,∞,[0,1] = max
x∈[0,1]

∥
∥u(x)

∥
∥. (2.4)

Let us make the following assumptions.
(PI) The linear homogeneous problem corresponding to (1.1) possesses only the triv-

ial solution.
(PII) For the elements of the matrix A(x) = [ai j(x)]di, j=1 it holds that ai j(x) ∈ C[0,1],

i, j = 1,2, . . . ,d.
The last condition implies the existence of a constant c1 such that

∥
∥A(x)

∥
∥≤ c1 ∀x ∈ [0,1]. (2.5)

It is easy to show that condition (PI) guarantees the nonsingularity of the matrix Q ≡
B0 +B1U(1,0) (see, e.g., [14]).

Some sufficient conditions which guarantee that the linear homogeneous BVP corre-
sponding to (1.1) has only the trivial solution are given in [14].

Let us introduce the vector-function

u(0)(x)≡U(x,0)Q−1d (2.6)

(which exists due to assumption (PI) for all x ∈ [0,1]) and the set

Ω
(
D,β(·))≡

{
v(x)= (vi(x)

)d
i=1, vi(x)∈ C[0,1], i= 1,2, . . . ,d,

∥
∥v(x)−u(0)(x)

∥
∥≤ β(x), x ∈D

}
,

(2.7)

where D ⊆ [0,1] is a closed set, and β(x)∈ C[0,1].
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Further, we assume the following assumption.
(PIII) The vector-function f(x,u)= { f j(x,u)}dj=1 satisfies the conditions

f j(x,u)∈ C
(
[0,1]×Ω

(
[0,1],r(·))), ∥

∥f(x,u)
∥
∥≤ K ∀x ∈ [0,1], u∈Ω

(
[0,1],r(·)),

∥
∥f(x,u)− f(x,v)

∥
∥≤ L‖u− v‖ ∀x ∈ [0,1], u,v ∈Ω

(
[0,1],r(·)),

r(x)≡ K exp
(
c1x
)[
x+‖H‖exp(c1

)]
,

(2.8)

where H ≡Q−1B1.
Now, we discuss sufficient conditions which guarantee the existence and uniqueness

of a solution of problem (1.1). We will use these conditions below to prove the existence
of the exact two-point difference scheme and to justify the schemes of an arbitrary given
order of accuracy.

We begin with the following statement.

Theorem 2.1. Under assumptions (PI)–(PIII) and

q ≡ Lexp
(
c1
)[
1+‖H‖exp(c1

)]
< 1, (2.9)

problem (1.1) possesses in the set Ω([0,1],r(·)) a unique solution u(x) which can be deter-
mined by the iteration procedure

u(k)(x)=
∫ 1

0
G(x,ξ)f

(
ξ,u(k−1)(ξ)

)
dξ +u(0)(x), x ∈ [0,1], (2.10)

with the error estimate

∥
∥u(k)−u

∥
∥
0,∞,[0,1] ≤

qk

1− q
r(1), (2.11)

where

G(x,ξ)≡
⎧
⎨

⎩
−U(x,0)HU(1,ξ), 0≤ x ≤ ξ,

−U(x,0)HU(1,ξ) +U(x,ξ), ξ ≤ x ≤ 1.
(2.12)

3. Existence of an exact two-point difference scheme

Let us consider the space of vector-functions (u j)Nj=0 defined on the grid ω̂h and equipped
with the norm

‖u‖0,∞,ω̂h
= max

0≤ j≤N
∥
∥u j

∥
∥. (3.1)

Throughout the paperM denotes a generic positive constant independent of |h|.
Given (v j)Nj=0 ⊂Rd we define the IVPs (each of the dimension d)

dY j
(
x,v j−1

)

dx
+A(x)Y j

(
x,v j−1

)= f
(
x,Y j

(
x,v j−1

))
, x ∈ (xj−1,xj

]
,

Y j
(
xj−1,v j−1

)= v j−1, j = 1,2, . . . ,N.
(3.2)
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The existence of a unique solution of (3.2) is postulated in the following lemma.

Lemma 3.1. Let assumptions (PI)–(PIII) be satisfied. If the grid vector-function (v j)Nj=0 be-
longs to Ω(ω̂h,r(·)), then the problem (3.2) has a unique solution.

Proof. The question about the existence and uniqueness of the solution to (3.2) is equiv-
alent to the same question for the integral equation

Y j
(
x,v j−1

)=�(x,v j−1,Y j
)
, (3.3)

where

�(x,v j−1,Y j
)≡U

(
x,xj−1

)
v j−1 +

∫ x

xj−1
U(x,ξ)f

(
ξ,Y j

(
ξ,v j−1

))
dξ, x ∈ [xj−1,xj

]
.

(3.4)

We define the nth power of the operator �(x,v j−1,Y j) by

�n
(
x,v j−1,Y j

)=�(x,v j−1,�n−1(x,v j−1,Y j
))
, n= 2,3, . . . . (3.5)

Let Y j(x,v j−1)∈Ω([xj−1,xj],r(·)) for (v j)Nj=0 ∈Ω(ω̂h,r(·)). Then

∥
∥�(x,v j−1,Y j

)−u(0)(x)
∥
∥

≤ ∥∥U(x,xj−1
)∥∥
∥
∥v j−1−u(0)

(
xj−1

)∥∥+
∫ x

xj−1

∥
∥U(x,ξ)

∥
∥
∥
∥f
(
ξ,Y j

(
ξ,v j−1

))∥∥dξ

≤ K exp
(
c1x
)[
xj−1 +‖H‖exp

(
c1
)]
+K

(
x− xj−1

)
exp

[
c1
(
x− xj−1

)]

≤ K exp
(
c1x
)[
x+‖H‖exp(c1

)]= r(x), x ∈ [xj−1,xj
]
,

(3.6)

that is, for grid functions (v j)Nj=0 ∈Ω(ω̂h,r(·)) the operator �(x,v j−1,Y j) transforms the
set Ω([xj−1,xj],r(·)) into itself.

Besides, for Y j(x,v j−1), Ỹ j(x,v j−1)∈Ω([xj−1,xj],r(·)), we have the estimate

∥
∥�(x,v j−1,Y j

)−�(x,v j−1, Ỹ j
)∥∥

≤
∫ x

xj−1

∥
∥U(x,ξ)

∥
∥
∥
∥f
(
ξ,Y j

(
ξ,v j−1

))− f
(
ξ, Ỹ j

(
ξ,v j−1

))∥∥dξ

≤ Lexp
(
c1hj

)
∫ x

xj−1

∥
∥Y j

(
ξ,v j−1

)− Ỹ j
(
ξ,v j−1

)∥∥dξ

≤ Lexp
(
c1hj

)(
x− xj−1

)∥∥Y j − Ỹ j
∥
∥
0,∞,[xj−1,xj ].

(3.7)
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Using this estimate, we get

∥
∥�2(x,v j−1,Y j

)−�2(x,v j−1, Ỹ j
)∥∥

≤ Lexp
(
c1hj

)
∫ x

xj−1

∥
∥�(x,v j−1,Y j

)−�(x,v j−1, Ỹ j
)∥∥dξ

≤
[
Lexp

(
c1hj

)(
x− xj−1

)]2

2!

∥
∥Y j − Ỹ j

∥
∥
0,∞,[xj−1,xj].

(3.8)

If we continue to determine such estimates, we get by induction

∥
∥�n

(
x,v j−1,Y j

)−�n
(
x,v j−1, Ỹ j

)∥∥≤
[
Lexp

(
c1hj

)(
x− xj−1

)]n

n!

∥
∥Y j − Ỹ j

∥
∥
0,∞,[xj−1,xj]

(3.9)

and it follows that

∥
∥�n

(·,v j−1,Y j
)−�n

(·,v j−1, Ỹ j
)∥∥

0,∞,[xj−1,xj ] ≤
[
Lexp

(
c1hj

)
hj
]n

n!

∥
∥Y j − Ỹ j

∥
∥
0,∞,[xj−1,xj ].

(3.10)

Taking into account that [Lexp(c1hj)hj]n/(n!) → 0 for n → ∞, we can fix n large
enough such that [Lexp(c1hj)hj]n/(n!) < 1, which yields that the nth power of the oper-
ator �n(x,v j−1,Y j) is a contractive mapping of the set Ω([xj−1,xj],r(·)) into itself. Thus
(see, e.g., [1] or [25]), for (v j)Nj=0 ∈Ω(ω̂h,r(x)), problem (3.3) (or problem (3.2)) has a
unique solution. �

We are now in the position to prove the main result of this section.

Theorem 3.2. Let the assumptions of Theorem 2.1 be satisfied. Then, there exists a two-
point EDS for problem (1.1). It is of the form

u j = Y j
(
xj ,u j−1

)
, j = 1,2, . . . ,N , (3.11)

B0u0 +B1uN = d. (3.12)

Proof. It is easy to see that

d

dx
Y j
(
x,u j−1

)
+A(x)Y j

(
x,u j−1

)= f
(
x,Y j

(
x,u j−1

))
, x ∈ (xj−1,xj

]
,

Y j
(
xj−1,u j−1

)= u j−1, j = 1,2, . . . ,N.
(3.13)

Due to Lemma 3.1 the solvability of the last problem is equivalent to the solvability of
problem (1.1). Thus, the solution of problem (1.1) can be represented by

u(x)= Y j
(
x,u j−1

)
, x ∈ [xj−1,xj

]
, j = 1,2, . . . ,N. (3.14)

Substituting here x = xj , we get the two-point EDS (3.11)-(3.12). �
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For the further investigation of the two-point EDS, we need the following lemma.

Lemma 3.3. Let the assumptions of Lemma 3.1 be satisfied. Then, for two grid functions
(u j)Nj=0 and (v j)

N
j=0 in Ω(ω̂h,r(·)),

∥
∥Y j

(
x,u j−1

)−Y j
(
x,v j−1

)−U
(
x,xj−1

)(
u j−1− v j−1

)∥∥

≤ L
(
x− xj−1

)
exp

{
c1
(
x− xj−1

)
+L

∫ x

xj−1
exp

[
c1(x− ξ)

]
dξ
}∥
∥u j−1− v j−1

∥
∥.

(3.15)

Proof. When proving Lemma 3.1, it was shown that Y j(x,u j−1), Y j(x,v j−1) belong to
Ω([xj−1,xj],r(·)). Therefore it follows from (3.2) that

∥
∥Y j

(
x,u j−1

)−Y j
(
x,v j−1

)−U
(
x,xj−1

)(
u j−1− v j−1

)∥∥

≤ L
∫ x

xj−1
exp

[
c1(x− ξ)

]{
exp

[
c1
(
ξ − xj−1

)]∥∥u j−1− v j−1
∥
∥

+
∥
∥Y j

(
ξ,u j−1

)−Y j
(
ξ,v j−1

)−U(ξ,xj−1
)(
u j−1−v j−1

)∥∥
}
dξ

= Lexp
[
c1
(
x− xj−1

)](
x− xj−1

)∥∥u j−1− v j−1
∥
∥

+L
∫ x

xj−1
exp

[
c1(x− ξ)

]∥∥Y j
(
ξ,u j−1

)−Y j
(
ξ,v j−1

)−U
(
ξ,xj−1

)(
u j−1− v j−1

)∥∥dξ.

(3.16)

Now, Gronwall’s lemma implies (3.15). �

We can now prove the uniqueness of the solution of the two-point EDS (3.11)-(3.12).

Theorem 3.4. Let the assumptions of Theorem 2.1 be satisfied. Then there exists an h0 > 0
such that for |h| ≤ h0 the two-point EDS (3.11)-(3.12) possesses a unique solution (u j)Nj=0 =
(u(xj))Nj=0 ∈Ω(ω̂h,r(·)) which can be determined by the modified fixed point iteration

u(k)j −U
(
xj ,xj−1

)
u(k)j−1 = Y j

(
xj ,u

(k−1)
j−1

)−U
(
xj ,xj−1

)
u(k−1)j−1 , j = 1,2, . . . ,N ,

B0u
(k)
0 +B1u

(k)
N = d, k = 1,2, . . . ,

u(0)j =U
(
xj ,0

)
Q−1d, j = 0,1, . . . ,N.

(3.17)

The corresponding error estimate is

∥
∥u(k)−u

∥
∥
0,∞,ω̂h

≤ qk1
1− q1

r(1), (3.18)

where q1 ≡ qexp[L|h|exp(c1|h|)] < 1.
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Proof. Taking into account (2.2), we apply successively the formula (3.11) and get

u1 =U
(
x1,0

)
u0 +Y1(x1,u0

)−U
(
x1,0

)
u0,

u2 =U
(
x2,x1

)
U
(
x1,0

)
u0 +U

(
x2,x1

)[
Y1(x1,u0

)−U
(
x1,0

)
u0
]
+Y2(x2,u1

)−U
(
x2,x1

)
u1

=U
(
x2,0

)
u0 +U

(
x2,x1

)[
Y1(x1,u0

)−U
(
x1,0

)
u0
]
+Y2(x2,u1

)−U
(
x2,x1

)
u1,

...

u j =U
(
xj ,0

)
u0 +

j∑

i=1
U
(
xj ,xi

)[
Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1

]
.

(3.19)

Substituting (3.19) into the boundary condition (3.12), we obtain

[
B0 +B1U(1,0)

]
u0 =Qu0 =−B1

N∑

i=1
U
(
1,xi

)[
Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1

]
+d.

(3.20)

Thus,

u j =−U
(
xj ,0

)
H

N∑

i=1
U
(
1,xi

)[
Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1

]

+
j∑

i=1
U
(
xj ,xi

)[
Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1

]
+U

(
xj ,0

)
Q−1d

(3.21)

or

u j =
N∑

i=1
Gh
(
xj ,xi

)[
Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1

]
+u(0)

(
xj
)
, (3.22)

where the discrete Green’s function Gh(x,ξ) of problem (3.11)-(3.12) is the projection
onto the grid ω̂h of the Green’s function G(x,ξ) in (2.12), that is,

G(x,ξ)=Gh(x,ξ) ∀x,ξ ∈ ω̂h. (3.23)

Due to

Yi
(
xi,ui−1

)−U
(
xi,xi−1

)
ui−1 =

∫ xi

xi−1
U
(
xi,ξ

)
f
(
ξ,Yi

(
ξ,ui−1

))
dξ, (3.24)

we have

�h

(
xj ,
(
us
)N
s=0
)
=

N∑

i=1

∫ xi

xi−1
G
(
xj ,ξ

)
f
(
ξ,Yi

(
ξ,ui−1

))
dξ +u(0)

(
xj
)
. (3.25)

Next we show that the operator (3.25) transforms the set Ω(ω̂h,r(·)) into itself.
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Let (v j)Nj=0 ∈Ω(ω̂h,r(·)), then we have (see the proof of Lemma 3.1)

v(x)= Y j
(
x,v j−1

)∈Ω
([
xj−1,xj

]
,r(·)), j = 1,2, . . . ,N ,

∥
∥
∥�h

(
xj ,
(
vs
)N
s=0
)
−u(0)

(
xj
)∥∥
∥

≤ K

[

exp
[
c1
(
1+xj

)]‖H‖
N∑

i=1

∫ xi

xi−1
exp

(−c1ξ
)
dξ+exp

(
c1xj

)
j∑

i=1

∫ xi

xi−1
exp

(−c1ξ
)
dξ

]

≤ K

[

exp
(
c1xj

)
j∑

i=1
exp

(− c1xi−1
)
hi +exp

[
c1
(
1+ xj

)]‖H‖
N∑

i=1
exp

(− c1xi−1
)
hi

]

≤ K exp
(
c1xj

)[
xj +‖H‖exp

(
c1
)]= r

(
xj
)
, j = 0,1, . . . ,N.

(3.26)

Besides, the operator �h(xj , (us)Ns=0) is a contraction on Ω(ω̂h,r(·)), since due to
Lemma 3.3 and the estimate

∥
∥G(x,ξ)

∥
∥≤

⎧
⎨

⎩
exp

[
c1(1+ x− ξ)

]‖H‖, 0≤ x ≤ ξ,

exp
[
c1(x− ξ)

][
1+‖H‖exp(c1

)]
, ξ ≤ x ≤ 1,

(3.27)

which has been proved in [14], the relation (3.22) implies
∥
∥
∥�h

(
xj ,
(
us
)N
s=0
)
−�h

(
xj ,
(
vs
)N
s=0
)∥∥
∥
0,∞,ω̂h

≤
N∑

i=1
exp

[
c1
(
xj − xi

)][
1+‖H‖exp(c1

)]
L
(
xi− xi−1

)

× exp
{
c1
(
xj − xi−1

)
+L

∫ xi

xi−1
exp

[
c1
(
xi− ξ

)]
dξ
}∥
∥u j−1− v j−1

∥
∥

≤ exp
(
c1xj

)[
1+‖H‖exp(c1

)]
Lexp

[
L|h|exp(c1|h|

)]‖u− v‖0,∞,ω̂h

≤ qexp
[
L|h|exp(c1|h|

)]‖u− v‖0,∞,ω̂h
= q1‖u− v‖0,∞,ω̂h

.

(3.28)

Since (2.9) implies q < 1, we have q1 < 1 for h0 small enough and the operator �h(xj ,
(us)Ns=0) is a contraction for all (u j)Nj=0, (v j)

N
j=0 ∈Ω(ω̂h,r(·)). Then Banach’s fixed point

theorem (see, e.g., [1]) says that the two-point EDS (3.11)-(3.12) has a unique solution
which can be determined by the modified fixed point iteration (3.17) with the error esti-
mate (3.18). �

4. Implementation of two-point EDS

In order to get a constructive compact two-point difference scheme from the two-point
EDS, we replace (3.11)-(3.12) by the so-called truncated difference scheme of rank m
(m-TDS):

y(m)
j = Y (m) j(xj ,y

(m)
j−1
)
, j = 1,2, . . . ,N , (4.1)

B0y
(m)
0 +B1y

(m)
N = d, (4.2)
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wherem is a positive integer, Y (m) j(xj ,y
(m)
j−1) is the numerical solution of the IVP (3.2) on

the interval [xj−1,xj] which has been obtained by some one-step method of the order m
(e.g., by the Taylor expansion or a Runge-Kutta method):

Y (m) j(xj ,y
(m)
j−1
)= y(m)

j−1 +hjΦ
(
xj−1,y

(m)
j−1,hj

)
, (4.3)

that is, it holds that
∥
∥Y(m) j(xj ,u j−1

)−Y j
(
xj ,u j−1

)∥∥≤Mhm+1
j , (4.4)

where the increment function (see, e.g., [6])Φ(x,u,h) satisfies the consistency condition

Φ(x,u,0)= f(x,u)−A(x)u. (4.5)

For example, in case of the Taylor expansion we have

Φ
(
xj−1,y

(m)
j−1,hj

)= f
(
xj−1,y

(m)
j−1
)−A

(
xj−1

)
y(m)
j−1 +

m∑

p=2

h
p−1
j

p!

dpY j
(
x,y(m)

j−1
)

dxp

∣
∣
∣
∣
∣
x=xj−1

, (4.6)

and in case of an explicit s-stage Runge-Kutta method we have

Φ
(
xj−1,y

(m)
j−1,hj

)= b1k1 + b2k2 + ···+ bsks,

k1 = f
(
xj−1,y

(m)
j−1
)−A

(
xj−1

)
y(m)
j−1,

k2 = f
(
xj−1 + c2hj ,y

(m)
j−1 +hja21k1

)−A
(
xj−1 + c2hj

)(
y(m)
j−1 +hja21k1

)
,

...

ks = f
(
xj−1 + cshj ,y

(m)
j−1 +hj

(
as1k1 + as2k2 + ···+ as,s−1ks−1

))

−A
(
xj−1 + cshj

)(
y(m)
j−1 +hj

(
as1k1 + as2k2 + ···+ as,s−1ks−1

))
,

(4.7)

with the corresponding real parameters ci, ai j , i = 2,3, . . . ,s, j = 1,2, . . . ,s − 1, bi, i =
1,2, . . . ,s.

In order to prove the existence and uniqueness of a solution of the m-TDS (4.1)-(4.2)
and to investigate its accuracy, the next assertion is needed.

Lemma 4.1. Let the method (4.3) be of the order of accuracy m. Moreover, assume that the
increment function Φ(x,u,h) is sufficiently smooth, the entries aps(x) of the matrix A(x)
belong to Cm[0,1], and there exists a real number Δ > 0 such that fp(x,u)∈ Ck,m−k([0,1]×
Ω([0,1],r(·) +Δ)), with k = 0,1, . . . ,m− 1 and p = 1,2, . . . ,d. Then

∥
∥U (1)(xj ,xj−1

)−U
(
xj ,xj−1

)∥∥≤Mh2j , (4.8)
∥
∥
∥
∥
1
hj

[
Y(m) j(xj ,v j−1

)−U (1)(xj ,xj−1
)
v j−1

]
∥
∥
∥
∥≤ K +Mhj , (4.9)

∥
∥
∥
∥
1
hj

[
Y(m) j(xj ,u j−1

)−Y(m) j(xj ,v j−1
)−U (1)(xj ,xj−1

)(
u j−1− v j−1

)]
∥
∥
∥
∥

≤ (L+Mhj
)∥∥u j−1− v j−1

∥
∥,

(4.10)



I. P. Gavrilyuk et al. 11

where (u j)Nj=0, (v j)
N
j=0 ∈Ω(ω̂h,r(·) +Δ). The matrix U (1)(xj ,xj−1) is defined by

U (1)(xj ,xj−1
)= I −hjA

(
xj−1

)
. (4.11)

Proof. Inserting x = xj into the Taylor expansion of the function U(x,xj−1) at the point
xj−1 gives

U
(
xj ,xj−1

)=U (1)(xj ,xj−1
)
+
∫ xj

xj−1

(
xj − t

)d2U
(
t,xj−1

)

dt2
dt. (4.12)

From this equation the inequality (4.8) follows immediately.
It is easy to verify the following equalities:

1
hj

[
Y(m) j(xj ,v j−1

)−U (1)(xj ,xj−1
)
v j−1

]

=Φ
(
xj−1,v j−1,hj

)
+A

(
xj−1

)
v j−1

=Φ
(
xj−1,v j−1,0

)
+hj

∂Φ
(
xj−1,v j−1, h̄

)

∂h
+A

(
xj−1

)
v j−1

= f
(
xj−1,v j−1

)
+hj

∂Φ
(
xj−1,v j−1, h̄

)

∂h
,

1
hj

[
Y(m) j(xj ,u j−1

)−Y(m) j(xj ,v j−1
)−U (1)(xj ,xj−1

)(
u j−1− v j−1

)]

=Φ
(
xj−1,u j−1,hj

)−Φ
(
xj−1,v j−1,hj

)
+A

(
xj−1

)(
u j−1− v j−1

)

= f
(
xj−1,u j−1

)− f
(
xj−1,v j−1

)
+hj

[
∂Φ
(
xj−1,u j−1, h̄

)

∂h
− ∂Φ

(
xj−1,v j−1, h̄

)

∂h

]

= f
(
xj−1,u j−1

)− f
(
xj−1,v j−1

)

+hj

∫ 1

0

∂2Φ
(
xj−1,θu j−1 + (1− θ)v j−1, h̄

)

∂h∂u
dθ · (u j−1− v j−1

)
,

(4.13)

where h̄∈ (0,|h|), which imply (4.9)-(4.10). The proof is complete. �

Now, we are in the position to prove the main result of this paper.

Theorem 4.2. Let the assumptions of Theorem 2.1 and Lemma 4.1 be satisfied. Then, there
exists a real number h0 > 0 such that for |h| ≤ h0 the m-TDS (4.1)-(4.2) possesses a unique
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solution which can be determined by the modified fixed point iteration

y(m,n)
j −U (1)(xj ,xj−1

)
y(m,n)
j−1 = Y (m) j(xj ,y

(m,n)
j−1

)−U (1)(xj ,xj−1
)
y(m,n−1)
j−1 , j = 1,2, . . . ,N ,

B0y
(m,n)
0 +B1y

(m,n)
N = d, n= 1,2, . . . ,

y(m,0)
j =

j∏

k=1
U (1)(xj−k+1,xj−k

)
[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

d, j = 0,1, . . . ,N.

(4.14)

The corresponding error estimate is

∥
∥y(m,n)−u

∥
∥
0,∞,ω̂h

≤M
(
qn2 + |h|m

)
, (4.15)

where q2 ≡ q+M|h| < 1.

Proof. From (4.1) we deduce successively

y(m)
1 =U (1)(x1,x0

)
y(m)
0 +Y(m)1(x1,y

(m)
0

)−U (1)(x1,x0
)
y(m)
0 ,

y(m)
2 =U (1)(x2,x1

)
U (1)(x1,x0

)
y(m)
0 +U (1)(x2,x1

)

×
[
Y(m)1(x1,y

(m)
0

)−U (1)(x1,x0
)
y(m)
0

]
+Y(m)2(x2,y

(m)
1

)−U (1)(x2,x1
)
y(m)
1 ,

...

y(m)
j =

j∏

k=1
U (1)(xj−k+1,xj−k

)
y(m)
0

+
j∑

i=1

j−i∏

k=1
U (1)(xj−k+1,xj−k

)[
Y(m)i(xi,y

(m)
i−1
)−U (1)(xi,xi−1

)
y(m)
i−1
]
.

(4.16)

Substituting y(m)
N into the boundary conditions (4.2), we get

[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]

y(m)
0

=−B1

N∑

i=1

N−i∏

k=1
U (1)(xN−k+1,xN−k

)[
Y(m)i(xi,y

(m)
i−1
)−U (1)(xi,xi−1

)
y(m)
i−1
]
+d.

(4.17)
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Let us show that the matrix in square brackets is regular. Here and in the following we
use the inequality

∥
∥U (1)(xj ,xj−1

)∥∥≤ ∥∥U(xj ,xj−1
)∥∥+

∥
∥U (1)(xj ,xj−1

)−U
(
xj ,xj−1

)∥∥

≤ exp
(
c1hj

)
+Mh2j ,

(4.18)

which can be easily derived using the estimate (4.8). We have

∥
∥
∥
∥
∥

[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]

− [B0 +B1U(1,0)
]
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥B1

[ N∏

k=1
U (1)(xN−k+1,xN−k

)−
N∏

k=1
U
(
xN−k+1,xN−k

)
]∥∥
∥
∥
∥

=
∥
∥
∥
∥
∥B1

N∑

j=1
U
(
xN ,xN− j+1

)[
U (1)(xN− j+1,xN− j

)−U
(
xN− j+1,xN− j

)]

×
N∏

i= j+1

U (1)(xN−i+1,xN−i
)
∥
∥
∥
∥
∥

≤ ∥∥B1
∥
∥

N∑

j=1
exp

[(
1− xN− j+1

)
c1
]
Mh2N− j+1

N∏

i= j+1

exp
[(
c1hN−i+1

)
+Mh2N−i+1

]

≤M|h|,
(4.19)

that is,

∥
∥
∥
∥
∥

[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]

− [B0 +B1U(1,0)
]
∥
∥
∥
∥
∥ < 1 (4.20)

for h0 small enough. Here we have used the inequality

N∏

i= j+1

exp
[(
c1hN−i+1

)
+Mh2N−i+1

]

≤ exp
(
c1
)(
1+M|h|2)N− j ≤ exp

(
c1
)
exp

[
M(N − j)|h|2]

≤ exp
(
c1
)
exp

[
M1|h|

]≤ exp
(
c1
)
+M|h|.

(4.21)

Since Q = B0 +B1U(1,0) is nonsingular, it follows from (4.20) that the inverse

[

B0 +B1

N∏

k=1
U (m)(xN−k+1,xN−k

)
]−1

(4.22)
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exists and due to (4.19) the following estimate holds:

∥
∥
∥
∥
∥

[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

B1

∥
∥
∥
∥
∥

≤ ∥∥Q−1B1
∥
∥+

∥
∥
∥
∥
∥

[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

−
[

B0 +B1

N∏

k=1
U
(
xN−k+1,xN−k

)
]−1∥∥

∥
∥
∥

∥
∥B1

∥
∥

≤ ‖H‖+M|h|.

(4.23)

Moreover, from (4.16) and (4.17) we have

y(m)
j =−

j∏

k=1
U (1)(xj−k+1,xj−k

)
[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

×B1

N∑

i=1

N−i∏

k=1
U (1)(xN−k+1,xN−k

)[
Y(m)i(xi,y

(m)
i−1
)−U (1)(xi,xi−1

)
y(m)
i−1
]

+
j∑

i=1

j−i∏

k=1
U (1)(xj−k+1,xj−k

)[
Y(m)i(xi,y

(m)
i−1
)−U (1)(xi,xi−1

)
y(m)
i−1
]

+
j∏

k=1
U (1)(xj−k+1,xj−k

)
[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

d,

(4.24)

or

y(m)
j =�(m)

h

(
xj ,
(
y(m)
s

)N
s=0
)
, (4.25)

where

�(m)
h

(
xj ,
(
y(m)
s

)N
s=0
)
=

N∑

i=1
G(1)
h

(
xj ,xi

)[
Y(m)i(xi,y

(m)
i−1
)−U (1)(xi,xi−1

)
y(m)
i−1
]
+ y(m,0)

j ,

(4.26)

and G(1)
h (x,ξ) is Green’s function of the problem (4.1)-(4.2) given by

G(1)
h

(
xj ,xi

)=−
j∏

k=1
U (1)(xj−k+1,xj−k

)
[

B0 +B1

N∏

k=1
U (1)(xN−k+1,xN−k

)
]−1

×B1

N−i∏

k=1
U (1)(xN−k+1,xN−k

)
+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i≥ j,

j−i∏

k=1
U (1)(xj−k+1,xj−k

)
, i < j.

(4.27)
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Estimates (4.18) and (4.23) imply

∥
∥G(1)

h

(
xj ,xi

)∥∥≤
⎧
⎪⎨

⎪⎩

exp
[
c1
(
1+ xj − xi

)]‖H‖+M|h|, i≥ j,

exp
[
c1
(
xj − xi

)][
1+‖H‖exp(c1

)]
+M|h|, i < j.

(4.28)

Now we use Banach’s fixed point theorem. First of all we show that the operator
�(m)

h (xj , (vk)Nk=0) transforms the set Ω(ω̂h,r(x) +Δ) into itself. Using (4.9) and (4.28) we
get, for all (vk)Nk=0 ∈Ω(ω̂h,r(·) +Δ),

∥
∥
∥�(m)

h

(
xj ,
(
vk
)N
k=0
)
−u(0)

(
xj
)∥∥
∥

≤ (K +M|h|)
{

exp
[
c1
(
1+ xj

)]‖H‖
N∑

i=1
hi exp

(− c1xi−1
)

+exp
(
c1xj

)
j∑

i=1
hi exp

(− c1xi−1
)
+M|h|

}

+M|h|

≤ (K +M|h|)exp(c1xj
)[
xj +‖H‖exp

(
c1
)
+M|h|]+M|h|

≤ r
(
xj
)
+M|h| ≤ r

(
xj
)
+Δ.

(4.29)

It remains to show that �(m)
h (xj , (us)Ns=0) is a contractive operator. Due to (4.10) and

(4.28) we have

∥
∥
∥�(m)

h

(
xj ,
(
us
)N
s=0
)
−�(m)

h

(
xj ,
(
vs
)N
s=0
)∥∥
∥
0,∞,ω̂h

≤ [exp(c1
)(
1+‖H‖exp(c1

))
+M|h|]

× max
1≤ j≤N

∥
∥
∥
∥
1
hj

[
Y(m) j(xj ,u j−1

)−Y(m) j(xj ,v j−1
)−U (1)(xj ,xj−1

)(
u j−1− v j−1

)]
∥
∥
∥
∥

≤ [exp(c1
)(
1+‖H‖exp(c1

))
+M|h|][q+M|h|]‖u− v‖0,∞,ω̂h

≤ q2‖u− v‖0,∞,ω̂h
,

(4.30)

where (uk)Nk=0, (vk)
N
k=0 ∈Ω(ω̂h,r(·) +Δ) and q2 ≡ [q+M|h|] < 1 provided that h0 is small

enough. This means that �(m)
h (xj , (us)Ns=0) is a contractive operator. Thus, the scheme

(4.1)-(4.2) has a unique solution which can be determined by the modified fixed point
iteration (4.14) with the error estimate

∥
∥y(m,n)− y(m)

∥
∥
0,∞,ω̂h

≤ qn2
1− q2

(
r(1)+Δ

)
. (4.31)
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The error z(m)
j = y(m)

j −u j of the solution of scheme (4.1)-(4.2) satisfies

z(m)
j −U (1)(xj ,xj−1

)
z(m)
j−1 = ψ(m)(xj ,y

(m)
j−1
)
, j = 1,2, . . . ,N ,

B0z
(m)
0 +B1z

(m)
N = 0,

(4.32)

where the residuum (the approximation error) ψ(m)(xj ,y
(m)
j−1) is given by

ψ(m)(xj ,y
(m)
j−1
)=

[
Y(m) j(xj ,u

(
xj−1

))−Y j
(
xj ,u

(
xj−1

))]

+
[
Y(m) j(xj ,y

(m)
j−1
)−Y(m) j(xj ,u

(
xj−1

))−U (1)(xj ,xj−1
)(
y(m)
j−1−u

(
xj−1

))]
.

(4.33)

We rewrite problem (4.32) in the equivalent form

z(m)
j =

N∑

i=1
G(1)
h

(
xj ,xi

)
ψ(m)(xi,y

(m)
i−1
)
. (4.34)

Then (4.28) and Lemma 4.1 imply

∥
∥z(m)

j

∥
∥≤ [exp(c1

)(
1+‖H‖exp(c1

))
+M|h|]

N∑

i=1

∥
∥ψ(m)(xi,y

(m)
i−1
)∥∥

≤ [exp(c1
)(
1+‖H‖exp(c1

))
+M|h|]

×
[

M|h|m +
N∑

i=1
hi
(
L+hiM

)∥∥z(m)
i−1
∥
∥
]

≤ q2
∥
∥z(m)

∥
∥
0,∞,ω̂h

+M|h|m.

(4.35)

The last inequality yields

∥
∥z(m)

∥
∥
0,∞,ω̂h

≤M|h|m. (4.36)

Now, from (4.31) and (4.36) we get the error estimate for the method (4.15):

∥
∥y(m,n)−u

∥
∥
0,∞,ω̂h

≤ ∥∥y(m,n)− y(m)
∥
∥
0,∞,ω̂h

+
∥
∥y(m)−u

∥
∥
0,∞,ω̂h

≤M
(
qn2 + |h|m

)
, (4.37)

which completes the proof. �

Remark 4.3. Using U (1) (see formula (4.11)) in (4.14) instead of the fundamental matrix
U preserves the order of accuracy but reduces the computational costs significantly.
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Above we have shown that the nonlinear system of equations which represents the TDS
can be solved by the modified fixed point iteration. But actually Newton’s method is used
due to its higher convergence rate. The Newton method applied to the system (4.1)-(4.2)
has the form

�y(m,n)
j − ∂Y(m) j

(
xj ,y

(m,n−1)
j−1

)

∂u
�y(m,n)

j−1 = Y(m) j(xj ,y
(m,n−1)
j−1

)− y(m,n−1)
j−1 , j = 1,2, . . . ,N ,

B0�y(m,n)
0 +B1�y(m,n)

N = 0, n= 1,2, . . . ,

y(m,n)
j = y(m,n−1)

j +�y(m,n)
j , j = 0,1, . . . ,N , n= 1,2, . . . ,

(4.38)

where

∂Y(m) j
(
xj ,y

(m)
j−1
)

∂u
= I +hj

∂Φ
(
xj−1,y

(m)
j−1,hj

)

∂u

= I +hj

[
∂f
(
xj−1,y

(m)
j−1
)

∂u
−A

(
xj−1

)
]

+O
(
h2j
)

(4.39)

and ∂f(xj−1,y
(m)
j−1)/∂u is the Jacobian of the vector-function f(x,u) at the point (xj−1,y

(m)
j−1).

Denoting

Sj =
∂Y(m) j

(
xj ,y

(m,n−1)
j−1

)

∂u
, (4.40)

the system (4.38) can be written in the following equivalent form:

[
B0 +B1S

]� y(m,n)
0 =−B1ϕ, y(m,n)

0 = y(m,n−1)
0 +�y(m,n)

0 , (4.41)

where

S= SNSN−1 ···S1, ϕ= ϕN , ϕ0 = 0,

ϕ j = Sjϕ j−1 +Y(m) j(xj ,y
(m,n−1)
j−1

)− y(m,n−1)
j−1 , j = 1,2, . . . ,N.

(4.42)

After solving system (4.41) with a (d × d)-matrix (this requires �(N) arithmetical op-
erations since the dimension d is very small in comparison with N) the solution of the
system (4.38) is then computed by

�y(m,n)
j = SjSj−1 ···S1� y(m,n)

0 +ϕ j ,

y(m,n)
j = y(m,n−1)

j +�y(m,n)
j , j = 1,2, . . . ,N.

(4.43)
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When using Newton’s method or a quasi-Newtonmethod, the problem of choosing an

appropriate start approach y(m,0)
j , j = 1,2, . . . ,N , arises. If the original problem contains

a natural parameter and for some values of this parameter the solution is known or can
be easily obtained, then one can try to continue the solution along this parameter (see,
e.g., [2, pages 344–353]). Thus, let us suppose that our problem can be written in the
generic form

u′(x) +A(x)u= g(x,u,λ), x ∈ (0,1), B0u(0)+B1u(1)= d, (4.44)

where λ denotes the problem parameter. We assume that for each λ∈ [λ0,λk] an isolated
solution u(x,λ) exists and depends smoothly on λ.

If the problem does not contain a natural parameter, then we can introduce such a
parameter λ artificially by forming the homotopy function

g(x,u,λ)= λf(x,u) + (1− λ)f1(x), (4.45)

with a given function f1(x) such that the problem (4.46) has a unique solution.
Now, for λ= 0 the problem (4.44) is reduced to the linear BVP

u′(x) +A(x)u= f1(x), x ∈ (0,1), B0u(0)+B1u(1)= d, (4.46)

while for λ= 1 we obtain our original problem (1.1).
Them-TDS for the problem (4.44) is of the form

y(m)
j (λ)= Y (m) j(xj ,y

(m)
j−1,λ

)
, j = 1,2, . . . ,N ,

B0y
(m)
0 (λ) +B1y

(m)
N (λ)= d.

(4.47)

The differentiation by λ yields the BVP

dy(m)
j (λ)

dλ
= ∂Y (m) j

(
xj ,y

(m)
j−1,λ

)

∂λ
+
∂Y (m) j

(
xj ,y

(m)
j−1,λ

)

∂u

dy(m)
j (λ)

dλ
, j = 1,2, . . . ,N ,

B0
dy(m)

0 (λ)
dλ

+B1
dy(m)

N (λ)
dλ

= 0,

(4.48)

which can be further reduced to the following system of linear algebraic equations for the

unknown function v(m)
0 (λ)= dy(m)

0 (λ)/dλ:

[
B0 +B1S̃

]
v(m)
0 (λ)=−B1ϕ̃, (4.49)
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where

S̃= S̃N S̃N−1 ··· S̃1, S̃ j =
∂Y (m) j

(
xj ,y

(m)
j−1,λ

)

∂u
, j = 1,2, . . . ,N ,

ϕ̃= ϕ̃N , ϕ̃0 = 0, ϕ̃ j = S̃ jϕ̃ j−1 +
∂Y(m) j

(
xj ,y

(m)
j−1,λ

)

∂λ
, j = 1,2, . . . ,N.

(4.50)

Moreover, for v(m)
j (λ)= dy(m)

j (λ)/dλ we have the formulas

v(m)
j (λ)= S̃ j S̃ j−1 ··· S̃1v(m)

0 + ϕ̃ j , j = 1,2, . . . ,N. (4.51)

The start approach for Newton’s method can now be obtained by

y(m,0)
j (λ+�λ)= y(m)

j (λ) +�λv(m)
j (λ), j = 0,1, . . . ,N. (4.52)

Example 4.4. This BVP goes back to Troesch (see, e.g., [26]) and represents a well-known
test problem for numerical software (see, e.g., [5, pages 17-18]):

u′′ = λsinh(λu), x ∈ (0,1), λ > 0, u(0)= 0, u(1)= 1. (4.53)

We apply the truncated difference scheme of orderm:

y(m)
j = Y(m) j(xj ,y

(m)
j−1
)
, j = 1,2, . . . ,N ,

B0y
(m)
0 +B1y

(m)
N = d,

(4.54)

where the following Taylor series IVP-solver is used:

Y(m) j(xj ,y
(m)
j−1
)= y(m)

j−1 +hjF
(
xj−1,y

(m)
j−1
)
+

m∑

p=2

h
p
j

p!

dpY j
(
x,y(m)

j−1
)

dxp

∣
∣
∣
∣
∣
x=xj−1

,

y(m)
j =

⎛

⎝
y(m)
1, j

y(m)
2, j

⎞

⎠ , A=
(
0 −1
0 0

)

, B0 =
(
1 0
0 0

)

, B1 =
(
0 0
1 0

)

,

d=
(
0
1

)

, F(x,u)=−Au+ f(x,u)=
( −u2
λsinh

(
λu1

)

)

.

(4.55)
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Let us describe the algorithm for the computation of Y(m) j(xj ,y
(m)
j−1) in Troesch’s prob-

lem which is based on the formula in (4.55). Denoting Y1,p = (1/p!)(dpY
j
1 (x,y

(m)
j−1)/

dxp)|x=xj−1 , we get

1
p!

dpY j
(
x,y(m)

j−1
)

dxp

∣
∣
∣
∣
∣
x=xj−1

=
⎛

⎝
Y1,p

(p+1)Y1,p+1

⎞

⎠ (4.56)

and it can be seen that in order to compute the vectors (1/p!)(dpY j(x,y(m)
j−1)/dxp)|x=xj−1 it

is sufficient to find Y1,p as the Taylor coefficients of the function Y
j
1 (x,y

(m)
j−1) at the point

x = xj−1. This function satisfies the IVP

d2Y
j
1

(
x,y(m)

j−1
)

dx2
= λsinh

[
λY

j
1

(
x,y(m)

j−1
)]
,

Y
j
1

(
xj−1,y

(m)
j−1
)= y(m)

1, j−1,
dY

j
1

(
xj−1,y

(m)
j−1
)

dx
= y(m)

2, j−1.

(4.57)

Let

r̃(x)= sinh
[
λY

j
1

(
x,y(m)

j−1
)]=

∞∑

i=0

(
x− xj−1

)i
Ri. (4.58)

Substituting this series into the differential equation (4.57), we get

Y1,i+2 = λRi

(i+1)(i+2)
. (4.59)

Denoting p̃(x)= λY
j
1 (x,y

(m)
j−1)=

∑∞
i=0(x− xj−1)iPi, we have

r̃(x)= sinh
{
p̃(x)

}
, s̃(x)= cosh

{
p̃(x)

}=
∞∑

i=0

(
x− xj−1

)i
Si. (4.60)

Performing the simple transformations

r̃ ′ = cosh
{
p̃
}
p̃′ = p̃′s̃, s̃ ′ = sinh

{
p̃
}
p̃′ = p̃′r̃ (4.61)

and applying formula (8.20b) from [4], we arrive at the recurrence equations

Ri = 1
i

i−1∑

k=0
(i− k)SkPi−k, Si = 1

i

i−1∑

k=0
(i− k)RkPi−k, i= 1,2, . . . ,

Pi = λY1,i, i= 2,3, . . . .

(4.62)

The corresponding initial conditions are

P0 = λy(m)
1, j−1, P1 = λy(m)

2, j−1, R0 = sinh
(
λy(m)

1, j−1
)
, S0 = cosh

(
λy(m)

1, j−1
)
.
(4.63)
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The Jacobian is given by

∂Y(m) j
(
xj ,y

(m)
j−1
)

∂u
= I +hj

⎛

⎝
0 1

λ2 cosh
(
λy(m)

1, j−1
)

0

⎞

⎠

+
m∑

p=2

h
p
j

p!

⎛

⎝
Y1,p,u1 Y1,p,u2

(p+1)Y1,p+1,u1 (p+1)Y1,p+1,u2

⎞

⎠ ,

(4.64)

with

u=
(
u1
u2

)

, Y1,p,ul =
∂Y1,p

(
xj ,y

(m)
j−1
)

∂ul
, l = 1,2. (4.65)

Since the functions Y1,ul(x,y
(m)
j−1)= ∂Y1(x,y

(m)
j−1)/∂ul satisfy the differential equations

d2Y1,u1

dx2
= λ2 cosh

(
p̃(x)

)(
1+Y1,u1

)
,

d2Y1,u2

dx2
= λ2 cosh

(
p̃(x)

)((
x− xj−1

)
+Y1,u2

)
,

(4.66)

for the computation of Y1,p,ul , we get the recurrence algorithm

Y1,i+2,u1 =
λ2

(i+1)(i+2)

[

Si +
i∑

k=2
Y1,k,u1Si−k

]

, i= 2,3, . . . ,

Y1,2,u1 =
λ2S0
2

, Y1,3,u1 =
λ2S1
6

,

Y1,i+2,u2 =
λ2

(i+1)(i+2)

[

Si−1 +
i∑

k=2
Y1,k,u2Si−k

]

, i= 2,3, . . . ,

Y1,2,u2 = 0, Y1,3,u2 =
λ2S0
6

.

(4.67)

For the vector ∂Y(m) j(xj ,y
(m)
j−1,λ)/∂λ we have the formula

∂Y(m) j
(
xj ,y

(m)
j−1,λ

)

∂λ
= hj

⎛

⎝
0

sinh
(
λy(m)

1, j−1
)
+ λy(m)

1, j−1 cosh
(
λy(m)

1, j−1
)

⎞

⎠

+
m∑

p=2

h
p
j

p!

⎛

⎝
Y1,p,λ

(p+1)Y1,p+1,λ

⎞

⎠ ,

(4.68)



22 Difference schemes for BVPs

where

Y1,p,λ =
∂Y1,p

(
xj ,y

(m)
j−1,λ

)

∂λ
. (4.69)

Taking into account that Y
j
1,λ(xj ,y

(m)
j−1,λ) = ∂Y

j
1 (xj ,y

(m)
j−1,λ)/∂λ satisfies the differential

equation

d2Y
j
1,λ

dx2
= λ2 cosh

(
p̃(x)

)
Y

j
1,λ + sinh

(
p̃(x)

)
+ p̃(x)cosh

(
p̃(x)

)
, (4.70)

we obtain for Y1,p,λ the recurrence relation

Y1,i+2,λ = 1
(i+1)(i+2)

[

λ2
i∑

k=2
Y1,k,λSi−k +Ri +

i∑

k=0
PkSi−k

]

, i= 2,3, . . . ,

Y1,2,λ = R0 +P0S0
2

, Y1,3,λ = R1 +P0S1 +P1S0
6

.

(4.71)

Taking into account the behavior of the solution we choose the grid

ω̂h =
{
xj = exp( jα/N)− 1

exp(α)− 1
, j = 0,1,2, . . . ,N

}
, (4.72)

with α < 0 which becomes dense for x→ 1. The step sizes of this grid are given by h1 = x1
and hj+1 = hj exp(α/N), j = 1,2, . . . ,N − 1. Note that the use of the formula hj = xj − xj−1,
j = 1,2, . . . ,N , for j →N and |α| large enough (α=−26) implies a large absolute roundoff

error since some of xj , xj−1 lie very close together.
The a posteriori Runge estimator was used to arrive at the right boundary with a given

tolerance ε: the tolerance was assumed to be achieved if the following inequality is ful-
filled:

max

⎧
⎨

⎩

∥
∥
∥
∥
∥

y(m)
N − y(m)

2N

max
(∣∣y(m)

2N

∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

,

∥
∥
∥
∥
∥

dy(m)
N /dx−dy(m)

2N /dx

max
(∣∣dy(m)

2N /dx
∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

⎫
⎬

⎭≤
(
2m− 1

)
ε.

(4.73)

Otherwise a doubling of the number of the grid points was made. Here y(m)
N denotes the

solution of the difference scheme of the order of accuracym on the grid {x0, . . . ,xN}, and
y(m)
2N denotes the solution of this scheme on the grid {x0, . . . ,x2N}. The difference scheme
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(a system of nonlinear algebraic equations) was solved by Newton’s method with the
stopping criterion

max

⎧
⎨

⎩

∥
∥
∥
∥
∥

y(m,n)− y(m,n−1)

max
(∣∣y(m,n)

∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

,

∥
∥
∥
∥
∥
dy(m,n)/dx−dy(m,n−1)/dx
max

(∣∣dy(m,n)/dx
∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

⎫
⎬

⎭≤ 0.5ε,

(4.74)

where n = 1,2, . . . ,10 denotes the iteration number. Setting the value of the unknown
first derivative at the point x = 0 equal to s the solution of Troesch’s test problem can be
represented in the form (see, e.g., [22])

u(x,s)= 2
λ
arcsinh

(
s · sn(λx,k)
2 · cn(λx,k)

)
, k2 = 1− s2

4
, (4.75)

where sn(λx,k), cn(λx,k) are the elliptic Jacobi functions and the parameter s satisfies the
equation

2
λ
arcsinh

(
s · sn(λ,k)
2 · cn(λ,k)

)
= 1. (4.76)

For example, for the parameter value λ = 5 one gets s = 0.457504614063 · 10−1, and for
λ = 10 it holds that s = 0.35833778463 · 10−3. Using the homotopy method (4.52) we
have computed numerical solutions of Troesch’s problem (4.53) for λ ∈ [1,62] using a
step-size �λ. The numerical results for λ = 10,20,30,40,45,50,61 computed with the
difference scheme of the order of accuracy 7 on the grid (4.72) with α=−26 are given in
Table 4.1, where CPU∗ is the time needed by the processor in order to solve the sequence
of Troesch problems beginning with λ= 1 and using the step�λ until the value of λ given
in the table is reached. The numerical results for λ= 61,62 computed with the difference
scheme of the order of accuracy 10 on the grid with α=−26 are given in Table 4.2. The
real deviation from the exact solution is given by

Error=max

⎧
⎨

⎩

∥
∥
∥
∥
∥

y(m)−u

max
(∣∣y(m)

∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

,

∥
∥
∥
∥
∥

dy(m)/dx−du/dx

max
(∣∣dy(m)/dx

∣
∣,10−5

)

∥
∥
∥
∥
∥
0,∞,ω̂h

⎫
⎬

⎭ .

(4.77)

The numerical experiments were carried out with double precision in Fortran on
a PC with Intel Pentium (R) 4 CPU 1700MHz processor and a RAM of 512MB. To
calculate the Jacobi functions sn(x,k), cn(x,k) for large |x| the computer algebra tool
Maple VII with Digits = 80 was used. Then, the exact solution on the grid ω̂h and an
approximation for the parameter s, namely, s = 0.2577072228793720338185 · 10−25 sat-
isfying |u(1,s)− 1| < 0.17 · 10−10 and s= 0.948051891387119532089349753 · 10−26 satis-
fying |u(1,s)− 1| < 0.315 · 10−15, were calculated.
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Table 4.1. Numerical results for the TDS withm= 7 (�λ= 4).

λ ε N u′(0) u(1) CPU∗ (s)

10 10−7 512 3.5833778 · 10−4 1 0.02

20 10−7 512 1.6487734 · 10−8 1 0.04

30 10−7 512 7.4861194 · 10−13 1 0.07

40 10−7 512 3.3987988 · 10−17 1 0.10

45 10−7 512 2.2902091 · 10−19 1 0.11

50 10−7 1024 1.5430022 · 10−21 1 0.15

61 10−7 262 144 2.5770722 · 10−26 1 6.10

Table 4.2. Numerical results for the TDS withm= 10 (�λ= 2).

λ ε N Error CPU∗ (s)

61 10−6 65536 0.860 · 10−5 3.50

61 10−8 131072 0.319 · 10−7 7.17

62 10−6 262144 0.232 · 10−5 8.01

62 10−8 262144 0.675 · 10−8 15.32

Table 4.3. Numerical results for the code RWPM.

λ m it NFUN u′(0) u(1) CPU (s)

10 11 9 12 641 3.5833779 · 10−4 1.0000000 0.01

20 11 13 34 425 1.6487732 · 10−8 0.9999997 0.02

30 14 16 78 798 7.4860938 · 10−13 1.0000008 0.05

40 15 24 172 505 3.3986834 · 10−17 0.9999996 0.14

45 12 31 530 085 2.2900149 · 10−19 1.0000003 0.30

To compare the results we have solved problem (4.53) with the multiple shooting code
RWPM (see, e.g., [7] or [27]). For the parameter values λ = 10,20,30,40 the numerical
IVP-solver used was the code RKEX78, an implementation of the Dormand-Prince em-
bedded Runge-Kutta method 7(8), whereas for λ = 45 we have used the code BGSEXP,
an implementation of the well-known Bulirsch-Stoer-Gragg extrapolation method. In
Table 4.3 we denote by m the number of the automatically determined shooting points,
NFUN is the number of ODE calls, it the number of iterations, and CPU the CPU time
used. One can observe that the accuracy characteristics of our TDS method are better
than that of the code RWPM. Besides, RWPM fails for values λ≥ 50.
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Example 4.5. Let us consider the BVP for a system of stiff differential equations (see [21])

u′1 = λ

(
u3−u1

)
u1

u2
, u′2 =−λ

(
u3−u1

)
,

u′3 =
0.9− 103

(
u3−u5

)− λ
(
u3−u1

)
u3

u4
,

u′4 = λ
(
u3−u1

)
, u′5 =−100

(
u5−u3

)
, 0 < x < 1,

u1(0)= u2(0)= u3(0)= 1, u4(0)=−10, u3(1)= u5(1).

(4.78)

In order to solve this problem numerically we apply the TDS of the order of accuracy
6 given by

y(6)j = Y(6) j(xj ,y
(6)
j−1
)
, j = 1,2, . . . ,N ,

B0y
(6)
0 +B1y

(6)
N = d,

(4.79)

where Y(6) j(xj ,y
(6)
j−1) is the numerical solution of the IVP (3.2) computed by the following

Runge-Kutta method of the order 6 (see, e.g., [6]):

Y(6) j(xj ,y
(6)
j−1
)= y(6)j−1 +hj

(
13
200

(
k1 +k7

)
+
11
40

(
k3 +k4

)
+

4
25

(
k5 +k6

)
)
,

k1 = F
(
xj−1,y

(6)
j−1
)
,

k2 = F
(
xj−1 +

1
2
hj ,y

(6)
j−1 +

1
2
hjk1

)
,

k3 = F
(
xj−1 +

2
3
hj ,y

(6)
j−1 +

2
9
hjk1 +

4
9
hjk2

)
,

k4 = F
(
xj−1 +

1
3
hj ,y

(6)
j−1 +

7
36

hjk1 +
2
9
hjk2− 1

12
hjk3

)
,

k5 = F
(
xj−1 +

5
6
hj ,y

(6)
j−1−

35
144

hjk1− 55
36

hjk2 +
35
48

hjk3 +
15
8
hjk4

)
,

k6 = F
(
xj−1 +

1
6
hj ,y

(6)
j−1−

1
360

hjk1− 11
36

hjk2− 1
8
hjk3 +

1
2
hjk4 +

1
10

hjk5

)
,

k7 = F
(
xj−1 +hj ,y

(6)
j−1−

41
260

hjk1 +
22
13

hjk2

+
43
156

hjk3− 118
39

hjk4 +
32
195

hjk5 +
80
39

hjk6

)
.

(4.80)

In Newton’s method (4.38) the matrix ∂Y(6) j(xj ,y
(6)
j−1)/∂u is approximated by

∂Y(6) j
(
xj ,y

(6)
j−1
)

∂u
≈ I +hj

∂F
(
xj−1,y

(6)
j−1
)

∂u
. (4.81)
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Table 4.4. Numerical results for the TDS withm= 6 (λ= 100).

ε NFUN CPU

10−4 24500 0.01

10−6 41440 0.02

10−8 77140 0.04

Table 4.5. Numerical results for the code RWPM (λ= 100).

ε NFUN CPU+

10−4 15498 0.02

10−6 31446 0.04

10−8 52374 0.06

Numerical results on the uniform grid

ω̄h =
{
xj = jh, j = 0,1, . . . ,N , h= 1

N

}
(4.82)

obtained by the TDS (4.79)–(4.81) are given in Table 4.4.
This problem was also solved by the code RWPMwith the semi-implicit extrapolation

method SIMPR as the IVP-solver within the multiple shooting method. As the start iter-
ation we used the solution of the problem with λ= 0. The numerical results are given in
Table 4.5, where CPU+ denotes the aggregate time of the solution of the linear problem
with λ= 0 and of the problem with λ= 100.

Example 4.6. Let us consider the periodic BVP (see [19])

u′′ = −0.05u′ − 0.02u2 sinx+0.00005sinxcos2 x− 0.05cosx− 0.0025sinx, x ∈ (0,2π),

u(0)= u(2π), u′(0)= u′(2π),
(4.83)

which has the exact solution u(x)= 0.05cosx.
Numerical results on the uniform grid

ω̄h =
{
xj = jh, j = 0,1, . . . ,N , h= 2π

N

}
(4.84)

obtained by the TDS (4.79)–(4.81) with

y(m)
j =

⎛

⎝
y(m)
1, j

y(m)
2, j

⎞

⎠ , B0 =
(
1 0
0 1

)

, B1 =
(−1 0

0 −1
)

, d=
(
0
0

)

,

F(x,u)=
⎛

⎝
−u2

−0.05(u2 + cosx
)
+ sinx

(
0.00005cos2 x− 0.02u21− 0.0025

)

⎞

⎠

(4.85)



I. P. Gavrilyuk et al. 27

Table 4.6. Numerical results for the TDS withm= 6.

ε N NFUN Error

10−4 64 5712 0.453 · 10−8
10−6 64 5712 0.453 · 10−8
10−8 128 12432 0.267 · 10−11

are given in Table 4.6.

5. Conclusions

The main result of this paper is a new theoretical framework for the construction of dif-
ference schemes of an arbitrarily given order of accuracy for nonlinear two-point bound-
ary value problems. The algorithmical aspects of these schemes and their implementa-
tion are only sketched and will be discussed in detail in forthcoming papers. Note that
the proposed framework enables an automatic grid generation on the basis of efficient
a posteriori error estimations as it is known from the numerical codes for IVPs. More
precisely, Theorem 4.2 asserts that if the coefficients of the TDS are computed by two
embedded Runge-Kutta methods of the ordersm andm+1, then the corresponding dif-
ference schemes for the given BVP are of the order m and m+ 1, respectively. Thus, the
difference between these two numerical solutions represents an a posteriori estimate of
the local error of them-TDS (analogously to IVP-solvers) which can be used for an auto-
matic and local grid refinement.
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