
OSCILLATION OF A LOGISTIC DIFFERENCE
EQUATION WITH SEVERAL DELAYS

L. BEREZANSKY AND E. BRAVERMAN

Received 13 January 2005; Revised 19 July 2005; Accepted 21 July 2005

For a delay difference equation N(n + 1)− N(n) = N(n)
∑m

k=1 ak(n)(1− N(gk(n))/K),
ak(n) ≥ 0, gk(n) ≤ n, K > 0, a connection between oscillation properties of this equa-
tion and the corresponding linear equations is established. Explicit nonoscillation and
oscillation conditions are presented. Positiveness of solutions is discussed.
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1. Introduction

Difference equations provide an important framework for analysis of dynamical phe-
nomena in biology, ecology, economics, and so forth. For example, in population dy-
namics discrete systems adequately describe organisms for which births occur in regular,
usually short, breeding seasons.

Recently the problem of oscillation and nonoscillation of solutions for nonlinear delay
difference equations has been intensively studied; see monographs [1, 2, 7–9] and refer-
ences therein for more details.

In this paper we study the following nonlinear difference equation

N(n+1)−N(n)=N(n)
m∑

k=1
ak(n)

(

1− N
(
gk(n)

)

K

)

, ak(n)≥ 0, gk(n)≤ n, K > 0,

(1.1)

where the number gk(n) is an integer (positive or negative) for every n and k. Equation
(1.1) describes populations that die out completely at each generation and have birth
rates that saturate for large population sizes N = K . Equation (1.1) is a discrete analogue
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of the well-known logistic differential equation with several delays

N ′(t)=N(t)
m∑

k=1
ak(t)

(

1− N
(
gk(t)

)

K

)

. (1.2)

Oscillation properties of (1.2) were considered in [3, 4, 12].
In [9] oscillation properties of another discrete analogue of autonomous equation

(1.2)

N(n+1)= bN(n)
1+
∑m

k=1 akN
(
n− σk

) (1.3)

were obtained.
In [14] the oscillation properties of the following equation were considered

N(n+1)=N(n)exp

{ m∑

k=1
ak

(

1− N
(
n− σk

)

K

)}

. (1.4)

This equation can be treated as another discrete analogue of autonomous equation (1.2).
Note that in the nondelay case (gk(n)= n, σk = 0) all solutions of (1.1), (1.3) and (1.4)

are monotone, similar to the nondelay logistic equations (see, e.g., [6, 10]). However,
unlike (1.2), solutions of (1.1) can become negative.

Oscillation of (1.1) with a single delay (m= 1) was investigated in [13], however con-
ditions for the positiveness of solutions were not discussed. To the best of our knowledge
there are no oscillation results for (1.1).

The paper is organized as follows. Section 2 contains some preliminaries and auxiliary
results. In Section 3 we reduce oscillation (nonoscillation) of a nonlinear equation which
is obtained from (1.1) by the substitution x(n)=N(n)/K − 1 to the oscillation (nonoscil-
lation) problem for some linear equation. After applying these results and the developed
oscillation theory for linear equations, in Section 4 sufficient conditions for oscillation
(nonoscillation) of solutions of (1.1) about equilibrium K are presented. These condi-
tions are sharp for constant parameters and the only delay. The results on the existence
of nonoscillatory solutions provide that there exists a positive solution of (1.1). How-
ever oscillation conditions do not distinguish between eventually oscillatory solutions
and eventually negative solutions (the population extincts at a certain step). Section 5
contains some discussion on the existence of positive solutions and relevant numerical
simulations. As expected, if there is no global attractivity but the solution is positive, then
we get asymptotically periodic oscillating solutions. It is to be noted that in the nondelay
case (σk = 0) with a variable periodic equilibrium (K = K(n)) the existence of periodic
solutions for (1.4) was studied in [17].

2. Preliminaries

In addition to (1.1) we consider the following scalar difference equation

x(n+1)− x(n)=−
m∑

k=1
ak(n)

(
1+ x(n)

)
x
(
gk(n)

)
, (2.1)
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with initial conditions

x(n)= ϕ(n), n≤ 0. (2.2)

We assume that the following condition is satisfied
(a1) ak(n)≥ 0, gk(n)≤ n, limn→∞ gk(n)=∞.

Equation (2.1) is obtained if we substitute in (1.1) N(n)= K[x(n) + 1].
Consider also a linear difference equation

y(n+1)− y(n)=−
l∑

k=1
bk(n)y

(
hk(n)

)
, (2.3)

and the corresponding inequalities:

y(n+1)− y(n)≤−
l∑

k=1
bk(n)y

(
hk(n)

)
, (2.4)

y(n+1)− y(n)≥−
l∑

k=1
bk(n)y

(
hk(n)

)
, (2.5)

where for parameters of (2.3) conditions (a1) hold.

Definition 2.1. The solution x(n) or y(n) of (2.1) or (2.3), respectively, is called nonoscil-
latory (about zero) if it is eventually positive or eventually negative.

If such solution does not exist we say that all solutions of this equation are oscillatory
(about zero).

Lemma 2.2 [15]. Equation (2.3) has a nonoscillatory solution if and only if inequality (2.4)
has an eventually positive solution and inequality (2.5) has an eventually negative solution.

Suppose ck(n)≤ bk(n) and (2.3) has a nonoscillatory solution. Then the equation

y(n+1)− y(n)=−
l∑

k=1
ck(n)y

(
hk(n)

)
(2.6)

also has a nonoscillatory solution.

Lemma 2.3 [16]. (1) Suppose

liminf
n→∞

l∑

k=1
bk(n) > 0, liminf

n→∞

l∑

k=1
bk(n)

(
n−hk(n) + 1

)n−hk(n)+1
(
n−hk(n)

)n−hk(n) > 1. (2.7)

Then all solutions of (2.3) are oscillatory.
(2) Suppose there exists λ∈ (0,1), such that

limsup
n→∞

l∑

k=1
bk(n)

[
λ(1− λ)n−hk(n)

]−1
< 1. (2.8)

Then (2.3) has a nonoscillatory solution.



4 Oscillation of a logistic equation

3. Oscillation and nonoscillation conditions

Lemma 3.1. Suppose

∞∑

n=1

m∑

k=1
ak(n)=∞. (3.1)

If x(n) is a nonoscillatory solution of (2.1), such that 1+ x(n) > 0, then limn→∞ x(n)= 0.

Proof. Without loss of generality we can assume that x(n) > 0, n > 0, ϕ(n)≥ 0.
Equality (2.1) implies that 0 < x(n+ 1) ≤ x(n). Then there exists a nonnegative limit

l = limn→∞ x(n). Suppose l > 0. Equality (2.1) also implies

x(n+1)− x(0)=−
n∑

i=1

m∑

k=1
ak(i)

(
1+ x(i)

)
x
(
gk(i)

)
. (3.2)

The left-hand side of (3.2) tends to l− x(0). Equality (3.1) yields that the right-hand side
of (3.2) tends to −∞, which is a contradiction. Then l = 0. The lemma is proven. �

Theorem 3.2. Suppose (3.1) holds and for some ε > 0 all solutions of the following linear
equation

y(n+1)− y(n)=−
m∑

k=1
ak(n)(1− ε)y

(
gk(n)

)
(3.3)

are oscillatory. Then all solutions of (2.1) satisfying x(n) >−1 are oscillatory.
Proof. Suppose x(n) is an eventually positive solution of (2.1). Without loss of generality
we can assume x(n) > 0, n≥ 0. From equality (2.1) we have

x(n+1)− x(n)≤−
m∑

k=1
ak(n)x

(
gk(n)

)
. (3.4)

It means that inequality (3.4) has an eventually positive solution. Lemma 2.2 implies that
(3.3) has a nonoscillatory solution, which contradicts the hypothesis of the theorem.

Suppose now x(n) is an eventually negative solution of (2.1).Without loss of generality
we can assume x(n) < 0, n ≥ 0. Lemma 3.1 implies that for some N > 0, −ε < x(n) < 0,
n≥N . Hence from (2.1) we have

x(n+1)− x(n)≥−
m∑

k=1
ak(n)(1− ε)x

(
gk(n)

)
, (3.5)

for n ≥ N . Then difference inequality (3.5) has an eventually negative solution.
Lemma 2.2 implies that difference equation (3.3) has a nonoscillatory solution. This con-
tradiction proves the theorem. �
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Corollary 3.3. Suppose (3.1) holds and

liminf
n→∞

m∑

k=1
ak(n) > 0, liminf

n→∞

m∑

k=1
ak(n)

(
n− gk(n) + 1

)n−gk(n)+1
(
n− gk(n)

)n−gk(n) > 1. (3.6)

Then all solutions of (2.1) satisfying x(n) >−1 are oscillatory.
Proof. Inequality (3.6) implies that for some ε > 0 we have

liminf
n→∞

m∑

k=1
ak(n)(1− ε)

(
n− gk(n) + 1

)n−gk(n)+1
(
n− gk(n)

)n−gk(n) > 1. (3.7)

By Lemma 2.3 all solutions of (3.3) are oscillatory. The reference to Theorem 3.2 com-
pletes the proof. �

Theorem 3.4. Suppose for some ε > 0 the following linear equation

y(n+1)− y(n)=−
m∑

k=1
ak(n)(1+ ε)y

(
gk(n)

)
(3.8)

has a nonoscillatory solution. Then (2.1) also has a nonoscillatory solution.

Proof. Suppose y(n) is an eventually positive solution of (3.8). Without loss of generality
we can assume y(n) > 0, n≥ 0. Denote

u0(n)= y(n)− y(n+1)
y(n)

, n≥ 0, u0(n)= 0, n < 0. (3.9)

Then 0≤ u0(n) < 1 and

y(n)= y(0)
n−1∏

k=0

(
1−u0(k)

)
, n > 0. (3.10)

After substitution (3.10) into (3.8) we get an equality which justifies the following in-
equality

u0(n)≥
m∑

k=1
ak(n)(1+ ε)

n−1∏

i=gk(n)

(
1−u0(i)

)−1
. (3.11)

Consider now for every n two sequences {ul(n)} and {vl(n)}, l = 0,1,2, . . . ,

ul+1(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1− vl(i)

)
] n−1∏

i=gk(n)

(
1−ul(i)

)−1
, (3.12)

vl+1(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1−ul(i)

)
] n−1∏

i=gk(n)

(
1− vl(i)

)−1
, (3.13)

where u0(n) is denoted by (3.9) and v0(n)≡ 0, ul(n)= vl(n)= 0, n < 0.
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Condition (3.11) implies

u1(n)=
m∑

k=1
ak(n)(1+ ε)

n−1∏

i=gk(n)

(
1−u0(i)

)−1 ≤ u0(n). (3.14)

We have

v1(n)=
m∑

k=1
ak(n)

(

1+ ε
n−1∏

i=0

(
1−u0(i)

)
)

. (3.15)

Consequently 0= v0(n)≤ v1(n)≤
∑m

k=1 ak(n)(1+ ε)≤ u1(n)≤ u0(n) < 1.
Then by induction

0≤ vl(n)≤ vl+1(n)≤ ul+1(n)≤ ul(n) < 1. (3.16)

Hence there exist sequences

u(n)= lim
l→∞

ul(n), v(n)= lim
l→∞

vl(n), (3.17)

which implies

0≤ vl(n)≤ ul(n)≤ u0(n) < 1. (3.18)

Hence 0≤ v(n)≤ u(n)≤ u0(n) < 1, u(n)= v(n)= 0, n < 0.
Equalities (3.12)-(3.13) imply

u(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1− v(i)

)
] n−1∏

i=gk(n)

(
1−u(i)

)−1
, (3.19)

v(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1−u(i)

)
] n−1∏

i=gk(n)

(
1− v(i)

)−1
. (3.20)

Consider now a nonlinear operator

(Tw)(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1−w(i)

)
] n∏

i=gk(n)

(
1−w(i)

)−1
,

0≤ n≤N , w(n)= 0, n < 0

(3.21)

in the finite dimensional space l∞(N) with the norm

‖w‖l∞(N) = max
0≤n≤N

∣
∣w(n)

∣
∣. (3.22)

This operator is compact and for every w(n), such that 0≤ v(n)≤ w(n)≤ u(n), we have
v(n) ≤ (Tw)(n) ≤ u(n). Hence there exists a nonnegative solution w0(n), 0 ≤ n ≤ N , of
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the equation w = Tw. Then

w0(n)=
m∑

k=1
ak(n)

[

1+ ε
n−1∏

i=0

(
1−w0(i)

)
] n−1∏

i=gk(n)

(
1−w0(i)

)−1
,

0≤ n≤N , w0(n)= 0, n≤ 0.

(3.23)

Therefore the function

x(n)=
n−1∏

i=0

(
1−w0(i)

)
, 0≤ n≤N , x(n)= 0, n < 0, x(0)= 1, (3.24)

is a positive solution of (2.1) for 0 ≤ n ≤ N . Since N is an arbitrary integer, then this
completes the proof. �

Corollary 3.5. Suppose there exists λ∈ (0,1), such that

limsup
n→∞

m∑

k=1
ak(n)

[
λ(1− λ)n−gk(n)

]−1
< 1. (3.25)

Then (2.1) has a nonoscillatory solution.

Proof is based on Lemma 2.3 and Theorem 3.4.

4. Main oscillation results

Consider now logistic difference equation (1.1), where K > 0 and for the functions ak(n),
gk(n) conditions (a1) hold.

Motivated by applications, in this section we consider only solutions N(n) of (1.1) for
which N(n) > 0, n≥ 0.

We study the oscillation of the solutions of (1.1) about the equilibrium point K .

Definition 4.1. The solution N(n) of (1.1) is called nonoscillatory about K if N(n)−K is
eventually positive or eventually negative.

If such solution does not exist we say that all solutions of this equation are oscillatory
about K .

Suppose N(n) is a positive solution of (1.1) and define x(n) = (N(n)/K)− 1. Then
x(n) is a solution of (2.1) such that 1+ x(n) > 0. Hence, oscillation (or nonoscillation) of
N(n) about K is equivalent to oscillation (or nonoscillation) of x(n) about zero.

By applying Theorems 3.2, 3.4 and Corollaries 3.3, 3.5 we obtain the following results
for (1.1).

Theorem 4.2. Suppose (3.1) holds. If N(n) is a nonoscillatory about K positive solution of
(1.1) then limn→∞N(n)= K.

Theorem 4.3. Suppose (3.1) holds and for some ε > 0 all solutions of linear equation (3.3)
are oscillatory. Then all positive solutions of (1.1) are oscillatory about K .
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Corollary 4.4. Suppose (3.1) and (3.6) hold. Then all positive solutions of (1.1) are oscil-
latory about K .

Theorem 4.5. Suppose for some ε > 0 linear equation (3.8) has a nonoscillatory solution.
Then (1.1) also has a positive nonoscillatory about K solution.

Corollary 4.6. Suppose there exists λ ∈ (0,1) such that (3.25) holds. Then (1.1) has a
positive nonoscillatory about K solution.

5. Existence of positive solutions

As it is known [3], for positive initial conditions the solution of delay logistic differential
equation (1.2) is positive. The delay logistic difference equations (1.3)-(1.4) enjoy the
same property. However for difference equations (1.1) this is not true.

Example 5.1. Consider the following equation

N(n+1)−N(n)=N(n)
(
1−N(n− 1)

)
. (5.1)

If N(−1)= 3, N(0)= 1, then N(n) < 0, n > 0.
Thus it is interesting to find such constraints on initial conditions and parameters of

the equation for which the solution of (1.1) will be positive.
Everywhere above we considered only positive solutions of (1.1). In this section we

discuss sufficient conditions for positiveness of solutions and present some results of nu-
merical simulations. To this end let us consider for any number b an auxiliary linear
equation

y(n+1)− y(n)=−
m∑

k=1
ak(n)(1+ b)y

(
gk(n)

)
(5.2)

with the initial conditions

y(n)= ϕ(n), n≤ 0. (5.3)

Theorem 5.2. Suppose (a1) holds, there exists a constant A, 0 < A < 1, such that as far as
for the initial condition (5.3) inequality |ϕ(n)| < A holds and |b| < A, then a solution of the
linear equation (5.2) satisfies

∣
∣y(n)

∣
∣ < A. (5.4)

Then all solutions of (1.1), with initial conditions
∣
∣N(n)−K

∣
∣ < AK , n≤ 0, (5.5)

are positive for any n > 0. Moreover, the solution of (1.1) satisfies (5.5) for any n.

Proof. After the transformation x(n) = N(n)/K − 1 (1.1) turns into (2.1), and the so-
lution of (1.1) is positive if and only if in (2.1) x(n) > −1 for any n. Under the condi-
tions of the theorem if initial values x(n) (n ≤ 0) belong to the interval (−A,A) then
−A < x(n) < A for any n. Since A < 1, then x(n) >−1, therefore N(n) is positive. �
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Corollary 5.3. Suppose (a1) is satisfied and for some A, 0 < A < 1,

λ= (1+A)sup
n

m∑

k=1
ak(n)

(
n− gk(n)

)
< 1. (5.6)

Then any solution of (1.1) satisfying initial condition (5.5) is positive.

Proof. Suppose that for (5.2) with |b| < A for initial condition (5.3) we have |ϕ(n)| ≤ A.
[5, Theorem 2.2] and condition (5.6) imply

∣
∣y(n)

∣
∣≤max

n≤0
∣
∣ϕ(n)

∣
∣≤ A (5.7)

for the solution of (5.2). Hence all conditions of Theorem 5.2 are satisfied. Therefore the
solution of (1.1) is positive. �

Finally, let us consider the high order difference equation with a constant delay

N(n+1)−N(n)= aN(n)
[
1−N(n−h)

]
, (5.8)

where h is a positive integer. In accordance with Corollary 3.5 and previous results (5.8)
has a nonoscillatory about K = 1 solution if

a <
hh

(h+1)h+1
. (5.9)

The condition of asymptotic stability of the linear equation

y(n+1)− y(n)=−ay(n−h) (5.10)

was obtained in [11]: if

0 < a < 2cos
hπ

2h+1
, (5.11)

then (5.10) is asymptotically stable.
When reviewing [13] Ladas made the following conjecture (see, e.g., MathSciNet for

the review of [13]). Under the same condition (5.11) (5.8) will have positive solutions for
|N(n)− 1| < ε, n≤ 0, where ε is small enough. However this condition is far from being
necessary.

It is to be noted that in numerical simulations we could observe that under condition
(5.11) solutions are positive for any “reasonable” initial conditions (by reasonable initial
conditions we mean initial conditions for which N(n) > 0, −h ≤ n ≤ h, i.e., there is no
immediate extinction at the initial segment with the length of delay h). There are also
values of parameter a for which (5.10) is not asymptotically stable, however the solution
of (1.1) does not extinct. In Figure 5.1 we also demonstrate the numerical bounds which
where found for the existence of positive solutions (for “reasonable” initial conditions).
Above the curve “positive solutions” in Figure 5.1, for arbitrary small initial conditions
(not all zeros) the solution eventually becomes less than zero. The numerically found
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1.4
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1

0.8

0.6

0.4

0.2

0

a

1 2 3 4 5 6 7 8 9 10

h

Nonoscillation
Asymptotic stability
Positive solutions

Figure 5.1. Bounds for oscillation, asymptotic stability and existence of positive solutions for (5.8).
The first two estimates are found by formulas (5.9), (5.11), while the latter curve is established nu-
merically.

3

2.5

2

1.5

1

0.5

0

N

0 50 100 150 200 250

n

a = 0.38
a = 0.42

a = 0.5
Equilibrium

Figure 5.2. The solutions of (5.8) for the initial conditions with the delay h= 4 and a= 0.38, a= 0.42,
a= 0.5, respectively. The solution is not asymptotically stable. Solutions are asymptotically periodic,
with the amplitude growing with the growth of a. Here N(n)= 2, n≤ 0.
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constraints are less restrictive compared to oscillation bounds and asymptotic stability
conditions.

It is expected that in the range of parameter a between extinction and asymptotic
stability we get asymptotically periodic solutions. Figure 5.2 illustrates this fact.
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