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We study the global asymptotic behavior of the positive solutions of the system of rational
difference equations xn+1 = f (xn, yn−k), yn+1 = f (yn,xn−k), n = 0,1,2, . . . , under appro-
priate assumptions, where k ∈ {1,2, . . .} and the initial values x−k,x−k+1, . . . ,x0, y−k, y−k+1,
. . . , y0 ∈ (0,+∞). We give sufficient conditions under which every positive solution of this
equation converges to a positive equilibrium. The main theorem in [1] is included in our
result.

Copyright © 2006 Taixiang Sun et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
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1. Introduction

Recently there has been published quite a lot of works concerning the behavior of posi-
tive solutions of systems of rational difference equations [2–7]. These results are not only
valuable in their own right, but they can provide insight into their differential counter-
parts.

In [1], Camouzis and Papaschinopoulos studied the global asymptotic behavior of the
positive solutions of the system of rational difference equations

xn+1 = 1+
xn
yn−k

,

yn+1 = 1+
yn
xn−k

,
n= 0,1,2, . . . , (1.1)

where k ∈ {1,2, . . .} and the initial values x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0 ∈ (0,+∞).
To be motivated by the above studies, in this paper, we consider the more general

equation

xn+1 = f (xn, yn−k),

yn+1 = f (yn,xn−k),
n= 0,1,2, . . . , (1.2)
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where k ∈ {1,2, . . .}, the initial values x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0 ∈ (0,+∞) and f
satisfies the following hypotheses.
(H1) f ∈ C(E × E, (0,+∞)) with a = inf (u,v)∈E×E f (u,v) ∈ E, where E ∈ {(0,+∞),

[0,+∞)}.
(H2) f (u,v) is increasing in u and decreasing in v.
(H3) There exists a decreasing function g ∈ C((a,+∞),(a,+∞)) such that

(i) For any x > a, g(g(x))= x and x = f (x,g(x));
(ii) limx→a+ g(x)= +∞ and limx→+∞ g(x)= a.

A pair of sequences of positive real numbers {(xn, yn)}∞n=−k that satisfies (1.2) is a pos-
itive solution of (1.2). If a positive solution of (1.2) is a pair of positive constants (x, y),
then (x, y) is called a positive equilibrium of (1.2). In this paper, our main result is the
following theorem.

Theorem 1.1. Assume that (H1)–(H3) hold. Then the following statements are true.
(i) Every pair of positive constant (x, y)∈ (a,+∞)× (a,+∞) satisfying the equation

y = g(x) (1.3)

is a positive equilibrium of (1.2).
(ii) Every positive solution of (1.2) converges to a positive equilibrium (x, y) of (1.2) sat-

isfying (1.3) as n→∞.

2. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. To do this we need the following lemma.

Lemma 2.1. Let {(xn, yn)}∞n=−k be a positive solution of (1.2). Then there exists a real num-
ber L ∈ (a,+∞) with L < g(L) such that xn, yn ∈ [L,g(L)] for all n ≥ 1. Furthermore, if
limsupxn =M, liminf xn = m, limsup yn = P, liminf yn = p, then M = g(p) and P =
g(m).

Proof. From (H1) and (H2), we have

xi = f
(
xi−1, yi−1−k

)
> f
(
xi−1, yi−1−k +1

)≥ a,

yi = f
(
yi−1,xi−1−k

)
> f
(
yi−1,xi−1−k +1

)≥ a,
for every 1≤ i≤ k+1. (2.1)

Since limx→a+ g(x)= +∞, there exists L∈ (a,+∞) with L < g(L) such that

xi, yi ∈
[
L,g(L)

]
for every 1≤ i≤ k+1. (2.2)

It follows from (2.2) and (H3) that

g(L)= f
(
g(L),L

)≥ xk+2 = f
(
xk+1, y1

)≥ f
(
L,g(L)

)= L,

g(L)= f
(
g(L),L

)≥ yk+2 = f
(
yk+1,x1

)≥ f
(
L,g(L)

)= L.
(2.3)

Inductively, we have that xn, yn ∈ [L,g(L)] for all n≥ 1.
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Let limsupxn =M, liminf xn =m, limsup yn = P, liminf yn = p, then there exist se-
quences ln ≥ 1 and sn ≥ 1 such that

lim
n→∞xln =M, lim

n→∞ ysn = p. (2.4)

Without loss of generality, we may assume (by taking a subsequence) that there exist
A,D ∈ [m,M] and B,C ∈ [p,P] such that

lim
n→∞xln−1 =A,

lim
n→∞ yln−k−1 = B,

lim
n→∞ ysn−1 = C,

lim
n→∞xsn−k−1 =D.

(2.5)

Thus, from (1.2), (H2) and (H3), we have

f
(
M,g(M)

)=M = f (A,B)≤ f (M, p),

f
(
p,g(p)

)= p = f (C,D)≥ f (p,M),
(2.6)

from which it follows that

g(M)≥ p, g(p)≤M. (2.7)

By (H3), we obtain

p = g
(
g(p)

)≥ g(M). (2.8)

Therefore,M = g(p). By the symmetry, we have also P = g(m). Lemma 2.1 is proven. �

Proof of Theorem 1.1.
(i) Is obvious.
(ii) Let {(xn, yn)}∞n=−k be a positive solution of (1.2) with the initial conditions x0,

x−1, . . . ,x−k, y0, y−1, . . . , y−k ∈ (0,+∞). By Lemma 2.1, we have that

a < liminf xn = g(P)≤ limsupxn =M < +∞,

a < liminf yn = g(M)≤ limsup yn = P < +∞.
(2.9)

Without loss of generality, we may assume (by taking a subsequence) that there exists a
sequence ln ≥ 4k such that

lim
n→∞xln =M,

lim
n→∞xln− j =Mj ∈

[
g(P),M

]
, for j ∈ {1,2, . . . ,3k+1},

lim
n→∞ yln− j = Pj ∈

[
g(M),P

]
, for j ∈ {1,2,··· ,3k+1}.

(2.10)
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From (1.2), (2.10) and (H3), we have

f
(
M,g(M)

)=M = f
(
M1,Pk+1

)≤ f
(
M1,g(M)

)≤ f
(
M,g(M)

)
, (2.11)

from which it follows that

M1 =M, Pk+1 = g(M). (2.12)

In a similar fashion, we may obtain that

f
(
M,g(M)

)=M =M1 = f
(
M2,Pk+2

)≤ f
(
M2,g(M)

)≤ f
(
M,g(M)

)
, (2.13)

from which it follows that

M2 =M, Pk+2 = g(M). (2.14)

Inductively, we have that

Mj =M,

Pk+ j = g(M),
for j ∈ {1,2, . . . ,2k+1}, (2.15)

from which it follows that

lim
n→∞xln− j =M, for j ∈ {0,1, . . . ,2k+1},

lim
n→∞ yln− j = g(M), for j ∈ {k+1, . . . ,3k+1}. (2.16)

In view (2.16), for any 0 < ε <M− a, there exists some ls ≥ 4k such that

M− ε < xls− j < M + ε, if j ∈ {0,1, . . . ,2k+1},
g(M + ε) < yls− j < g(M− ε), if j ∈ {k+1, . . . ,2k+1}. (2.17)

From (1.2) and (2.17), we have

yls−k = f
(
yls−k−1,xls−2k−1

)
< f
(
g(M− ε),M− ε

)= g(M− ε). (2.18)

Also (1.2), (2.17) and (2.18) implies

xls+1 = f
(
xls , yls−k

)
> f
(
M− ε,g(M− ε)

)=M− ε. (2.19)

Inductively, it follows that

yls+n−k < g(M− ε) ∀n≥ 0,

xls+n >M− ε ∀n≥ 0.
(2.20)
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Since limsupxn =M and liminf yn = g(M), we have

lim
n→∞xn =M, lim

n→∞ yn = g(M). (2.21)

Thus limn→∞(xn, yn)= (M,P) with P = g(M). Theorem 1.1 is proven. �

3. Examples

To illustrate the applicability of Theorem 1.1, we present the following examples.

Example 3.1. Consider equation

xn+1 = p+ xn
1+ yn−k

,

yn+1 = p+ yn
1+ xn−k

,
n= 0,1, . . . , (3.1)

where k ∈ {1,2,···}, the initial conditions x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0 ∈ (0,+∞)
and p ∈ (0,+∞). Let E = [0,+∞) and

f (x, y)= p+ x

1+ y
(x ≥ 0, y ≥ 0), g(x)= p

x
(x > 0). (3.2)

It is easy to verify that (H1)–(H3) hold for (3.1). It follows from Theorem 1.1 that
(i) every pair of positive constant (x, y)∈ (0,+∞)× (0,+∞) satisfying the equation

xy = p (3.3)

is a positive equilibrium of (3.1).
(ii) every positive solution of (3.1) converges to a positive equilibrium (x, y) of (3.1)

satisfying (3.3) as n→∞.

Example 3.2. Consider equation

xn+1 = 1+
xn
yn−k

,

yn+1 = 1+
yn
xn−k

,
n= 0,1, . . . , (3.4)

where k∈{1,2, . . .} and the initial conditions x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0∈(0,+∞).
Let E = (0,+∞) and

f (x, y)= 1+
x

y
(x > 0, y > 0), g(x)= x

x− 1
(x > 1). (3.5)

It is easy to verify that (H1)–(H3) hold for (3.4). It follows from Theorem 1.1 that
(i) every pair of positive constant (x, y)∈ (1,+∞)× (1,+∞) satisfying the equation

xy = x+ y (3.6)

is a positive equilibrium of (3.4);
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(ii) every positive solution of (3.4) converges to a positive equilibrium (x, y) of (3.4)
satisfying (3.6) as n→∞.

Example 3.3. Consider equation

xn+1 = p+
A+ xn
q+ yn−k

,

yn+1 = p+
A+ yn
q+ xn−k

,
n= 0,1, . . . , (3.7)

where k ∈ {1,2, . . .}, the initial conditions x−k,x−k+1, . . . ,x0, y−k, y−k+1, . . . , y0 ∈ (0,+∞),
A ∈ (0,+∞) and p,q ∈ [0,1] with p + q = 1. Let E = (0,+∞) if p > 0 and E = [0,+∞) if
p = 0 and

f (x, y)= p+
A+ x

q+ y
, (3.8)

then a = inf (x,y)∈E×E f (x, y) = p. Let g(x) = (pq + px +A)/(x− p) (x > p). It is easy to
verify that (H1)–(H3) hold for (3.7). It follows from Theorem 1.1 that

(i) every pair of positive constant (x, y)∈ (p,+∞)× (p,+∞) satisfying the equation

xy = pq+ px+ py +A (3.9)

is a positive equilibrium of (3.7);
(ii) every positive solution of (3.7) converges to a positive equilibrium (x, y) of (3.7)

satisfying (3.9) as n→∞
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