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We investigate the functional equation with generalized dilation in the special weighted
functional spaces.We provide some sufficient conditions for the existence of the inversion
operator in the same form and consider several examples.

Copyright © 2006 Pavel Plaschinsky. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Consider the functional equation with generalized dilation:

∞∑

n=1
a(n,x)nντ f

(
nτx

)= g(x), x ∈ (0;∞), τ,ν∈R, (1.1)

where a(n,x) is bounded almost everywhere on (0;∞) for arbitrary natural n, and the
sequence (an) of their L∞-norms belongs to l1.

The equations of this type are used in many areas of physics [4, 5], for example, irradi-
ation of black bodies. But in physics there were no rigorous proofs, rather it was the idea
of using the method of the Dirichlet convolution inverse (we will call it here the discrete
Mellin convolution).

One can find the expansive bibliography and history of the algebraic approach to the
integral and difference equations with transformed argument in, for example, [1–3, 8].

The traditional use of the integral transforms in the case of constant coefficients does
not work in Lp Banach spaces, and we apply the method of the reciprocal sequences.

In [6], the functional operatorMa,τ on the left-hand side of (1.1) was completely inves-
tigated in the case of constant coefficients a(n). In [7], it was shown that the operatorMa,τ

is bounded in Lν,p, that is, in the Banach space of functions f (x) such that f (x)xν−1/p ∈ Lp

with the corresponding norm. In addition, sufficient conditions for the existence of the
inversion operator of the same form as in (1.1) were found:

(1) a(n,x)= (a1∗ a2∗···∗ am)τ(n,x);
(2) ‖ak‖1 < ess inf |ak(1,x)|+esssup|ak(1,x)|, k = 1, . . . ,m.
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In terms of the discrete Mellin convolution with τ-degree dilation (DMCτ),

(a∗ b)τ(n,x)=
∑

km=n
a(k,x)b

(
m,kτx

)
, (1.2)

these conditions imply the existence of the reciprocal sequence (a−1(n,x)) in l1. The re-
ciprocal sequence (a−1(n,x)) is defined almost everywhere on (0;∞) by equality

(
a∗ a−1

)
τ(n,x)=

(
a−1∗ a

)
τ(n,x)= e1(n)=

⎧
⎨
⎩
1, n= 1,

0, n > 1.
(1.3)

Under these conditions, the solution of (1.1) for arbitrary function g(x) from Lν,p is of
the form

f (x)=
∞∑

n=1
a−1(n,x)nντg

(
nτx

)
, x ∈ (0;∞), (1.4)

since the inversion operatorM−1
a,τ isMa−1,τ .

Furthermore, this form of solution is useful in calculations because of using concrete
local values of functions, unlike using all values in integral transforms.

The goal of this paper is to find wider sufficient conditions in the case of arbitrary
coefficients a(n,x).

2. Main theorem

We denote

ainf = ess inf
(0;∞)

∣∣a(1,x)
∣∣, a1 = esssup

(0;∞)

∣∣a(1,x)
∣∣,

an(δ)= esssup
(0;δ)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣, an(Δ)= esssup
(Δ;∞)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣,

an(0)= lim
δ→0

an(δ), an(∞)= lim
Δ→∞

an(Δ),

an = esssup
(0;∞)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣, n= 2,3, . . . .

(2.1)

Theorem 2.1. If ainf > 0 and

∞∑

n=2
an(0) < 1,

∞∑

n=2
an(∞) < 1, (2.2)

then there exists the reciprocal sequence (a−1(n,x)) with respect to the DMCτ in l1.

Corollary 2.2. Under the conditions of the theorem, (1.1) has a unique solution and it can
be expressed in the form (1.4).

Proof of the theorem. The condition ainf > 0 is the necessary inversion condition for the
sequence a(n,x) [7]. Any sequence (a(n,x))∈ l1 with this property can be introduced as
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the DMCτ of the sequences (b(n,x)) and (c(n,x)) belonging to l1:

a(n,x)= (b∗ c)τ(n,x), (2.3)

where

b(n,x)=
⎧
⎨
⎩
a(1,x), n= 1,

0, n≥ 2,
c(n,x)=

⎧
⎪⎪⎨
⎪⎪⎩

1, n= 1,

a(n,x)
a(1,x)

, n≥ 2.
(2.4)

The sequence (b(n,x)) is invertible in l1 and

b(n,x)=
⎧
⎪⎨
⎪⎩

1
a(1,x)

, n= 1,

0, n≥ 2.
(2.5)

If the sequence (c(n,x)) is also invertible in l1, then the sequence (a(n,x)) is invertible
and [7]

a−1(n,x)= (c−1∗ b−1
)
τ(n,x). (2.6)

The proof of the existence of (c−1(n,x)) in l1 will be divided into several parts.
(1) There are two positive numbers δ and Δ such that

∞∑

n=2
an(δ) < 1,

∞∑

n=2
an(Δ) < 1. (2.7)

Indeed, as (c(n,x))∈ l1, for arbitrary ε > 0 there is a natural N such that

∞∑

n=N+1

esssup
(0;∞)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣ < ε. (2.8)

Moreover, for any n= 2, . . . ,N , there are two positive numbers δn and Δn such that

esssup
(0;δn)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣≤ an(0)+
ε

N
, esssup

(Δn;∞)

∣∣∣∣
a(n,x)
a(1,x)

∣∣∣∣≤ an(∞) +
ε

N
. (2.9)

Denoting the min{δn} by δ and the max{Δn} by Δ, we obtain the inequalities

∞∑

n=2
an(δ) <

N∑

n=2
an(0)+ 2ε <

∞∑

n=2
an(0)+ 2ε < 1,

∞∑

n=2
an(Δ) <

N∑

n=2
an(∞) + 2ε <

∞∑

n=2
an(∞) + 2ε < 1,

(2.10)

since εmay be taken arbitrarily small.



4 On difference equation with dilation

(2) There is an explicit inversion formula [7]:

c−1(n,x)=
∑

β∈An

(−1)|β|
∑

i(β)

|β|∏

k=1
c
(
ik, iτ1i

τ
2 ··· iτk−1x

)
, (2.11)

where

An =
{
β = (β2,β3, . . . ,βn

)
,βm = 0,1,2, . . .

∣∣
n∏

m=2
mβm = n, n≥ 2

}
, (2.12)

i(β)= the set of permutations of the natural numbers corresponding to βm 	= 0 (the num-
berm is taken βm times),

|β| =
n∑

m=2
βm. (2.13)

Thus we need to show that the sum

∥∥c−1
∥∥≤

∞∑

n=1

∑

β∈An

∑

i(β)

|β|∏

k=1
esssup
(0;∞)

∣∣∣∣∣
a
(
ik, iτ1i

τ
2 ··· iτk−1x

)

a
(
1, iτ1i

τ
2 ··· iτk−1x

)
∣∣∣∣∣ (2.14)

is finite. Without loss of generality, we may assume that τ > 0.
(3) On the interval (Δ;∞), we obtain as in [7]

∞∑

n=1
esssup
(Δ;∞)

∣∣c−1(n,x)
∣∣≤

∞∑

n=1

∑

β∈An

|β|!
β!

aβ(Δ)=
∞∑

s=0

∑

|β|=s

s!
β!
aβ(Δ)

=
∞∑

s=0

( ∞∑

n=2
an(Δ)

)s

=
(
1−

∞∑

n=2
an(Δ)

)−1
<∞.

(2.15)

Here

β!=
n∏

m=2
βm!, aβ(Δ)=

n∏

m=2
a
βm
m (Δ), (2.16)

and the final equality is obtained as the sum of decreasing infinite geometric progression
in view of (2.7).

(4) We investigate the sum (2.14) on the interval (δ;Δ).
Without the loss of generality, we may assume that Δ = δ2Lτ , where L ∈ N. In every

product from (2.14), we will take the factors with condition i1 ··· ik−1 ≤ 2L. At least one
such factor is taken, because the first one depends only on x.

We say that a shift is a boundary shift with respect to the 2L if i1 ··· ik−1 ≤ 2L, but
i1 ··· ik−12 > 2L. We say that a shift is an inner shift if i1 ··· ik−12≤ 2L.
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We first estimate the sum from (2.14) with inner shifts in the product. The number of
multiples is at most L, and similarly to the previous case, we obtain the number

⎛
⎝1−

( ∞∑

n=2
an

)L+1
⎞
⎠×

(
1−

∞∑

n=2
an

)−1
(2.17)

as an upper bound of the sum.
We group the rest of the sum (2.14) according to the common beginning of the prod-

ucts, bounded by the factor with a boundary shift. Taking the common beginning out of
each group, we thus obtain the same sum within the boundary shift (i1 ··· ik)τ .

Indeed, the sum (2.14) consists of various finite products of the norms of the elements
c(n,x) with special type shifts. If we take out a part of the sum with the same beginning,
then it also consists of various finite remainders of products within the considered shift,
which is the same sum as in (2.14).

In view of (i1 ··· ik)τδ ≥ 2Lτδ = Δ, this sum can be bounded by the number

(
1−

∞∑

n=2
an(Δ)

)−1
. (2.18)

As the sum of the common beginnings consists of at most L+ 1 multiples in a sum-
mand, the upper bound is

⎛
⎝1−

( ∞∑

n=2
an

)L+2
⎞
⎠×

(
1−

∞∑

n=2
an

)−1
. (2.19)

Combining all the results thus obtained on the interval (δ;Δ), we have

∞∑

n=1
esssup
(δ;Δ)

∣∣c−1(n,x)
∣∣

≤
(
1−

∞∑

n=2
an

)−1
×
⎡
⎣1−

( ∞∑

n=2
an

)L+1

+

⎛
⎝1−

( ∞∑

n=2
an

)L+2
⎞
⎠
(
1−

∞∑

n=2
an(Δ)

)−1⎤
⎦ <∞.

(2.20)

(5) We finally investigate the norm on each interval (2−(K+1)τδ;2−Kτδ), where K is a
nonnegative integer.

As for the previous interval, we first consider the sum with inner shifts with respect to
2K . By analogy, the number

⎛
⎝1−

( ∞∑

n=2
an(δ)

)K+1
⎞
⎠×

(
1−

∞∑

n=2
an(δ)

)−1
(2.21)

is an upper bound of the sum.
The rest of the sum (2.14), for the same reason, is bounded by the number

1− (∑∞
n=2 an(δ)

)K+2

1−∑∞
n=2 an(δ)

· 1−
(∑∞

n=2 an
)L+2

1−∑∞
n=2 an

· 1
1−∑∞

n=2 an(Δ)
. (2.22)
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Here the first fraction corresponds to the sum of products bounded by the multiples
with boundary shifts with respect to 2K (see (2.7)); the second one corresponds to the
sum with shifts in the interval (2K ;2K+L+1); the last one corresponds to the common sum
within the shift as in the previous case.

Since for arbitrary K ,

1−
( ∞∑

n=2
an(δ)

)K+2

≤ 1, (2.23)

the sum (2.14) is bounded on the interval (0;δ). This completes the proof of the theorem.
�

3. Some applications

Example 3.1. The equation

f (x)− a(x)21/p f (2x)= g(x), x ∈ (0;∞), (3.1)

where g(x)∈ Lp, if

lim
ε→+0

esssup
(0;ε)

∣∣a(x)
∣∣ < 1, lim

E→∞
esssup
(E;∞)

∣∣a(x)
∣∣ < 1 (3.2)

has a unique solution in Lp:

f (x)=
∞∑

n=0

(n−1∏

k=0
a
(
2kx
)
)
2n/pg

(
2nx
)
, (3.3)

in view of Corollary 2.2 and (1.4) (here τ = 1, ν= 1/p).

Example 3.2. We investigate the equation

f (x)− xe1−x21/p f (2x)= g(x), x ∈ (0;∞), (3.4)

when g(x)∈ Lp.

It is easy to see that max | − xe1−x| = 1, that is, the sufficient condition from [7] fails.
But the formula (3.3) allows us to find the solution in Lp as

f (x)= ex
∞∑

n=0
(xe)n

(√
2
)n(n−1)

e−2
nx2n/pg

(
2nx
)
, (3.5)

because the functional sequence (a(n,x))= (1,−xe1−x,0, . . .) is invertible in l1 and

a−1
(
2n,x

)=
n−1∏

k=0
a
(
2,2kx

)=
n−1∏

k=0
2kxe1−2

kx = (xe)n
(√

2
)n(n−1)

e−(2
n−1)x (3.6)

for every nonnegative integer n.



Pavel Plaschinsky 7

Example 3.3. To generalize Example 3.1, the equation

f (x)− a(x)m1/p f (mx)= g(x), x ∈ (0;∞), m= 2,3, . . . , (3.7)

with the same assumptions has a unique solution in Lp:

f (x)=
∞∑

n=0

(n−1∏

k=0
a
(
mkx

)
)
mn/pg

(
mnx

)
. (3.8)

Example 3.4. The equation

f (x)− 2a(x)21/p f (2x) + a(x)a(2x)41/p f (4x)= g(x), x ∈ (0;∞), (3.9)

has a unique solution in Lp for arbitrary g(x) ∈ Lp if the conditions of Example 3.1 are
satisfied.

Indeed, Theorem 2.1 requires

2a(0)+ a2(0) < 1, where a(0)= lim
ε→+0

esssup
(0;ε)

∣∣a(x)
∣∣,

2a(∞) + a2(∞) < 1, where a(∞)= lim
E→∞

esssup
(E;∞)

∣∣a(x)
∣∣.

(3.10)

This implies that a(0) <
√
2− 1 and a(∞) <

√
2− 1.

But the sequence (b(n,x))= (1,−2a(x),0,a(x)a(2x),0, . . .) can be rewritten in the form
of DMC1: b(n,x)= (a∗ a)1(n,x), where (a(n,x))= (1,−a(x),0, . . .).

Applying Theorem 2.1 to the functional sequence (a(n,x)), we obtain the same condi-
tions as in Example 3.1.

The solution of the equation depends on the reciprocal sequence b−1,

b−1
(
2n,x

)= (a−1∗ a−1
)
1

(
2n,x

)

=
∑

k+m=n
a−1
(
2k,x

)
a−1
(
2m,2kx

)=
∑

k+m=n

k−1∏

i=0
a
(
2ix
)m−1∏

j=0
a
(
2 j+kx

)
,

(3.11)

and is of the form

f (x)=
∞∑

n=0
b−1
(
2n,x

)
2n/pg

(
2nx
)
. (3.12)
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