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We investigate the asymptotic behavior of nonautonomous discrete dynamical systems
governed by the system of difference equations (recursive equations): yj(n+ 1) = Fj(n,
y(n)); j = 1, . . . ,k, n = 0,1,2, . . . , where y(n) = (y1(n), . . . , yk(n)) ∈ Rk, y(0) = x, and
Fj(n,·) is a mean of k (≥ 2) positive real numbers, that is, a real-valued function satis-
fying the internality property min(x)≤ Fj(n,x)≤ max(x).
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1. Introduction

In this research, we are concerned with the long-term behavior of discrete dynamical
systems driven by means, namely,

yj(n+1)= Fj
(
n,y(n)

)
; j = 1, . . . ,k, n= 0,1,2, . . . , (1.1)

where y(n) = (y1(n), . . . , yk(n)), y(0) = x, and for each j, Fj(n,·) is a mean of k (≥ 2)
positive real numbers, that is, a real-valued function satisfying the internality property

min(x)≤ Fj(n,x)≤max(x). (1.2)

AmeanM is strict if

min(x) <max(x)=⇒min(x) <M(x) <max(x), (1.3)

and it is said to be isotone if the functionsM(·,x2, . . . ,xk), . . . ,M(x1, . . . ,xk−1,·) are nonde-
creasing.

There is a sizable number of means in the literature. For example
(i) the (weighted) arithmetic means A(x)=∑k

j=1wjxj , wj ≥ 0,
∑k

j=1wj = 1;

(ii) the (weighted) geometric means G(x)=∏k
j=1 x

vj
j , vj ≥ 0,

∑k
j=1 vj = 1;
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(iii) the Holder means Hp(x)= [
∑k

j=1wjx
p
j ]

1/p, p > 0, wj ≥ 0,
∑k

j=1wj = 1;

(iv) the Lehmer means Lp(x)=
∑k

j=1 x
p
j /
∑k

j=1 x
p−1
j , p > 1,

and so forth. For more information on means and related results, we refer the reader to
[2–4] and the references cited therein.

The dynamical system described in (1.1) is, also, known in literature as compounding
[3] or iteration [9] of means. Markov chains, which are basically compounding of arith-
metic means, illustrate, in a clear way, the importance of such problem in modeling and
applications. Also, Gauss arithmetic-geometric mean, one of the jewels of the classical
analysis, connects iteration of means to special functions and integrability of difference
equations.

Most of the literature related to compounding of means deal with time-invariant (au-
tonomous) dynamical systems. It is our objective in this research to extend these results
to time-variant (nonautonomous) dynamical systems driven by means. The presence of
time accounts for environmental fluctuations, seasonal change, and so forth [5]. Our
main results are established in Section 2. We present some applications of these results in
Section 3, and conclude in Section 4 by formulating a conjecture about the limit sets of
the dynamical systems under study.

2. Main results

In this section, we state and prove our main results. The following lemma is important in
its own right, and will play a key role in the sequel.

Lemma 2.1. Let �= {y(n)}∞n=0 be a solution of (1.1) with y(0)= x. Then, there exist real
numbers L and U with L ≤ U such that limit set w(x) is a subset of the intersection of the
levels setsmin(x̃)= L andmax(x̃)=U . In particular, if k = 2, then � can have at most two
limit points.

Proof. First, let Ln =min(y(n)) and Un =max(y(n)). Then for all n≥ 0,

Ln+1 =min
(
y(n+1)

)=min
(
F1
(
n,y(n)

)
, . . . ,Fk

(
n,y(n)

))

≥min
(
Ln, . . . ,Ln

)= Ln,

Un+1 =max
(
y(n+1)

)=max
(
F1
(
n,y(n)

)
, . . . ,Fk

(
n,y(n)

))

≤max
(
Un, . . . ,Un

)=Un.

(2.1)

Therefore, by monotonic convergence theorem, the sequences {Ln}∞n=0 and {Un}∞n=0 con-
verge say to L and U , respectively.

Now, if c is a limit point and {y(ni)}∞i=0 is a subsequence that converges to c, then by
the continuity of the min and the max functions,

L= lim
i→∞

min
(
y
(
ni
))=min(c), U = lim

i→∞
max

(
y
(
ni
))=max(c). (2.2)

The last part of the assertion follows from the fact that the level curves min(x1,x2) = L
and max(x1,x2)=U can intersect in at most two points. This completes the proof. �
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Theorem 2.2. Suppose that for each j, Fj(n,·) is continuous and converges to the continu-
ous meanMj(·). If at least k− 1 of the meansMj ’s are strict, then every solution {y(n)}∞n=0
converges to μ(x)e, where e= (1, . . . ,1). Furthermore, μ is a continuous mean.

Proof. First, recall the definition of L and U from the proof of Lemma 2.1, and observe
that byWeierstrass boundedness theorem, the convergence of Fj(n,·) toMj(·) is uniform
on any compact subset of Rk, in particular on [L0,U0]k. Therefore (see Theorem 2 and
its proof in [8]), if {y(ni)}∞i=0 is a subsequence that converges to a limit point c, then
{Fj(ni,y(ni))}∞i=0 convergesMj(c).

Now, since

min(c)= L=min
(
M1(c), . . . ,Mk(c)

)
,

max(c)=U =max
(
M1(c), . . . ,Mk(c)

)
,

(2.3)

there exist i1, i2, j1, and j2 such that ci1 =Mj1 (c) and ci2 =Mj1 (c). Yet, either Mj1 or
Mj2 is strict, so c1 = ··· = ck. Hence, {y(n)}∞n=0 converges to μ(x)e. Furthermore, μ(x) is
squeezed between two means, so it is a mean. On the other hand, by Dini’s theorem [6,
page 350], Un(x) converges uniformly to μ(x). Since, Un is continuous for each n, μ is
continuous. This completes the proof. �

Remark 2.3. It is worth mentioning that
(i) in the literature, μ(x), whenever it exists, is denoted by

⊗k
j=1Fj , particularly, when

Fj is time invariant;
(ii) also, Theorem 2.2 can be viewed as a generalization of [8, Theorem 8.8].

Our next result is concerned with isotone means. If M(x1, . . . ,xk) is an isotone mean
of k real numbers, L=min(x1, . . . ,xk), and U =max(x1, . . . ,xk), then M can be bounded
by two means φM(L,U) and ψM(L,U) obtained from M by replacing those xj ’s with L <
xj < U by L and U , respectively. For example, if k = 3 and x1 ≤ x2 ≤ x3, then

φA(L,U)= 2L+U

3
≤ A

(
x1,x2,x3

)= x1 + x2 + x3
3

≤ ψA(L,U)= L+2U
3

, (2.4)

and so on. Now, we state and prove our second main result in this section.

Theorem 2.4. Suppose that Fj ’s are isotone means, and let φj(n,·) and ψj(n,·) be the
associated means with Fj as defined above. If there exists a continuous strict mean φ that
is dominated by φj(n,·) for all j, then every solution {y(n)}∞n=0 converges to μ(x)e, where
μ is a continuous mean. A similar result holds whenever ψj(n,·) are dominated by a strict
continuous mean ψ.

Proof. Let Ln and Un be defined as in the proof of Theorem 2.2. Then

Ln+1 =min
(
y(n+1)

)=min
(
F1
(
n,y(n)

)
, . . . ,Fk

(
n,y(n)

))

= Fjn

(
n,y(n)

)≥ φjn

(
Ln,Un

)≥ φ
(
Ln,Un

)≥ Ln, ∀n.
(2.5)
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Since Ln→ L, Un→U , and φ is continuous, we have φ(L,U)= L. But φ is strict, therefore
L=U . Continuity, once again, is a consequence of Dini’s theorem.

The proof in the other case is similar and will be omitted. �

Our last result in this section is concerned with the case when each Fj is periodic in
the first argument, that is, there exists a positive integer p such that

Fj(n+ p,x)= Fj(n,x), ∀ j, and all x. (2.6)

To simplify notation, we will use

Fn(x)=
(
F1(n,x), . . . ,Fk(n,x)

)
,

G(x)= Fp−1 ◦ ··· ◦F0(x).
(2.7)

Theorem 2.5. Suppose that there exists a positive integer p such that Fj(n+ p,x)= Fj(n,x)
for all j, and all x. If the components ofG are continuous and at least k− 1 of them are strict,
or if the components of G are isotone and either φ or ψ (as defined in Theorem 2.4) is con-
tinuous and strict, then every solution {y(n)}∞n=0 converges to μ(x)e, where μ is a continuous
mean. Furthermore, μ(x) is the unique mean that satisfies the functional equation

μ
(
G(x)

)= μ(x). (2.8)

Proof. First, since

y(np)= y
(
(n− 1)p+ p

)= Fp−1 ◦ ··· ◦F0
(
y
(
(n− 1)p

))=G
(
y
(
(n− 1)p

))
, (2.9)

by applying Theorems 2.2 and 2.4 to the subsequence {y(np)}∞n=0, in the two situations,
respectively, we obtain U = L, hence the convergence.

Now,

μ(x)e= lim
n→∞y

(
(n+1)p

)= lim
n→∞G

n+1(x)= lim
n→∞G

n
(
G(x)

)= μ
(
G(x)

)
e. (2.10)

This completes the proof. �

Remark 2.6. The first part of Theorem 2.5 can, also, be viewed as a generalization of [3,
Theorem 8.8], and the last part is a generalization of the invariance principle in [3, page
269].

3. Applications

To illustrate the applicability of Theorems 2.2, 2.4, and 2.5, we present the following ex-
ample.

Example 3.1. Let y(n) = (y1(n), . . . , yk(n)) such that y(0) = (x1, . . . ,xk) ∈ Rk
+, and Fj(n,

y(n))=Hpj (n,O(y(n))), where O is the sorting operator that arranges y(n) in ascending
order. Then, we have the iterative process

yj(n+1)=Hpj

(
n,O

(
y(n)

))
, j = 1, . . . ,k. (3.1)
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Now, one may think of many possible scenarios where Theorems 2.2, 2.4, and 2.5 can
be applied. In particular, ifHpj (n,x)= (

∑k
i=1wij(n)x

pj

i )1/p j , and c = infnmini, j wi j(n) > 0,
then with

Z = {1, . . . ,k},
Ln =min

i∈Z
yi(n)= ykn(n) for some kn ∈ Z,

Un =max
i∈Z

yi(n)= y�n(n) for some �n ∈ Z,

In =
{
i∈ Z : yi(n)= Ln

}
,

Jn =
{
i∈ Z : yi(n)=Un

}
,

Kn = Z \ (In∪ Jn
)
,

(3.2)

we have

L
pkn+1
n+1 = [ykn+1 (n+1)

]pkn+1 =
k∑

j=1
wj,kn+1 (n)

[
yj(n)

]pkn+1

=
(
∑

j∈In
wj,kn+1 (n)

)

L
pkn+1
n +

(
∑

j∈Jn
wj,kn+1 (n)

)

U
pkn+1
n

+

(
∑

j∈Kn

wj,kn+1 (n)
[
yj(n)

]pkn+1
)

≥
(

∑

j∈In∪Kn

wj,kn+1 (n)

)

L
pkn+1
n +

(
∑

j∈Jn
wj,kn+1 (n)

)

U
pkn+1
n

= L
pkn+1
n +

(
∑

j∈Jn
wj,kn+1 (n)

)
(
U

pkn+1
n −L

pkn+1
n

)≥ L
pkn+1
n + c

(
U

pkn+1
n −L

pkn+1
n

)

= (1− c)L
pkn+1
n + cU

pkn+1
n ,

(3.3)

and so

Ln+1 ≥
[
(1− c)L

pkn+1
n + cU

pkn+1
n

]1/pkn+1 . (3.4)

Thus, if pj = p for all j, then

Ln+1 ≥
[
(1− c)L

p
n + cU

p
n
]1/p

, (3.5)

and so Theorem 2.4 is applicable. Furthermore, ifwij ’s are independent of n,W = [wij]∈
Rk×k

+ , xp = (x
p
1 , . . . ,x

p
k ), and z(n)= yp(n), then

z(n+1)=Wz(n), (3.6)
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and so

μ̃
(
Wz(0)

)= μ̃
(
z(0)

)
, μ̃= μp. (3.7)

Substituting

μ̃(t)=
k∑

i=1
λiti, λi ≥ 0,

k∑

i=1
λi = 1, (3.8)

we reach the conclusion that λ= (λ1, . . . ,λk)T satisfies

WTλ= λ, (3.9)

that is, λ is a normalized nonnegative eigenvector associated with 1, if there is any. But
the existence of such an eigenvector is assured by the celebrated Perron’s theorem [7, page
503]. Hence,

μ(x)=
[ k∑

i=1
λix̃

p
i

]1/p

, x̃ =O(x). (3.10)

Remark 3.2. It is worth mentioning that it is possible to formulate a weaker condition on
the weightswij ’s that ensures convergence. Also, by taking p = 1 and 0+, we obtain results
about compounding arithmetic means and geometric means, respectively. Indeed, in the
later case, by L’Hôpital’s rule,

μ(x)= lim
p→0+

exp

(
ln
(∑k

i=1 λix̃
p
i

)

p

)

= lim
p→0+

exp

(∑k
i=1 λix̃

p
i ln

(
x̃i
)

∑k
i=1 λix̃

p
i

)

= exp

( k∑

i=1
λi ln

(
x̃i
)
)

=
k∏

i=1
x̃λii .

(3.11)

4. Conclusion

In this research, we investigated the convergence of solutions of nonautonomous dynam-
ical systems driven by means. In particular, when all the components converge to a com-
mon limit. In light of Lemma 2.1 and the results established in [1], we formulate the
following conjecture.

Conjecture 4.1. If {y(n)}∞n=0 with y(0)= x a solution of (1.1), then the limit set w(x)=
{z | limi→∞ y(ni)= z} is finite.
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