METHODS FOR DETERMINATION AND APPROXIMATION OF THE DOMAIN OF ATTRACTION IN THE CASE OF AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS

ST. BALINT, E. KASLIK, A. M. BALINT, AND A. GRIGIS

Received 15 October 2004; Accepted 18 October 2004

A method for determination and two methods for approximation of the domain of attraction $D_a(0)$ of the asymptotically stable zero steady state of an autonomous, \mathbb{R} -analytical, discrete dynamical system are presented. The method of determination is based on the construction of a Lyapunov function V, whose domain of analyticity is $D_a(0)$. The first method of approximation uses a sequence of Lyapunov functions V_p , which converge to the Lyapunov function V on $D_a(0)$. Each V_p defines an estimate N_p of $D_a(0)$. For any $x \in$ $D_a(0)$, there exists an estimate N_{p^x} which contains x. The second method of approximation uses a ball $B(R) \subset D_a(0)$ which generates the sequence of estimates $M_p = f^{-p}(B(R))$. For any $x \in D_a(0)$, there exists an estimate M_{p^x} which contains x. The cases $\|\partial_0 f\| < 1$ and $\rho(\partial_0 f) < 1 \le \|\partial_0 f\|$ are treated separately because significant differences occur.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let be the following discrete dynamical system:

$$x_{k+1} = f(x_k)$$
 $k = 0, 1, 2, ...,$ (1.1)

where $f : \Omega \to \Omega$ is an \mathbb{R} -analytic function defined on a domain $\Omega \subset \mathbb{R}^n$, $0 \in \Omega$ and f(0) = 0, that is, x = 0 is a steady state (fixed point) of (1.1).

For r > 0, denote by $B(r) = \{x \in \mathbb{R}^n : ||x|| < r\}$ the ball of radius r.

The steady state x = 0 of (1.1) is "stable" provided that given any ball $B(\varepsilon)$, there is a ball $B(\delta)$ such that if $x \in B(\delta)$ then $f^k(x) \in B(\varepsilon)$, for k = 0, 1, 2, ... [4].

If in addition there is a ball B(r) such that $f^k(x) \to 0$ as $k \to \infty$ for all $x \in B(r)$ then the steady state x = 0 is "asymptotically stable" [4].

The domain of attraction $D_a(0)$ of the asymptotically stable steady state x = 0 is the set of initial states $x \in \Omega$ from which the system converges to the steady state itself, that is,

$$D_a(0) = \left\{ x \in \Omega \mid f^k(x) \xrightarrow{k \to \infty} 0 \right\}.$$
 (1.2)

Hindawi Publishing Corporation Advances in Difference Equations Volume 2006, Article ID 23939, Pages 1–15 DOI 10.1155/ADE/2006/23939

Theoretical research shows that the $D_a(0)$ and its boundary are complicated sets [5–9]. In most cases, they do not admit an explicit elementary representation. The domain of attraction of an asymptotically stable steady state of a discrete dynamical system is not necessarily connected (which is the case for continuous dynamical systems). This fact is shown by the following example.

Example 1.1. Let be the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = (1/2)x - (1/4)x^2 + (1/2)x^3 + (1/4)x^4$. The domain of attraction of the asymptotically stable steady state x = 0 is $D_a(0) = (-2.79, -2.46) \cup (-1, 1)$ which is not connected.

Different procedures are used for the approximation of the $D_a(0)$ with domains having a simpler shape. For example, in the case of [4, Theorem 4.20, page 170] the domain which approximates the $D_a(0)$ is defined by a Lyapunov function V built with the matrix $\partial_0 f$ of the linearized system in 0, under the assumption $||\partial_0 f|| < 1$. In [2], a Lyapunov function V is presented in the case when the matrix $\partial_0 f$ is a contraction, that is, $||\partial_0 f|| < 1$. The Lyapunov function V is built using the whole nonlinear system, not only the matrix $\partial_0 f$. V is defined on the whole $D_a(0)$, and more, the $D_a(0)$ is the natural domain of analyticity of V. In [3], this result is extended for the more general case when $\rho(\partial_0 f) < 1$ (where $\rho(\partial_0 f)$ denotes the spectral radius of $\partial_0 f$.) This last result is the following.

THEOREM 1.2 (see [3]). If the function *f* satisfies the following conditions:

$$f(0) = 0,$$

$$\rho(\partial_0 f) < 1,$$
(1.3)

then 0 is an asymptotically stable steady state. $D_a(0)$ is an open subset of Ω and coincides with the natural domain of analyticity of the unique solution V of the iterative first-order functional equation

$$V(f(x)) - V(x) = -||x||^2,$$

$$V(0) = 0.$$
(1.4)

The function V is positive on $D_a(0)$ and $V(x) \xrightarrow{x \to x^0} +\infty$, for any $x^0 \in \partial D_a(0)$, $(\partial D_a(0)$ denotes the boundary of $D_a(0)$) or for $||x|| \to \infty$.

The function V is given by

$$V(x) = \sum_{k=0}^{\infty} ||f^{k}(x)||^{2} \quad \text{for any } x \in D_{a}(0).$$
(1.5)

The Lyapunov function V can be found theoretically using relation (1.5). In the followings, we will shortly present the procedure of determination and approximation of the domain of attraction using the function V presented in [2, 3].

The region of convergence D_0 of the power series development of V in 0 is a part of the domain of attraction $D_a(0)$. If D_0 is strictly contained in $D_a(0)$, then there exists a point $x^0 \in \partial D_0$ such that the function V is bounded on a neighborhood of x^0 . Let be the power

series development of V in x^0 . The domain of convergence D_1 of the series centered in x^0 gives a new part $D_1 \setminus (D_0 \cap D_1)$ of the domain of attraction $D_a(0)$. At this step, the part $D_0 \bigcup D_1$ of $D_a(0)$ is obtained.

If there exists a point $x^1 \in \partial(D_0 \cup D_1)$ such that the function V is bounded on a neighborhood of x^1 , then the domain $D_0 \cup D_1$ is strictly included in the domain of attraction $D_a(0)$. In this case, the procedure described above is repeated in x^1 .

The procedure cannot be continued in the case when it is found that on the boundary of the domain $D_0 \cup D_1 \cup \cdots \cup D_p$ obtained at step p, there are no points having neighborhoods on which V is bounded.

This procedure gives an open connected estimate D of the domain of attraction $D_a(0)$. Note that $f^{-k}(D)$, $k \in \mathbb{N}$ is also an estimate of $D_a(0)$, which is not necessarily connected.

The procedure described above is illustrated by the following examples.

Example 1.3. Let be the $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Due to the equality $f^k(x) = x^{2^k}$ the domain of attraction of the asymptotically stable steady state x = 0 is $D_a(0) = (-1, 1)$. The Lyapunov function is $V(x) = \sum_{k=0}^{\infty} x^{2^{k+1}}$. The domain of convergence of the series is $D_0 = (-1, 1)$ which coincides with $D_a(0)$.

Example 1.4. Let be the function $f : \Omega = (-\infty, 1) \to \Omega$ defined by f(x) = x/(e + (1 - e)x). Due to the equality $f^k(x) = x/(e^k + (1 - e^k)x)$ the domain of attraction of the asymptotically stable steady state x = 0 is $D_a(0) = (-\infty, 1)$. The power series expansion of the Lyapunov function $V(x) = \sum_{k=0}^{\infty} |f^k(x)|^2$ in 0 is

$$V(x) = \sum_{m=2}^{\infty} (m-1) \sum_{k=0}^{\infty} e^{-2k} (1-e^{-k})^{m-2} x^m.$$
(1.6)

The radius of convergence of the series (1.6) is

$$r_{0} = \lim_{m \to \infty} \sqrt[m]{(m-1)\sum_{k=0}^{\infty} e^{-2k} (1-e^{-k})^{m-2}} = 1,$$
(1.7)

therefore the domain of convergence of the series (1.6) is $D_0 = (-1,1) \subset D_a(0)$. More, $V(x) \to \infty$ as $x \to 1$ and $V(-1) < \infty$. The radius of convergence of the power series expansion of V in -1 is

$$r_{-1} = \lim_{m \to \infty} \sqrt[m]{\sum_{k=1}^{\infty} \frac{e^k (e^k - 1)^{m-2} [(m-3)e^k + 2]}{(2e^k - 1)^{m+2}}} = 1,$$
(1.8)

therefore the domain of convergence of the power series development of *V* in -1 is $D_{-1} = (-2,0)$ which gives a new part of $D_a(0)$.

Numerical results for more complex examples are given in [2, 3].

2. Theoretical results when the matrix $A = \partial_0 f$ is a contraction (i.e., ||A|| < 1)

The function f can be written as

$$f(x) = Ax + g(x)$$
 for any $x \in \Omega$, (2.1)

where $A = \partial_0 f$ and $g: \Omega \to \Omega$ is an \mathbb{R} -analytic function such that g(0) = 0 and $\lim_{x \to 0} (||g(x)|| / ||x||) = 0$.

PROPOSITION 2.1. If ||A|| < 1, then there exists r > 0 such that $B(r) \subset \Omega$ and ||f(x)|| < ||x|| for any $x \in B(r) \setminus \{0\}$.

Proof. Due to the fact that $\lim_{x\to 0} (\|g(x)\|/\|x\|) = 0$ there exists r > 0 such that $B(r) \subset \Omega$ and

$$||g(x)|| < (1 - ||A||) ||x|| \quad \text{for any } x \in B(r) \setminus \{0\}.$$
(2.2)

Let be $x \in B(r) \setminus \{0\}$. Inequality (2.2) provides that

$$||f(x)|| = ||Ax + g(x)|| \le ||A|| \, ||x|| + ||g(x)|| < (||A|| + 1 - ||A||) \, ||x|| = ||x||$$
(2.3)

therefore, ||f(x)|| < ||x||.

Definition 2.2. Let R > 0 be the largest number such that $B(R) \subset \Omega$ and ||f(x)|| < ||x|| for any $x \in B(R) \setminus \{0\}$.

If for any r > 0, $B(r) \subset \Omega$ and ||f(x)|| < ||x|| for any $x \in B(r) \setminus \{0\}$, then $R = +\infty$ and $B(R) = \Omega = \mathbb{R}^n$.

LEMMA 2.3. (a) B(R) is invariant to the flow of system (1.1).

- (b) For any $x \in B(R)$, the sequence $(||f^k(x)||)_{k \in \mathbb{N}}$ is decreasing.
- (c) For any $p \ge 0$ and $x \in B(R) \setminus \{0\}$, $\Delta V_p(x) = V_p(f(x)) V_p(x) < 0$, where

$$V_p(x) = \sum_{k=0}^{p} ||f^k(x)||^2 \quad for \ x \in \Omega.$$
(2.4)

 \square

Proof. (a) If x = 0, then $f^k(0) = 0$, for any $k \in \mathbb{N}$. For $x \in B(R) \setminus \{0\}$, we have ||f(x)|| < ||x||, which implies that $f(x) \in B(R)$, that is, B(R) is invariant to the flow of system (1.1).

(b) By induction, it results that for $x \in B(R)$ we have $f^k(x) \in B(R)$ and $||f^{k+1}(x)|| \le ||f^k(x)||$, which means that the sequence $(||f^k(x)||)_{k\in\mathbb{N}}$ is decreasing.

(c) In particular, for $p \ge 0$ and $x \in B(R)$, we have $||f^{p+1}(x)|| \le ||f(x)|| < ||x||$ and therefore, $\Delta V_p(x) = ||f^{p+1}(x)||^2 - ||x||^2 < 0$.

COROLLARY 2.4. For any $p \ge 0$, there exists a maximal domain $G_p \subset \Omega$ such that $0 \in G_p$ and for $x \in G_p \setminus \{0\}$, the (positive definite) function V_p verifies $\Delta V_p(x) < 0$. In other words, for any $p \ge 0$, the function V_p defined by (2.4) is a Lyapunov function for (1.1) on G_p . Moreover, $B(R) \subset G_p$ for any $p \ge 0$.

THEOREM 2.5. B(R) is an invariant set included in the domain of attraction $D_a(0)$.

Proof. Let be $x \in B(R) \setminus \{0\}$. We have to prove that $\lim_{k \to \infty} f^k(x) = 0$.

The sequence $(f^k(x))_{k\in\mathbb{N}}$ is bounded: $f^k(x)$ belongs to B(R). Let be $(f^{k_j}(x))_{j\in\mathbb{N}}$ a convergent subsequence and let be $\lim_{j\to\infty} f^{k_j}(x) = y^0$. It is clear that $y^0 \in B(R)$.

It can be shown that

$$\left|\left|f^{k}(x)\right|\right| \ge \left|\left|y^{0}\right|\right| \quad \text{for any } k \in \mathbb{N}.$$
(2.5)

For this, observe first that $f^{k_j}(x) \to y^0$ and $(||f^{k_j}(x)||)_{k\in\mathbb{N}}$ is decreasing (Lemma 2.3). These imply that $||f^{k_j}(x)|| \ge ||y^0||$ for any k_j . On the other hand, for any $k \in \mathbb{N}$, there exists $k_j \in \mathbb{N}$ such that $k_j \ge k$. Therefore, as the sequence $(||f^k(x)||)_{k\in\mathbb{N}}$ is decreasing (Lemma 2.3), we obtain that $||f^k(x)|| \ge ||f^{k_j}(x)|| \ge ||y^0||$.

We show now that $y^0 = 0$. Suppose the contrary, that is, $y^0 \neq 0$. Inequality (2.5) becomes

$$|f^{k}(x)|| \ge ||y^{0}|| > 0 \quad \text{for any } k \in \mathbb{N}.$$
 (2.6)

By means of Lemma 2.3, we have that $||f(y^0)|| < ||y^0||$.

Therefore, there exists a neighborhood $U_{f(y^0)} \subset B(R)$ of $f(y^0)$ such that for any $z \in U_{f(y^0)}$ we have $||z|| < ||y^0||$. On the other hand, for the neighborhood $U_{f(y^0)}$ there exists a neighborhood $U_{y^0} \subset B(R)$ of y^0 such that for any $y \in U_{y^0}$, we have $f(y) \in U_{f(y^0)}$. Therefore:

$$||f(y)|| < ||y^0||$$
 for any $y \in U_{y^0}$. (2.7)

As $f^{k_j}(x) \to y^0$, there exists \overline{j} such that $f^{k_j}(x) \in U_{y^0}$, for any $j \ge \overline{j}$. Making $y = f^{k_j}(x)$ in (2.7), it results that

$$||f^{k_j+1}(x)|| = ||f(f^{k_j}(x))|| < ||y^0|| \quad \text{for } j \ge \overline{j}$$
 (2.8)

which contradicts (2.6). This means that $y^0 = 0$, consequently, every convergent subsequence of $(f^k(x))_{k \in \mathbb{N}}$ converges to 0. This provides that the sequence $(f^k(x))_{k \in \mathbb{N}}$ is convergent to 0, and $x \in D_a(0)$.

Therefore, the ball B(R) is contained in the domain of attraction of $D_a(0)$.

For $p \ge 0$ and c > 0 let be N_p^c the set

$$N_{p}^{c} = \{ x \in \Omega : V_{p}(x) < c \}.$$
(2.9)

If $c = +\infty$, then $N_p^c = \Omega$.

THEOREM 2.6. Let be $p \ge 0$. For any $c \in (0, (p+1)R^2]$, the set N_p^c is included in the domain of attraction $D_a(0)$.

Proof. Let be $c \in (0, (p+1)R^2]$ and $x \in N_p^c$. Then $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < c \le (p+1)R^2$, therefore, there exists $k \in \{0, 1, \dots, p\}$ such that $||f^k(x)||^2 < R^2$. It results that $f^k(x) \in B(R) \subset D_a(0)$, therefore, $x \in D_a(0)$.

Remark 2.7. It is obvious that for $p \ge 0$ and 0 < c' < c'' one has $N_p^{c'} \subset N_p^{c''}$. Therefore, for a given $p \ge 0$, the largest part of $D_a(0)$ which can be found by this method is $N_p^{c_p}$, where

 $c_p = (p+1)R^2$. In the followings, we will use the notation N_p instead of $N_p^{c_p}$. Shortly, $N_p = \{x \in \Omega : V_p(x) < (p+1)R^2\}$ is a part of $D_a(0)$. Let us note that $N_0 = B(R)$.

Remark 2.8. If $R = +\infty$ (i.e., $\Omega = \mathbb{R}^n$ and ||f(x)|| < ||x||, for any $x \in \mathbb{R} \setminus \{0\}$), then $N_p = \mathbb{R}^n$ for any $p \ge 0$ and $D_a(0) = \mathbb{R}^n$.

THEOREM 2.9. For the sets $(N_p)_{p \in \mathbb{N}}$, the following properties hold:

- (a) for any $p \ge 0$, one has $N_p \subset N_{p+1}$;
- (b) for any $p \ge 0$, the set N_p is invariant to f;
- (c) for any $x \in D_a(0)$, there exists $p^x \ge 0$ such that $x \in N_{p^x}$.

Proof. (a) Let be $p \ge 0$ and $x \in N_p$. Then $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < (p+1)R^2$, therefore, there exists $k \in \{0, 1, ..., p\}$ such that $||f^k(x)||^2 < R^2$. It results that $f^k(x) \in B(R)$ and therefore $f^m(x) \in B(R)$, for any $m \ge k$. For m = p + 1 we obtain $||f^{p+1}(x)|| < R$, hence $V_{p+1}(x) = V_p(x) + ||f^{p+1}(x)||^2 < (p+1)R^2 + R^2 = (p+2)R^2$. Therefore, $x \in N_{p+1}$.

(b) Let be $x \in N_p$. If ||x|| < R then $||f^m(x)|| < R$ for any $m \ge 0$ (by means of Lemma 2.3). This implies that $V_p(f(x)) = \sum_{k=0}^p ||f^k(f(x))||^2 = \sum_{k=1}^{p+1} ||f^k(x)||^2 < (p+1)R^2$, meaning that $f(x) \in N_p$.

Let us suppose that $||x|| \ge R$. As $x \in N_p$, we have that $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < (p+1)R^2$, therefore, there exists $k \in \{0, 1, ..., p\}$ such that $||f^k(x)|| < R$. It results that $f^k(x) \in B(R)$ and therefore $f^m(x) \in B(R)$, for any $m \ge k$. For m = p+1 we obtain $||f^{p+1}(x)|| < R$. This implies that

$$V_p(f(x)) = V_p(x) + \left| \left| f^{p+1}(x) \right| \right|^2 - \|x\|^2 < (p+1)R^2 + R^2 - R^2 = (p+1)R^2$$
(2.10)

therefore $f(x) \in N_p$.

(c) Suppose the contrary, that is, there exist $x \in D_a(0)$ such that for any $p \ge 0$, $x \notin N_p$. Therefore, $V_p(x) \ge (p+1)R^2$ for any $p \ge 0$. Passing to the limit for $p \to \infty$ in this inequality, provides that $V(x) = \infty$. This means $x \in \partial D_a(0)$ which contradicts the fact that x belongs to the open set $D_a(0)$. In conclusion, there exists $p^x \ge 0$ such that $x \in N_{p^x}$.

For $p \ge 0$ let be $M_p = f^{-p}(B(R)) = \{x \in \Omega : f^p(x) \in B(R)\}$, obtained by the trajectory reversing method.

THEOREM 2.10. The following properties hold:

(a) $M_p \subset D_a(0)$ for any $p \ge 0$;

- (b) for any $p \ge 0$, M_p is invariant to f;
- (c) $M_p \subset M_{p+1}$ for any $p \ge 0$;
- (d) for any $x \in D_a(0)$, there exists $p^x \ge 0$ such that $x \in M_{p^x}$.

Proof. (a) As $M_p = f^{-p}(B(R))$ and $B(R) \subset D_a(0)$ (see Theorem 2.5) it is clear that $M_p \subset D_a(0)$.

(b) and (c) follow easily by induction, using Lemma 2.3.

(d) $x \in D_a(0)$ provides that $f^p(x) \to 0$ as $p \to \infty$. Therefore, there exists $p^x \in \mathbb{N}$ such that $f^p(x) \in B(R)$, for any $p \ge p^x$. This provides that $x \in M_p$ for any $p \ge p^x$.

Both sequences of sets $(M_p)_{p\in\mathbb{N}}$ and $(N_p)_{p\in\mathbb{N}}$ are increasing, and are made up of estimates of $D_a(0)$. From the practical point of view, it is important to know which sequence converges more quickly. The next theorem provides that the sequence $(M_p)_{p\in\mathbb{N}}$ converges more quickly than $(N_p)_{p\in\mathbb{N}}$, meaning that for $p \ge 0$, the set M_p is a larger estimate of $D_a(0)$ then N_p .

THEOREM 2.11. For any $p \ge 0$, one has $N_p \subset M_p$.

Proof. Let be $p \ge 0$ and $x \in N_p$. We have that $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < (p+1)R^2$, therefore, there exists $k \in \{0, 1, ..., p\}$ such that $||f^k(x)|| < R$. This implies that $f^m(x) \in B(R)$, for any $m \ge k$. For m = p we obtain $f^p(x) \in B(R)$, meaning that $x \in M_p$.

3. Theoretical results when $A = \partial_0 f$ is a convergent noncontractive matrix (i.e., $\rho(A) < 1 \le ||A||$)

PROPOSITION 3.1. If $\rho(A) < 1 \le ||A||$, then there exist $\widetilde{p} \ge 2$ and $r_{\widetilde{p}} > 0$ such that $B(r_{\widetilde{p}}) \subset \Omega$ and $||f^p(x)|| < ||x||$ for any $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$ and $x \in B(r_{\widetilde{p}}) \setminus \{0\}$.

Proof. We have that $\rho(A) < 1$ if and only if $\lim_{p\to\infty} A^p = 0$ (see [1]), which provides (together with $||A|| \ge 1$) that there exists $\tilde{p} \ge 2$ such that $||A^p|| < 1$ for any $p \ge \tilde{p}$. Let be $\tilde{p} \ge 2$ fixed with this property.

The formula of variation of constants for any *p* gives:

$$f^{p}(x) = A^{p}x + \sum_{k=0}^{p-1} A^{p-k-1}g(f^{k}(x)) \quad \forall x \in \Omega, \ p \in \mathbb{N}^{\star}.$$
(3.1)

Due to the fact that for any $k \in \mathbb{N}$ we have $\lim_{x\to 0} (\|g(f^k(x))\|/\|x\|) = 0$, there exists $r_{\tilde{p}} > 0$ such that for any $p \in \{\tilde{p}, \tilde{p}+1, \dots, 2\tilde{p}-1\}$ the following inequality holds:

$$\sum_{k=0}^{p-1} ||A^{p-k-1}|| ||g(f^k(x))|| < (1-||A^p||) ||x|| \quad \text{for } x \in B(r_{\widetilde{p}}) \setminus \{0\}.$$
(3.2)

Let be $x \in B(r_{\widetilde{p}}) \setminus \{0\}$ and $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$. Using (3.1) and (3.2) we have

$$\begin{split} ||f^{p}(x)|| &= \left\| \left| A^{p}x + \sum_{k=0}^{p-1} A^{p-k-1}g(f^{k}(x)) \right| \right| \\ &\leq \left| |A^{p}|| ||x|| + \sum_{k=0}^{p-1} ||A^{p-k-1}|| ||g(f^{k}(x))|| \\ &< \left(\left| |A^{p}|| + 1 - ||A^{p}|| \right) ||x|| = ||x||. \end{split}$$

$$(3.3)$$

Therefore, $||f^p(x)|| < ||x||$ for $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$ and $x \in B(r_{\widetilde{p}}) \setminus \{0\}$.

Definition 3.2. Let $\tilde{p} \ge 2$ be the smallest number such that $||A^p|| < 1$ for any $p \ge \tilde{p}$ (see the proof of Proposition 3.1). Let $\tilde{R} > 0$ the largest number be such that $B(\tilde{R}) \subset \Omega$ and $||f^p(x)|| < ||x||$ for $p \in \{\tilde{p}, \tilde{p} + 1, \dots, 2\tilde{p} - 1\}$ and $x \in B(\tilde{R}) \setminus \{0\}$.

If for any r > 0, we have that $B(r) \subset \Omega$ and $||f^p(x)|| < ||x||$ for any $p \in \{\widetilde{p}, \widetilde{p}+1, ..., 2\widetilde{p}-1\}$ and $x \in B(r) \setminus \{0\}$, then $\widetilde{R} = +\infty$ and $B(\widetilde{R}) = \Omega = \mathbb{R}^n$.

LEMMA 3.3. (a) For any $x \in B(\widetilde{R})$ and $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$, the sequence $(\|f^{kp}(x)\|)_{k\in\mathbb{N}}$ is decreasing.

(b) For any $p \ge \widetilde{p}$ and $x \in B(\widetilde{R}) \setminus \{0\}$, $||f^p(x)|| < ||x||$.

(c) For any $p \ge \tilde{p}$ and $x \in B(\tilde{R}) \setminus \{0\}$, $\Delta V_p(x) = V_p(f(x)) - V_p(x) < 0$, where V_p is defined by (2.4).

Proof. (a) If x = 0, then $f^p(0) = 0$, for any $p \ge 0$.

Let be $x \in B(\widetilde{R}) \setminus \{0\}$. We know that $||f^p(x)|| < ||x||$ for any $p \in \{\widetilde{p}, \widetilde{p} + 1, ..., 2\widetilde{p} - 1\}$. It results that $f^p(x) \in B(\widetilde{R})$ for any $p \in \{\widetilde{p}, \widetilde{p} + 1, ..., 2\widetilde{p} - 1\}$. This implies that for any $k \in \mathbb{N}^*$ we have $||f^{kp}(x)|| < ||x||$ and $||f^{(k+1)p}(x)|| \le ||f^{kp}(x)||$, meaning that the sequence $(||f^{kp}(x)||_{k\in\mathbb{N}})$ is decreasing.

(b) Let be $x \in B(\widetilde{R}) \setminus \{0\}$. Inequality $||f^p(x)|| < ||x||$ is true for any $p \in \{\widetilde{p}, \widetilde{p}+1, ..., 2\widetilde{p}-1\}$.

Let be $p \ge 2\tilde{p}$. There exists $q \in \mathbb{N}^*$ and $p' \in \{\tilde{p}, \tilde{p}+1, \dots, 2\tilde{p}-1\}$ such that $p = q\tilde{p} + p'$. Using (a), we have that $f^{p'}(x) \in B(\tilde{R})$ and $f^{q\tilde{p}}(y) \le ||y||$, for any $y \in B(\tilde{R})$, therefore

$$\left|\left|f^{p}(x)\right|\right| = \left|\left|f^{q\widetilde{p}}(f^{p'}(x))\right|\right| \le \left|\left|f^{p'}(x)\right|\right| < \|x\|$$
(3.4)

(c) results directly from (b).

COROLLARY 3.4. For any $p \ge \tilde{p}$, there exists a maximal domain $G_p \subset \Omega$ such that $0 \in G_p$ and for any $x \in G_p \setminus \{0\}$, the (positive definite) function V_p verifies $\Delta V_p(x) < 0$. In other words, for any $p \ge \tilde{p}$, the function V_p is a Lyapunov function for (1.1) on G_p . More, $B(\tilde{R}) \subset$ G_p for any $p \ge \tilde{p}$.

LEMMA 3.5. For any $k \ge \tilde{p}$, there exists $q_k \in \mathbb{N}$ such that

$$\left\| f^{(q_k+3)\widetilde{p}}(x) \right\| \le \left\| f^k(x) \right\| \le \left\| f^{q_k \widetilde{p}}(x) \right\| \quad \text{for any } x \in B(\widetilde{R}).$$

$$(3.5)$$

Proof. Let be $k \ge \tilde{p}$. There exists a unique $q_k \in \mathbb{N}$ and a unique $p_k \in \{\tilde{p}, \tilde{p}+1, \dots, 2\tilde{p}-1\}$ such that $k = q_k \tilde{p} + p_k$. Lemma 3.3 provides that for any $x \in B(\tilde{R})$ we have that $f^{q_k \tilde{p}}(x) \in B(\tilde{R})$ and $||f^{p_k}(x)|| \le ||x||$. It results that

$$||f^{k}(x)|| = ||f^{p_{k}}(f^{q_{k}\tilde{p}}(x))|| \le ||f^{q_{k}\tilde{p}}(x)|| \quad \text{for any } x \in B(\bar{R}).$$
(3.6)

On the other hand, we have $(q_k + 3)\widetilde{p} = k + (3\widetilde{p} - p_k)$. As $(3\widetilde{p} - p_k) \in \{\widetilde{p} + 1, \widetilde{p} + 2, ..., 2\widetilde{p}\}$ and $k \ge \widetilde{p}$, Lemma 3.3 provides that for any $x \in B(\widetilde{R})$ we have that $f^k(x) \in B(\widetilde{R})$ and

 \square

 $||f^{3\widetilde{p}-p_k}(x)|| \le ||x||$. Therefore

$$\left|\left|f^{(q_k+3)\widetilde{p}}(x)\right|\right| = \left|\left|f^{3\widetilde{p}-p_k}(f^k(x))\right|\right| \le \left|\left|f^k(x)\right|\right| \quad \text{for any } x \in B(\widetilde{R}).$$
(3.7)

Combining the two inequalities, we get that

$$\left\| f^{(q_k+3)\widetilde{p}}(x) \right\| \le \left\| f^k(x) \right\| \le \left\| f^{q_k \widetilde{p}}(x) \right\| \quad \text{for any } x \in B(\widetilde{R})$$
(3.8)

which concludes the proof.

THEOREM 3.6. $B(\widetilde{R})$ is included in the domain of attraction $D_a(0)$.

Proof. Let be $x \in B(\widetilde{R}) \setminus \{0\}$. We have to prove that $\lim_{k\to\infty} f^k(x) = 0$. The sequence $(f^k(x))_{k\in\mathbb{N}}$ is bounded (see Lemma 3.3). Let be $(f^{k_j}(x))_{j\in\mathbb{N}}$ a convergent subsequence and let be $\lim_{j\to\infty} f^{k_j}(x) = y^0$.

We suppose, without loss of generality, that $k_j \ge \tilde{p}$ for any $j \in \mathbb{N}$. Lemma 3.5 provides that for any $j \in \mathbb{N}$ there exists $q_j \in \mathbb{N}$ such that

$$||f^{(q_j+3)\widetilde{p}}(x)|| \le ||f^{k_j}(x)|| \le ||f^{q_j\widetilde{p}}(x)||.$$
(3.9)

As $(\|f^{q_j\widetilde{p}}(x)\|)_{j\in\mathbb{N}}$ and $(\|f^{(q_j+3)}\widetilde{p}(x)\|)_{j\in\mathbb{N}}$ are subsequences of the convergent sequence $(\|f^{q\widetilde{p}}(x)\|)_{q\in\mathbb{N}}$ (decreasing, according to Lemma 3.3), it results that they are convergent. The double inequality (3.9) provides that $\lim_{j\to\infty} \|f^{q_j\widetilde{p}}(x)\| = \|y^0\|$. Therefore, $\lim_{q\to\infty} \|f^{q\widetilde{p}}(x)\| = \|y^0\|$.

It can be shown that

$$\left|\left|f^{k}(x)\right|\right| \ge \left|\left|y^{0}\right|\right| \quad \text{for any } k \ge \widetilde{p}.$$
(3.10)

For this, remark that $\lim_{q\to\infty} ||f^{q\widetilde{p}}(x)|| = ||y^0||$ and $(||f^{q\widetilde{p}}(x)||)_{q\in\mathbb{N}}$ is decreasing (Lemma 3.3), which implies that $||f^{q\widetilde{p}}(x)|| \ge ||y^0||$ for any $q \in \mathbb{N}$. On the other hand, Lemma 3.5 provides that for any $k \ge \widetilde{p}$ there exists q_k such that $||f^{(q_k+3)\widetilde{p}}(x)|| \le ||f^k(x)||$. Therefore, $||f^k(x)|| \ge ||f^{(q_k+3)\widetilde{p}}(x)|| \ge ||f^{(q_k+3)\widetilde{p}}(x)|| \ge ||y^0||$, for any $k \ge \widetilde{p}$.

We show now that $y^0 = 0$. Suppose the contrary, that is, $y^0 \neq 0$. Inequality (3.10) becomes

$$||f^k(x)|| \ge ||y^0|| > 0 \quad \text{for any } k \ge \widetilde{p}.$$
(3.11)

By means of Lemma 3.3, we have that $||f^{\tilde{p}}(y^0)|| < ||y^0||$.

There exists a neighborhood $U_{f^{\tilde{p}}(y^0)} \subset B(\widetilde{R})$ of $f^{\tilde{p}}(y^0)$ such that for any $z \in U_{f^{\tilde{p}}(y^0)}$ we have $||z|| < ||y^0||$. On the other hand, for the neighborhood $U_{f^{\tilde{p}}(y^0)}$ there exists a neighborhood $U_{y^0} \subset B(\widetilde{R})$ of y^0 such that for any $y \in U_{y^0}$, we have $f^{\tilde{p}}(y) \in U_{f^{\tilde{p}}(y^0)}$. Therefore:

$$||f^{\tilde{p}}(y)|| < ||y^{0}||$$
 for any $y \in U_{y^{0}}$. (3.12)

As $f^{k_j}(x) \to y^0$, there exists \overline{j} such that $f^{k_j}(x) \in U_{y^0}$, for any $j \ge \overline{j}$. Making $y = f^{k_j}(x)$ in (3.12), it results that

$$||f^{k_j+\tilde{p}}(x)|| = ||f^{\tilde{p}}(f^{k_j}(x))|| < ||y^0|| \quad \text{for } j \ge \bar{j}$$
 (3.13)

which contradicts (3.11). This means that $y^0 = 0$, consequently, every convergent subsequence of $(f^k(x))_{k \in \mathbb{N}}$ converges to 0. This provides that the sequence $(f^k(x))_{k \in \mathbb{N}}$ is convergent to 0, and $x \in D_a(0)$.

Therefore, the ball $B(\widetilde{R})$ is contained in the domain of attraction of $D_a(0)$.

THEOREM 3.7. Let be $p \ge 0$. For any $c \in (0, (p+1)\tilde{R}^2]$, the set N_p^c is included in the domain of attraction $D_a(0)$.

Proof. Let be $c \in (0, (p+1)\widetilde{R}^2]$ and $x \in N_p^c$. Then $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < c \le (p+1)\widetilde{R}^2$, therefore, there exists $k \in \{0, 1, ..., p\}$ such that $||f^k(x)||^2 < \widetilde{R}^2$. It results that $f^k(x) \in B(\widetilde{R}) \subset D_a(0)$, therefore, $x \in D_a(0)$.

Remark 3.8. It is obvious that for $p \ge 0$ and 0 < c' < c'' one has $N_p^{c'} \subset N_p^{c''}$. Therefore, for a given $p \ge 0$, the largest part of $D_a(0)$ which can be found by this method is $N_p^{\tilde{c}_p}$, where $\tilde{c}_p = (p+1)\tilde{R}^2$. In the followings, we will use the notation \tilde{N}_p instead of $N_p^{\tilde{c}_p}$. Shortly, $\tilde{N}_p = \{x \in \Omega : V_p(x) < (p+1)\tilde{R}^2\}$ is a part of $D_a(0)$. Let us note that $\tilde{N}_0 = B(\tilde{R})$.

Remark 3.9. If $\widetilde{R} = +\infty$ (i.e., $\Omega = \mathbb{R}^n$ and $||f^p(x)|| < ||x||$, for any $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$ and $x \in \mathbb{R} \setminus \{0\}$), then $\widetilde{N}_p = \mathbb{R}^n$ for any $p \ge 0$ and $D_a(0) = \mathbb{R}^n$.

THEOREM 3.10. For any $x \in D_a(0)$ there exists $p^x \ge 0$ such that $x \in \widetilde{N}_{p^x}$.

Proof. Let be $x \in D_a(0)$. Suppose the contrary, that is, $x \notin \tilde{N}_p$ for any $p \ge 0$. Therefore, $V_p(x) \ge (p+1)\tilde{R}^2$ for any $p \ge 0$. Passing to the limit when $p \to \infty$ in this inequality provides that $V(x) = \infty$. This means $x \in \partial D_a(0)$ which contradicts the fact that x belongs to the open set $D_a(0)$. In conclusion, there exists $p^x \ge 0$ such that $x \in \tilde{N}_{p^x}$.

Remark 3.11. The sequence of sets $(\widetilde{N}_p)_{p \in \mathbb{N}}$ is generally not increasing (see Section 4: Numerical examples, the Van der Pol equation).

Open question. Is the sequence of sets $(\widetilde{N}_p)_{p \ge \widetilde{p}}$ increasing?

For $p \ge 0$ let be $\widetilde{M}_p = f^{-p}(B(\widetilde{R})) = \{x \in \Omega : f^p(x) \in B(\widetilde{R})\}$, obtained by the trajectory reversing method.

THEOREM 3.12. For the sets $(\widetilde{M}_p)_{p \in \mathbb{N}}$, the following properties hold:

(a) $\widetilde{M}_p \subset D_a(0)$, for any $p \ge 0$;

(b) $\widetilde{M}_{kp} \subset \widetilde{M}_{(k+1)p}$ for any $k \in \mathbb{N}$ and $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\}$;

(c) for any $x \in D_a(0)$, there exists $p^x \ge 0$ such that $x \in \widetilde{M}_{p^x}$.

Proof. (a) As $\widetilde{M}_p = f^{-p}(B(\widetilde{R}))$ and $B(\widetilde{R}) \subset D_a(0)$ (see Theorem 3.6) it is clear that $\widetilde{M}_p \subset D_a(0)$.

(b) follows easily by induction, using Lemma 3.3.

(c) $x \in D_a(0)$ provides that $f^p(x) \to 0$ as $p \to \infty$. Therefore, there exists $p^x \ge 0$ such that $f^p(x) \in B(\widetilde{R})$, for any $p \ge p^x$. This provides that $x \in \widetilde{M}_p$ for any $p \ge p^x$.

Figure 4.1. The sets N_p , $p = \overline{0,4}$ and $\partial D_a(0,0)$ for (4.1).

Remark 3.13. The sequence of sets $(\widetilde{M}_p)_{p \in \mathbb{N}}$ is generally not increasing (see Section 4: Numerical examples, the Van der Pol equation).

Both sequences of sets $(\widetilde{M}_p)_{p\in\mathbb{N}}$ and $(\widetilde{N}_p)_{p\in\mathbb{N}}$ are made up of estimates of $D_a(0)$. From the practical point of view, it would be important to know which one of the sets \widetilde{M}_p or \widetilde{N}_p is a larger estimate of $D_a(0)$ for a fixed $p \ge \widetilde{p}$. Such result could not be established, but the following theorem holds.

THEOREM 3.14. For any $p \ge 0$, one has $\widetilde{N}_p \subset \widetilde{M}_{p+\widetilde{p}}$.

Proof. Let be $p \ge 0$ and $x \in \widetilde{N}_p$. We have that $V_p(x) = \sum_{k=0}^p ||f^k(x)||^2 < (p+1)\widetilde{R}^2$, therefore, there exists $k \in \{0, 1, ..., p\}$ such that $||f^k(x)|| < \widetilde{R}$. This implies that $f^{k+m}(x) \in B(\widetilde{R})$, for any $m \ge \widetilde{p}$. For $m = p - k + \widetilde{p}$ we obtain $f^{p+\widetilde{p}}(x) \in B(\widetilde{R})$, meaning that $x \in \widetilde{M}_{p+\widetilde{p}}$. \Box

4. Numerical examples

4.1. Example with known domain of attraction. Let the following discrete dynamical system be

There exists an infinity of steady states for this system: (0,0) (asymptotically stable) and all the points (x, y) belonging to the ellipsis $x^2 + 2y^2 = 1$ (all unstable). The domain of attraction of (0,0) is $D_a(0,0) = \{(x, y) \in \mathbb{R}^2 : x^2 + 2y^2 < 1\}$.

Figure 4.2. The sets M_p , p = 0, 1, 2, 6 for (4.1).

As $\|\partial_{(0,0)} f\| = 1/2$, we compute the largest number R > 0 such that $\|f(x)\| < \|x\|$ for any $x \in B(R) \setminus \{0\}$, and we find R = 0.7071.

For p = 0, 1, 2, 3, 4, we find the N_p sets shown in Figure 4.1, parts of $D_a(0,0)$ ($N_p \subset N_{p+1}$, for $p \ge 0$). In Figure 4.1, the thick-contoured ellipsis represents the boundary of $D_a(0,0)$.

In Figure 4.2, the sets M_p are represented, for p = 0, 1, 2, 6 ($M_p \subset M_{p+1}$, for $p \ge 0$). Note that M_6 approximates with a good accuracy the domain of attraction.

4.2. Discrete predator-prey system. We consider the discrete predator-prey system:

$$x_{k+1} = ax_k(1 - x_k) - x_k y_k$$

$$y_{k+1} = \frac{1}{b} x_k y_k$$
 with $a = \frac{1}{2}, b = 1, k \in \mathbb{N}.$ (4.2)

The steady states of this system are (0,0) (asymptotically stable), (-1,0) and (1,-1) (both unstable).

We have that $\|\partial_{(0,0)} f\| = 1/2$, and the largest number R > 0 such that $\|f(x)\| < \|x\|$ for any $x \in B(R) \setminus \{0\}$ is R = 0.65.

Figure 4.3 presents the N_p sets for p = 0, 1, 2, 3, 4, 5, parts of $D_a(0,0)$ ($N_p \subset N_{p+1}$, for $p \ge 0$). The black points in Figure 4.3 represent the steady states of the system.

In Figure 4.4, the sets M_p are represented, for p = 0, 1, 2, 6 ($M_p \subset M_{p+1}$, for $p \ge 0$). Note that the boundary of M_6 approaches very much the fixed points (-1,0) and (1,-1), which suggests that M_6 is a good approximation of $D_a(0)$.

Figure 4.3. The sets N_p , $p = \overline{0,5}$ for (4.2).

Figure 4.4. The sets M_p , p = 0, 1, 2, 6 for (4.2).

4.3. Discrete Van der Pol system. Let the following discrete dynamical system, obtained from the continuous Van der Pol system be

$$x_{k+1} = x_k - y_k$$

$$y_{k+1} = x_k + (1-a)y_k + ax_k^2 y_k$$
 with $a = 2, k \in \mathbb{N}.$ (4.3)

Figure 4.5. The sets \widetilde{N}_p , $p = \overline{0,5}$ for (4.3).

Figure 4.6. The sets \widetilde{M}_p , p = 0, 1, 2, 6 for (4.3).

The only steady state of this system is (0,0) which is asymptotically stable. There are many periodic points for this system, the periodic points of order $\overline{2,5}$ being represented in Figure 4.5 by the black points.

We have that $\|\partial_{(0,0)} f\| = 2$ but $\rho(\partial_{(0,0)} f) = 0$. First, we observe that for $\tilde{p} = 2$ we have that $(\partial_{(0,0)} f)^{\tilde{p}} = O_2$, therefore, $\|(\partial_{(0,0)} f)^p\| = 0$ for any $p \ge \tilde{p}$.

The largest number $\widetilde{R} > 0$ such that $||f^p(x)|| < ||x||$ for $p \in \{\widetilde{p}, \widetilde{p}+1, \dots, 2\widetilde{p}-1\} =$ $\{2,3\}$ and $x \in B(\widetilde{R}) \setminus \{0\}$ is $\widetilde{R} = 0.365$.

For p = 0, 1, 2, 3, 4, 5, the connected components which contain (0,0) of the \widetilde{N}_{p} sets are shown in Figure 4.5. We have that $\widetilde{N}_0 \not\subseteq \widetilde{N}_1 \subset \widetilde{N}_2 \subset \widetilde{N}_3 \subset \widetilde{N}_4 \subset \widetilde{N}_5$.

In Figure 4.6, the sets \widetilde{M}_p are represented, for p = 0, 1, 2, 6. Note that the inclusions $\widetilde{M}_{p} \subset \widetilde{M}_{p+1}$ do not hold.

References

- [1] R. A. Horn and C. R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1985.
- [2] E. Kaslik, A. M. Balint, S. Birauas, and St. Balint, Approximation of the domain of attraction of an asymptotically stable fixed point of a first order analytical system of difference equations, Nonlinear Studies 10 (2003), no. 2, 103–112.
- [3] E. Kaslik, A. M. Balint, A. Grigis, and St. Balint, An extension of the characterization of the domain of attraction of an asymptotically stable fixed point in the case of a nonlinear discrete dynamical system, Proceedings of 5th ICNPAA (S. Sivasundaram, ed.), European Conference Publications, Cambridge, UK, 2004.
- [4] W. G. Kelley and A. C. Peterson, Difference Equations, 2nd ed., Harcourt/Academic Press, California, 2001.
- [5] H. Koçak, Differential and Difference Equations through Computer Experiments, 2nd ed., Springer, New York, 1989.
- [6] G. Ladas, C. Qian, P. N. Vlahos, and J. Yan, Stability of solutions of linear nonautonomous difference equations, Applicable Analysis. An International Journal 41 (1991), no. 1-4, 183–191.
- [7] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations. Numerical Methods and Applications, Mathematics in Science and Engineering, vol. 181, Academic Press, Massachusetts, 1988.
- [8] J. P. LaSalle, The Stability and Control of Discrete Processes, Applied Mathematical Sciences, vol. 62, Springer, New York, 1986.
- [9] _____, Stability theory for difference equations, Studies in Ordinary Differntial Equations (J. Hale, ed.), MAA Studies in Mathematics, vol. 14, Taylor and Francis Science Publishers, London, 1997, pp. 1-31.

St. Balint: Department of Mathematics, West University of Timişoara, Bd. V. Parvan 4, 300223 Timisoara, Romania

E-mail address: balint@balint.math.uvt.ro

E. Kaslik: Department of Mathematics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timişoara, Romania Current address: LAGA, UMR 7539, Institut Galilée, Université Paris 13, 99 Avenue J.B. Clément, 93430 Villetaneuse, France E-mail address: kaslik@math.univ-paris13.fr

A. M. Balint: Department of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223 Timişoara, Romania E-mail address: balint@physics.uvt.ro

A. Grigis: LAGA, UMR 7539, Institut Galilée, Université Paris 13, 99 Avenue J.B. Clément, 93430 Villetaneuse, France E-mail address: grigis@math.univ-paris13.fr