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Amethod for determination and twomethods for approximation of the domain of attrac-
tion Da(0) of the asymptotically stable zero steady state of an autonomous, R-analytical,
discrete dynamical system are presented. The method of determination is based on the
construction of a Lyapunov function V , whose domain of analyticity is Da(0). The first
method of approximation uses a sequence of Lyapunov functions Vp, which converge to
the Lyapunov function V onDa(0). Each Vp defines an estimateNp ofDa(0). For any x ∈
Da(0), there exists an estimate Npx which contains x. The second method of approxima-
tion uses a ball B(R)⊂Da(0) which generates the sequence of estimatesMp = f −p(B(R)).
For any x ∈Da(0), there exists an estimateMpx which contains x. The cases ‖∂0 f ‖ < 1 and
ρ(∂0 f ) < 1≤ ‖∂0 f ‖ are treated separately because significant differences occur.
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1. Introduction

Let be the following discrete dynamical system:

xk+1 = f
(
xk
)

k = 0,1,2, . . . , (1.1)

where f : Ω→ Ω is an R-analytic function defined on a domain Ω ⊂ Rn, 0 ∈ Ω and
f (0)= 0, that is, x = 0 is a steady state (fixed point) of (1.1).

For r > 0, denote by B(r)= {x ∈Rn : ‖x‖ < r} the ball of radius r.
The steady state x = 0 of (1.1) is “stable” provided that given any ball B(ε), there is a

ball B(δ) such that if x ∈ B(δ) then f k(x)∈ B(ε), for k = 0,1,2, . . . [4].
If in addition there is a ball B(r) such that f k(x)→ 0 as k→∞ for all x ∈ B(r) then the

steady state x = 0 is “asymptotically stable” [4].
The domain of attractionDa(0) of the asymptotically stable steady state x = 0 is the set

of initial states x ∈Ω from which the system converges to the steady state itself, that is,

Da(0)=
{
x ∈Ω | f k(x) k→∞−−−→ 0

}
. (1.2)
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2 Domains of attraction—dynamical systems

Theoretical research shows that the Da(0) and its boundary are complicated sets [5–9].
In most cases, they do not admit an explicit elementary representation. The domain of
attraction of an asymptotically stable steady state of a discrete dynamical system is not
necessarily connected (which is the case for continuous dynamical systems). This fact is
shown by the following example.

Example 1.1. Let be the function f :R→R defined by f (x)=(1/2)x− (1/4)x2 + (1/2)x3 +
(1/4)x4. The domain of attraction of the asymptotically stable steady state x = 0 isDa(0)=
(−2.79,−2.46)∪ (−1,1) which is not connected.

Different procedures are used for the approximation of the Da(0) with domains hav-
ing a simpler shape. For example, in the case of [4, Theorem 4.20, page 170] the domain
which approximates the Da(0) is defined by a Lyapunov function V built with the ma-
trix ∂0 f of the linearized system in 0, under the assumption ‖∂0 f ‖ < 1. In [2], a Lya-
punov function V is presented in the case when the matrix ∂0 f is a contraction, that
is, ‖∂0 f ‖ < 1. The Lyapunov function V is built using the whole nonlinear system, not
only the matrix ∂0 f . V is defined on the whole Da(0), and more, the Da(0) is the nat-
ural domain of analyticity of V . In [3], this result is extended for the more general case
when ρ(∂0 f ) < 1 (where ρ(∂0 f ) denotes the spectral radius of ∂0 f .) This last result is the
following.

Theorem 1.2 (see [3]). If the function f satisfies the following conditions:

f (0)= 0,

ρ
(
∂0 f

)
< 1,

(1.3)

then 0 is an asymptotically stable steady state. Da(0) is an open subset of Ω and coincides
with the natural domain of analyticity of the unique solution V of the iterative first-order
functional equation

V
(
f (x)

)−V(x)=−‖x‖2,
V(0)= 0.

(1.4)

The function V is positive on Da(0) and V(x)
x→x0→ +∞, for any x0 ∈ ∂Da(0), (∂Da(0) de-

notes the boundary of Da(0)) or for ‖x‖→∞.
The function V is given by

V(x)=
∞∑

k=0

∥
∥ f k(x)

∥
∥2 for any x ∈Da(0). (1.5)

The Lyapunov function V can be found theoretically using relation (1.5). In the fol-
lowings, we will shortly present the procedure of determination and approximation of
the domain of attraction using the function V presented in [2, 3].

The region of convergenceD0 of the power series development ofV in 0 is a part of the
domain of attraction Da(0). If D0 is strictly contained in Da(0), then there exists a point
x0 ∈ ∂D0 such that the function V is bounded on a neighborhood of x0. Let be the power
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series development of V in x0. The domain of convergence D1 of the series centered in x0

gives a new part D1 \ (D0
⋂
D1) of the domain of attraction Da(0). At this step, the part

D0
⋃
D1 of Da(0) is obtained.

If there exists a point x1 ∈ ∂(D0
⋃
D1) such that the function V is bounded on a neigh-

borhood of x1, then the domain D0
⋃
D1 is strictly included in the domain of attraction

Da(0). In this case, the procedure described above is repeated in x1.
The procedure cannot be continued in the case when it is found that on the boundary

of the domain D0
⋃
D1
⋃···⋃Dp obtained at step p, there are no points having neigh-

borhoods on which V is bounded.
This procedure gives an open connected estimateD of the domain of attractionDa(0).

Note that f −k(D), k ∈N is also an estimate of Da(0), which is not necessarily connected.
The procedure described above is illustrated by the following examples.

Example 1.3. Let be the f :R→R defined by f (x)= x2. Due to the equality f k(x)= x2
k

the domain of attraction of the asymptotically stable steady state x = 0 isDa(0)= (−1,1).
The Lyapunov function is V(x)=∑∞

k=0 x2
k+1
. The domain of convergence of the series is

D0 = (−1,1) which coincides with Da(0).

Example 1.4. Let be the function f :Ω= (−∞,1)→Ω defined by f (x)= x/(e+ (1− e)x).
Due to the equality f k(x) = x/(ek + (1− ek)x) the domain of attraction of the asymp-
totically stable steady state x = 0 is Da(0) = (−∞,1). The power series expansion of the
Lyapunov function V(x)=∑∞

k=0 | f k(x)|2 in 0 is

V(x)=
∞∑

m=2
(m− 1)

∞∑

k=0
e−2k

(
1− e−k

)m−2
xm. (1.6)

The radius of convergence of the series (1.6) is

r0 = lim
m→∞

m

√
√
√
√(m− 1)

∞∑

k=0
e−2k

(
1− e−k

)m−2 = 1, (1.7)

therefore the domain of convergence of the series (1.6) is D0 = (−1,1) ⊂ Da(0). More,
V(x)→∞ as x→ 1 and V(−1) <∞. The radius of convergence of the power series ex-
pansion of V in −1 is

r−1 = lim
m→∞

m

√
√
√
√
√

∞∑

k=1

ek
(
ek − 1

)m−2[
(m− 3)ek +2

]

(
2ek − 1

)m+2 = 1, (1.8)

therefore the domain of convergence of the power series development ofV in−1 isD−1 =
(−2,0) which gives a new part of Da(0).

Numerical results for more complex examples are given in [2, 3].
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2. Theoretical results when the matrix A= ∂0 f is a contraction (i.e., ‖A‖ < 1)

The function f can be written as

f (x)=Ax+ g(x) for any x ∈Ω, (2.1)

whereA=∂0 f and g :Ω→Ω is anR-analytic function such that g(0)=0 and limx→0(‖g(x)‖
/‖x‖)= 0.

Proposition 2.1. If ‖A‖ < 1, then there exists r > 0 such that B(r)⊂Ω and ‖ f (x)‖ < ‖x‖
for any x ∈ B(r) \ {0}.
Proof. Due to the fact that limx→0(‖g(x)‖/‖x‖)= 0 there exists r > 0 such that B(r)⊂Ω
and

∥
∥g(x)

∥
∥ <

(
1−‖A‖)‖x‖ for any x ∈ B(r) \ {0}. (2.2)

Let be x ∈ B(r) \ {0}. Inequality (2.2) provides that
∥
∥ f (x)

∥
∥= ∥∥Ax+ g(x)

∥
∥≤ ‖A‖‖x‖+∥∥g(x)∥∥ < (‖A‖+1−‖A‖)‖x‖ = ‖x‖ (2.3)

therefore, ‖ f (x)‖ < ‖x‖. �

Definition 2.2. Let R > 0 be the largest number such that B(R)⊂Ω and ‖ f (x)‖ < ‖x‖ for
any x ∈ B(R) \ {0}.

If for any r > 0, B(r)⊂Ω and ‖ f (x)‖ < ‖x‖ for any x ∈ B(r) \ {0}, then R= +∞ and
B(R)=Ω=Rn.

Lemma 2.3. (a) B(R) is invariant to the flow of system (1.1).
(b) For any x ∈ B(R), the sequence (‖ f k(x)‖)k∈N is decreasing.
(c) For any p ≥ 0 and x ∈ B(R) \ {0}, ΔVp(x)=Vp( f (x))−Vp(x) < 0, where

Vp(x)=
p∑

k=0

∥
∥ f k(x)

∥
∥2 for x ∈Ω. (2.4)

Proof. (a) If x=0, then f k(0)=0, for any k ∈ N. For x ∈ B(R) \ {0}, we have ‖ f (x)‖ <
‖x‖, which implies that f (x)∈ B(R), that is, B(R) is invariant to the flow of system (1.1).

(b) By induction, it results that for x ∈ B(R) we have f k(x) ∈ B(R) and ‖ f k+1(x)‖ ≤
‖ f k(x)‖, which means that the sequence (‖ f k(x)‖)k∈N is decreasing.

(c) In particular, for p ≥ 0 and x ∈ B(R), we have ‖ f p+1(x)‖ ≤ ‖ f (x)‖ < ‖x‖ and
therefore, ΔVp(x)= ‖ f p+1(x)‖2−‖x‖2 < 0. �

Corollary 2.4. For any p ≥ 0, there exists a maximal domain Gp ⊂Ω such that 0 ∈ Gp

and for x ∈Gp \ {0}, the (positive definite) function Vp verifies ΔVp(x) < 0. In other words,
for any p ≥ 0, the function Vp defined by (2.4) is a Lyapunov function for (1.1) on Gp.
Moreover, B(R)⊂Gp for any p ≥ 0.

Theorem 2.5. B(R) is an invariant set included in the domain of attraction Da(0).

Proof. Let be x ∈ B(R) \ {0}. We have to prove that limk→∞ f k(x)= 0.
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The sequence ( f k(x))k∈N is bounded: f k(x) belongs to B(R). Let be ( f kj (x)) j∈N a con-
vergent subsequence and let be lim j→∞ f kj (x)= y0. It is clear that y0 ∈ B(R).

It can be shown that

∥
∥ f k(x)

∥
∥≥ ∥∥y0∥∥ for any k ∈N. (2.5)

For this, observe first that f kj (x)→ y0 and (‖ f kj (x)‖)k∈N is decreasing (Lemma 2.3).
These imply that ‖ f kj (x)‖ ≥ ‖y0‖ for any kj . On the other hand, for any k ∈ N, there
exists kj ∈ N such that kj ≥ k. Therefore, as the sequence (‖ f k(x)‖)k∈N is decreasing
(Lemma 2.3), we obtain that ‖ f k(x)‖ ≥ ‖ f kj (x)‖ ≥ ‖y0‖.

We show now that y0 = 0. Suppose the contrary, that is, y0 
= 0.
Inequality (2.5) becomes

∥
∥ f k(x)

∥
∥≥ ∥∥y0∥∥ > 0 for any k ∈N. (2.6)

By means of Lemma 2.3, we have that ‖ f (y0)‖ < ‖y0‖.
Therefore, there exists a neighborhood Uf (y0) ⊂ B(R) of f (y0) such that for any z ∈

Uf (y0) we have ‖z‖ < ‖y0‖. On the other hand, for the neighborhood Uf (y0) there ex-
ists a neighborhood Uy0 ⊂ B(R) of y0 such that for any y ∈ Uy0 , we have f (y)∈ Uf (y0).
Therefore:

∥
∥ f (y)

∥
∥ <

∥
∥y0

∥
∥ for any y ∈Uy0 . (2.7)

As f kj (x)→ y0, there exists j̄ such that f kj (x)∈Uy0 , for any j ≥ j̄. Making y = f kj (x) in
(2.7), it results that

∥
∥ f kj+1(x)

∥
∥= ∥∥ f ( f kj (x))∥∥ < ∥∥y0∥∥ for j ≥ j̄ (2.8)

which contradicts (2.6). This means that y0 = 0, consequently, every convergent subse-
quence of ( f k(x))k∈N converges to 0. This provides that the sequence ( f k(x))k∈N is con-
vergent to 0, and x ∈Da(0).

Therefore, the ball B(R) is contained in the domain of attraction of Da(0). �

For p ≥ 0 and c > 0 let be Nc
p the set

Nc
p =

{
x ∈Ω :Vp(x) < c

}
. (2.9)

If c = +∞, then Nc
p =Ω.

Theorem 2.6. Let be p ≥ 0. For any c ∈ (0,(p+1)R2], the set Nc
p is included in the domain

of attraction Da(0).

Proof. Let be c ∈ (0,(p+1)R2] and x ∈Nc
p. ThenVp(x)=

∑p
k=0‖ f k(x)‖2 < c ≤ (p+1)R2,

therefore, there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖2 < R2. It results that f k(x) ∈
B(R)⊂Da(0), therefore, x ∈Da(0). �

Remark 2.7. It is obvious that for p ≥ 0 and 0 < c′ < c′′ one has Nc′
p ⊂Nc′′

p . Therefore, for

a given p ≥ 0, the largest part of Da(0) which can be found by this method is N
cp
p , where
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cp = (p + 1)R2. In the followings, we will use the notation Np instead of N
cp
p . Shortly,

Np = {x ∈Ω :Vp(x) < (p+1)R2} is a part of Da(0). Let us note that N0 = B(R).

Remark 2.8. If R= +∞ (i.e., Ω= Rn and ‖ f (x)‖ < ‖x‖, for any x ∈R \ {0}), then Np =
Rn for any p ≥ 0 and Da(0)=Rn.

Theorem 2.9. For the sets (Np)p∈N, the following properties hold:
(a) for any p ≥ 0, one has Np ⊂Np+1;
(b) for any p ≥ 0, the set Np is invariant to f ;
(c) for any x ∈Da(0), there exists px ≥ 0 such that x ∈Npx .

Proof. (a) Let be p ≥ 0 and x ∈Np. Then Vp(x)=
∑p

k=0‖ f k(x)‖2 < (p+1)R2, therefore,
there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖2 < R2. It results that f k(x) ∈ B(R) and
therefore f m(x) ∈ B(R), for any m ≥ k. For m = p + 1 we obtain ‖ f p+1(x)‖ < R, hence
Vp+1(x)=Vp(x) +‖ f p+1(x)‖2 < (p+1)R2 +R2 = (p+2)R2. Therefore, x ∈Np+1.

(b) Let be x ∈ Np. If ‖x‖ < R then ‖ f m(x)‖ < R for any m ≥ 0 (by means of

Lemma 2.3). This implies that Vp( f (x)) =
∑p

k=0‖ f k( f (x))‖2 =
∑p+1

k=1‖ f k(x)‖2 < (p +
1)R2, meaning that f (x)∈Np.

Let us suppose that ‖x‖ ≥ R. As x ∈ Np, we have that Vp(x) =
∑p

k=0‖ f k(x)‖2 < (p +
1)R2, therefore, there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖ < R. It results that f k(x)∈
B(R) and therefore f m(x)∈ B(R), for anym≥ k. Form= p+1 we obtain ‖ f p+1(x)‖ < R.
This implies that

Vp
(
f (x)

)=Vp(x) +
∥
∥ f p+1(x)

∥
∥2−‖x‖2 < (p+1)R2 +R2−R2 = (p+1)R2 (2.10)

therefore f (x)∈Np.
(c) Suppose the contrary, that is, there exist x ∈ Da(0) such that for any p ≥ 0, x /∈

Np. Therefore, Vp(x) ≥ (p + 1)R2 for any p ≥ 0. Passing to the limit for p →∞ in this
inequality, provides that V(x) = ∞. This means x ∈ ∂Da(0) which contradicts the fact
that x belongs to the open set Da(0). In conclusion, there exists px ≥ 0 such that x ∈
Npx . �

For p ≥ 0 let beMp = f −p(B(R))= {x ∈Ω : f p(x)∈ B(R)}, obtained by the trajectory
reversing method.

Theorem 2.10. The following properties hold:
(a) Mp ⊂Da(0) for any p ≥ 0;
(b) for any p ≥ 0,Mp is invariant to f ;
(c) Mp ⊂Mp+1 for any p ≥ 0;
(d) for any x ∈Da(0), there exists px ≥ 0 such that x ∈Mpx .

Proof. (a) AsMp = f −p(B(R)) and B(R)⊂Da(0) (see Theorem 2.5) it is clear thatMp ⊂
Da(0).

(b) and (c) follow easily by induction, using Lemma 2.3.
(d) x ∈ Da(0) provides that f p(x)→ 0 as p→∞. Therefore, there exists px ∈N such

that f p(x)∈ B(R), for any p ≥ px. This provides that x ∈Mp for any p ≥ px. �
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Both sequences of sets (Mp)p∈N and (Np)p∈N are increasing, and are made up of esti-
mates of Da(0). From the practical point of view, it is important to know which sequence
converges more quickly. The next theorem provides that the sequence (Mp)p∈N converges
more quickly than (Np)p∈N, meaning that for p ≥ 0, the set Mp is a larger estimate of
Da(0) then Np.

Theorem 2.11. For any p ≥ 0, one has Np ⊂Mp.

Proof. Let be p ≥ 0 and x ∈Np. We have that Vp(x)=
∑p

k=0‖ f k(x)‖2 < (p+1)R2, there-
fore, there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖ < R. This implies that f m(x)∈ B(R),
for anym≥ k. Form= p we obtain f p(x)∈ B(R), meaning that x ∈Mp. �

3. Theoretical results when A= ∂0 f is a convergent noncontractive matrix
(i.e., ρ(A) < 1≤ ‖A‖)

Proposition 3.1. If ρ(A) < 1≤ ‖A‖, then there exist p̃ ≥ 2 and rp̃ > 0 such that B(rp̃)⊂Ω
and ‖ f p(x)‖ < ‖x‖ for any p ∈ { p̃, p̃+1, . . . ,2 p̃− 1} and x ∈ B(rp̃) \ {0}.
Proof. We have that ρ(A) < 1 if and only if limp→∞Ap = 0 (see [1]), which provides (to-
gether with ‖A‖ ≥ 1) that there exists p̃ ≥ 2 such that ‖Ap‖ < 1 for any p ≥ p̃. Let be
p̃ ≥ 2 fixed with this property.

The formula of variation of constants for any p gives:

f p(x)= Apx+
p−1∑

k=0
Ap−k−1g

(
f k(x)

) ∀x ∈Ω, p ∈N�. (3.1)

Due to the fact that for any k ∈Nwe have limx→0(‖g( f k(x))‖/‖x‖)= 0, there exists rp̃ > 0
such that for any p ∈ { p̃, p̃+1, . . . ,2 p̃− 1} the following inequality holds:

p−1∑

k=0

∥
∥Ap−k−1∥∥∥∥g

(
f k(x)

)∥∥ <
(
1−∥∥Ap

∥
∥)‖x‖ for x ∈ B

(
rp̃
) \ {0}. (3.2)

Let be x ∈ B(rp̃) \ {0} and p ∈ { p̃, p̃+1, . . . ,2 p̃− 1}. Using (3.1) and (3.2) we have

∥
∥ f p(x)

∥
∥=

∥
∥
∥
∥
∥A

px+
p−1∑

k=0
Ap−k−1g

(
f k(x)

)
∥
∥
∥
∥
∥

≤ ∥∥Ap
∥
∥‖x‖+

p−1∑

k=0

∥
∥Ap−k−1∥∥∥∥g

(
f k(x)

)∥∥

<
(∥∥Ap

∥
∥+1−∥∥Ap

∥
∥)‖x‖ = ‖x‖.

(3.3)

Therefore, ‖ f p(x)‖ < ‖x‖ for p ∈ { p̃, p̃+1, . . . ,2 p̃− 1} and x ∈ B(rp̃) \ {0}. �

Definition 3.2. Let p̃ ≥ 2 be the smallest number such that ‖Ap‖ < 1 for any p ≥ p̃ (see
the proof of Proposition 3.1). Let R̃ > 0 the largest number be such that B(R̃) ⊂ Ω and
‖ f p(x)‖ < ‖x‖ for p ∈ { p̃, p̃+1, . . . ,2 p̃− 1} and x ∈ B(R̃) \ {0}.
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If for any r > 0, we have that B(r) ⊂ Ω and ‖ f p(x)‖ < ‖x‖ for any p ∈ { p̃, p̃ + 1, . . . ,
2 p̃− 1} and x ∈ B(r) \ {0}, then R̃= +∞ and B(R̃)=Ω=Rn.

Lemma 3.3. (a) For any x∈B(R̃) and p∈{ p̃, p̃+1, . . . ,2 p̃− 1}, the sequence (‖ f kp(x)‖)k∈N
is decreasing.

(b) For any p ≥ p̃ and x ∈ B(R̃) \ {0}, ‖ f p(x)‖ < ‖x‖.
(c) For any p ≥ p̃ and x ∈ B(R̃) \ {0}, ΔVp(x) = Vp( f (x))−Vp(x) < 0, where Vp is

defined by (2.4).

Proof. (a) If x = 0, then f p(0)= 0, for any p ≥ 0.
Let be x ∈ B(R̃) \ {0}. We know that ‖ f p(x)‖ < ‖x‖ for any p ∈ { p̃, p̃+1, . . . ,2 p̃− 1}.

It results that f p(x) ∈ B(R̃) for any p ∈ { p̃, p̃ + 1, . . . ,2 p̃− 1}. This implies that for any
k ∈N� we have ‖ f kp(x)‖ < ‖x‖ and ‖ f (k+1)p(x)‖ ≤ ‖ f kp(x)‖, meaning that the sequence
(‖ f kp(x)‖)k∈N is decreasing.

(b) Let be x ∈ B(R̃) \ {0}. Inequality ‖ f p(x)‖ < ‖x‖ is true for any p ∈ { p̃, p̃ + 1, . . . ,
2 p̃− 1}.

Let be p ≥ 2 p̃. There exists q ∈N� and p′ ∈ { p̃, p̃+1, . . . ,2 p̃− 1} such that p = qp̃+
p′. Using (a), we have that f p′(x)∈ B(R̃) and f qp̃(y)≤ ‖y‖, for any y ∈ B(R̃), therefore

∥
∥ f p(x)

∥
∥= ∥∥ f qp̃( f p′(x))∥∥≤ ∥∥ f p′(x)∥∥ < ‖x‖ (3.4)

(c) results directly from (b). �

Corollary 3.4. For any p ≥ p̃, there exists a maximal domain Gp ⊂Ω such that 0 ∈ Gp

and for any x ∈ Gp \ {0}, the (positive definite) function Vp verifies ΔVp(x) < 0. In other

words, for any p ≥ p̃, the function Vp is a Lyapunov function for (1.1) on Gp. More, B(R̃)⊂
Gp for any p ≥ p̃.

Lemma 3.5. For any k ≥ p̃, there exists qk ∈N such that

∥
∥ f (qk+3) p̃(x)

∥
∥≤ ∥∥ f k(x)∥∥≤ ∥∥ f qk p̃(x)∥∥ for any x ∈ B

(
R̃
)
. (3.5)

Proof. Let be k ≥ p̃. There exists a unique qk ∈N and a unique pk ∈ { p̃, p̃+1, . . . ,2 p̃− 1}
such that k = qk p̃+ pk. Lemma 3.3 provides that for any x ∈ B(R̃) we have that f qk p̃(x)∈
B(R̃) and ‖ f pk (x)‖ ≤ ‖x‖. It results that

∥
∥ f k(x)

∥
∥= ∥∥ f pk( f qk p̃(x))∥∥≤ ∥∥ f qk p̃(x)∥∥ for any x ∈ B

(
R̄
)
. (3.6)

On the other hand, we have (qk +3) p̃ = k+ (3 p̃− pk). As (3 p̃− pk)∈ { p̃+1, p̃+2, . . . ,2 p̃}
and k ≥ p̃, Lemma 3.3 provides that for any x ∈ B(R̃) we have that f k(x) ∈ B(R̃) and
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‖ f 3 p̃−pk (x)‖ ≤ ‖x‖. Therefore
∥
∥ f (qk+3) p̃(x)

∥
∥= ∥∥ f 3 p̃−pk( f k(x))∥∥≤ ∥∥ f k(x)∥∥ for any x ∈ B

(
R̃
)
. (3.7)

Combining the two inequalities, we get that

∥
∥ f (qk+3) p̃(x)

∥
∥≤ ∥∥ f k(x)∥∥≤ ∥∥ f qk p̃(x)∥∥ for any x ∈ B

(
R̃
)

(3.8)

which concludes the proof. �

Theorem 3.6. B(R̃) is included in the domain of attraction Da(0).

Proof. Let be x ∈ B(R̃) \ {0}. We have to prove that limk→∞ f k(x)= 0.
The sequence ( f k(x))k∈N is bounded (see Lemma 3.3). Let be ( f kj (x)) j∈N a convergent

subsequence and let be lim j→∞ f kj (x)= y0.
We suppose, without loss of generality, that kj ≥ p̃ for any j ∈N. Lemma 3.5 provides

that for any j ∈N there exists qj ∈N such that

∥
∥ f (qj+3) p̃(x)

∥
∥≤ ∥∥ f kj (x)∥∥≤ ∥∥ f qj p̃(x)

∥
∥. (3.9)

As (‖ f qj p̃(x)‖) j∈N and (‖ f (qj+3) p̃(x)‖) j∈N are subsequences of the convergent sequence
(‖ f qp̃(x)‖)q∈N (decreasing, according to Lemma 3.3), it results that they are convergent.
The double inequality (3.9) provides that lim j→∞‖ f qj p̃(x)‖ = ‖y0‖. Therefore, limq→∞
‖ f qp̃(x)‖ = ‖y0‖.

It can be shown that

∥
∥ f k(x)

∥
∥≥ ∥∥y0∥∥ for any k ≥ p̃. (3.10)

For this, remark that limq→∞‖ f qp̃(x)‖ = ‖y0‖ and (‖ f qp̃(x)‖)q∈N is decreasing (Lemma
3.3), which implies that ‖ f qp̃(x)‖ ≥ ‖y0‖ for any q ∈N. On the other hand, Lemma 3.5
provides that for any k ≥ p̃ there exists qk such that ‖ f (qk+3) p̃(x)‖ ≤ ‖ f k(x)‖. Therefore,
‖ f k(x)‖ ≥ ‖ f (qk+3) p̃(x)‖ ≥ ‖y0‖, for any k ≥ p̃.

We show now that y0 = 0. Suppose the contrary, that is, y0 
= 0.
Inequality (3.10) becomes

∥
∥ f k(x)

∥
∥≥ ∥∥y0∥∥ > 0 for any k ≥ p̃. (3.11)

By means of Lemma 3.3, we have that ‖ f p̃(y0)‖ < ‖y0‖.
There exists a neighborhood Uf p̃(y0) ⊂ B(R̃) of f p̃(y0) such that for any z ∈Uf p̃(y0) we

have ‖z‖ < ‖y0‖. On the other hand, for the neighborhood Uf p̃(y0) there exists a neigh-

borhood Uy0 ⊂ B(R̃) of y0 such that for any y ∈Uy0 , we have f p̃(y)∈Uf p̃(y0). Therefore:

∥
∥ f p̃(y)

∥
∥ <

∥
∥y0

∥
∥ for any y ∈Uy0 . (3.12)
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As f kj (x)→ y0, there exists j̄ such that f kj (x)∈Uy0 , for any j ≥ j̄. Making y = f kj (x) in
(3.12), it results that

∥
∥ f kj+ p̃(x)

∥
∥= ∥∥ f p̃( f kj (x))∥∥ < ∥∥y0∥∥ for j ≥ j̄ (3.13)

which contradicts (3.11). This means that y0 = 0, consequently, every convergent sub-
sequence of ( f k(x))k∈N converges to 0. This provides that the sequence ( f k(x))k∈N is
convergent to 0, and x ∈Da(0).

Therefore, the ball B(R̃) is contained in the domain of attraction of Da(0). �
Theorem 3.7. Let be p ≥ 0. For any c ∈ (0,(p+1)R̃2], the set Nc

p is included in the domain
of attraction Da(0).

Proof. Let be c ∈ (0,(p+1)R̃2] and x ∈Nc
p. ThenVp(x)=

∑p
k=0‖ f k(x)‖2 < c ≤ (p+1)R̃2,

therefore, there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖2 < R̃2. It results that f k(x) ∈
B(R̃)⊂Da(0), therefore, x ∈Da(0). �
Remark 3.8. It is obvious that for p ≥ 0 and 0 < c′ < c′′ one has Nc′

p ⊂Nc′′
p . Therefore, for

a given p ≥ 0, the largest part of Da(0) which can be found by this method is N
c̃p
p , where

c̃p = (p + 1)R̃2. In the followings, we will use the notation Ñp instead of N
c̃p
p . Shortly,

Ñp = {x ∈Ω :Vp(x) < (p+1)R̃2} is a part of Da(0). Let us note that Ñ0 = B(R̃).

Remark 3.9. If R̃= +∞ (i.e.,Ω=Rn and ‖ f p(x)‖ < ‖x‖, for any p ∈ { p̃, p̃+1, . . . ,2 p̃− 1}
and x ∈R \ {0}), then Ñp =Rn for any p ≥ 0 and Da(0)=Rn.

Theorem 3.10. For any x ∈Da(0) there exists px ≥ 0 such that x ∈ Ñpx .

Proof. Let be x ∈ Da(0). Suppose the contrary, that is, x /∈ Ñp for any p ≥ 0. Therefore,

Vp(x)≥ (p+1)R̃2 for any p ≥ 0. Passing to the limit when p→∞ in this inequality pro-
vides that V(x)=∞. This means x ∈ ∂Da(0) which contradicts the fact that x belongs to
the open set Da(0). In conclusion, there exists px ≥ 0 such that x ∈ Ñpx . �
Remark 3.11. The sequence of sets (Ñp)p∈N is generally not increasing (see Section 4:
Numerical examples, the Van der Pol equation).

Open question. Is the sequence of sets (Ñp)p≥ p̃ increasing?

For p ≥ 0 let be M̃p = f −p(B(R̃))= {x ∈Ω : f p(x)∈ B(R̃)}, obtained by the trajectory
reversing method.

Theorem 3.12. For the sets (M̃p)p∈N, the following properties hold:
(a) M̃p ⊂Da(0), for any p ≥ 0;

(b) M̃kp ⊂ M̃(k+1)p for any k ∈N and p ∈ { p̃, p̃+1, . . . ,2 p̃− 1};
(c) for any x ∈Da(0), there exists px ≥ 0 such that x ∈ M̃px .

Proof. (a) As M̃p = f −p(B(R̃)) and B(R̃)⊂Da(0) (see Theorem 3.6) it is clear that M̃p ⊂
Da(0).

(b) follows easily by induction, using Lemma 3.3.
(c) x ∈ Da(0) provides that f p(x)→ 0 as p→∞. Therefore, there exists px ≥ 0 such

that f p(x)∈ B(R̃), for any p ≥ px. This provides that x ∈ M̃p for any p ≥ px. �
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−10.50−0.5−1
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−0.5

0
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1

Figure 4.1. The sets Np, p = 0,4 and ∂Da(0,0) for (4.1).

Remark 3.13. The sequence of sets (M̃p)p∈N is generally not increasing (see Section 4:
Numerical examples, the Van der Pol equation).

Both sequences of sets (M̃p)p∈N and (Ñp)p∈N are made up of estimates ofDa(0). From

the practical point of view, it would be important to know which one of the sets M̃p or

Ñp is a larger estimate ofDa(0) for a fixed p ≥ p̃. Such result could not be established, but
the following theorem holds.

Theorem 3.14. For any p ≥ 0, one has Ñp ⊂ M̃p+ p̃.

Proof. Let be p ≥ 0 and x ∈ Ñp. We have that Vp(x)=
∑p

k=0‖ f k(x)‖2 < (p+1)R̃2, there-

fore, there exists k ∈ {0,1, . . . , p} such that ‖ f k(x)‖ < R̃. This implies that f k+m(x)∈ B(R̃),
for anym≥ p̃. Form= p− k+ p̃ we obtain f p+ p̃(x)∈ B(R̃), meaning that x ∈ M̃p+ p̃. �

4. Numerical examples

4.1. Example with known domain of attraction. Let the following discrete dynamical
system be

xk+1 = 1
2
xk
(
1+ x2k +2y2k

)

yk+1 = 1
2
yk
(
1+ x2k +2y2k

) k ∈N. (4.1)

There exists an infinity of steady states for this system: (0,0) (asymptotically stable) and
all the points (x, y) belonging to the ellipsis x2 + 2y2 = 1 (all unstable). The domain of
attraction of (0,0) is Da(0,0)= {(x, y)∈R2 : x2 + 2y2 < 1}.
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Figure 4.2. The setsMp, p = 0,1,2,6 for (4.1).

As ‖∂(0,0) f ‖ = 1/2, we compute the largest number R > 0 such that ‖ f (x)‖ < ‖x‖ for
any x ∈ B(R) \ {0}, and we find R= 0.7071.

For p = 0,1,2,3,4, we find the Np sets shown in Figure 4.1, parts of Da(0,0) (Np ⊂
Np+1, for p ≥ 0). In Figure 4.1, the thick-contoured ellipsis represents the boundary of
Da(0,0).

In Figure 4.2, the sets Mp are represented, for p = 0,1,2,6 (Mp ⊂Mp+1, for p ≥ 0).
Note thatM6 approximates with a good accuracy the domain of attraction.

4.2. Discrete predator-prey system. We consider the discrete predator-prey system:

xk+1 = axk
(
1− xk

)− xk yk

yk+1 = 1
b
xk yk

with a= 1
2
, b = 1, k ∈N. (4.2)

The steady states of this system are (0,0) (asymptotically stable), (−1,0) and (1,−1) (both
unstable).

We have that ‖∂(0,0) f ‖ = 1/2, and the largest number R > 0 such that ‖ f (x)‖ < ‖x‖ for
any x ∈ B(R) \ {0} is R= 0.65.

Figure 4.3 presents the Np sets for p = 0,1,2,3,4,5, parts of Da(0,0) (Np ⊂ Np+1, for
p ≥ 0). The black points in Figure 4.3 represent the steady states of the system.

In Figure 4.4, the sets Mp are represented, for p = 0,1,2,6 (Mp ⊂Mp+1, for p ≥ 0).
Note that the boundary ofM6 approaches very much the fixed points (−1,0) and (1,−1),
which suggests thatM6 is a good approximation of Da(0).
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Figure 4.3. The sets Np, p = 0,5 for (4.2).

420−2−4

−4

−2

0

2

4

Figure 4.4. The setsMp, p = 0,1,2,6 for (4.2).

4.3. Discrete Van der Pol system. Let the following discrete dynamical system, obtained
from the continuous Van der Pol system be

xk+1 = xk − yk

yk+1 = xk + (1− a)yk + ax2k yk
with a= 2, k ∈N. (4.3)
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Figure 4.5. The sets Ñp, p = 0,5 for (4.3).
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Figure 4.6. The sets M̃p, p = 0,1,2,6 for (4.3).

The only steady state of this system is (0,0) which is asymptotically stable. There are
many periodic points for this system, the periodic points of order 2,5 being represented
in Figure 4.5 by the black points.

We have that ‖∂(0,0) f ‖ = 2 but ρ(∂(0,0) f )= 0. First, we observe that for p̃ = 2 we have
that (∂(0,0) f ) p̃ =O2, therefore, ‖(∂(0,0) f )p‖ = 0 for any p ≥ p̃.
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The largest number R̃ > 0 such that ‖ f p(x)‖ < ‖x‖ for p ∈ { p̃, p̃ + 1, . . . ,2 p̃ − 1} =
{2,3} and x ∈ B(R̃) \ {0} is R̃= 0.365.

For p = 0,1,2,3,4,5, the connected components which contain (0,0) of the Ñp sets are

shown in Figure 4.5. We have that Ñ0 � Ñ1 ⊂ Ñ2 ⊂ Ñ3 ⊂ Ñ4 ⊂ Ñ5.

In Figure 4.6, the sets M̃p are represented, for p = 0,1,2,6. Note that the inclusions

M̃p ⊂ M̃p+1 do not hold.
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300223 Timişoara, Romania
Current address: LAGA, UMR 7539, Institut Galilée, Université Paris 13, 99 Avenue J.B. Clément,
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