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We study a discrete time model of the growth of two species of plankton with compet-
itive and allelopathic effects on each other N1(k + 1) = N1(k)exp{r1(k)− a11(k)N1(k)−
a12(k)N2(k) − b1(k)N1(k)N2(k)}, N2(k + 1) = N2(k)exp{r2(k) − a21(k)N1(k) − a22(k)
N2(k)− b2(k)N1(k)N2(k)}. A set of sufficient conditions is obtained for the existence of
multiple positive periodic solutions for this model. The approach is based on Mawhin’s
continuation theorem of coincidence degree theory as well as some a priori estimates.
Some new results are obtained.
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1. Introduction

Many researchers have noted that the increased population of one species of phytoplank-
ton might affect the growth of one or several other species by the production of allelo-
pathic toxins or stimulators, influencing bloom, pulses, and seasonal succession. The
study of allelopathic interactions in the phytoplanktonic world has become an impor-
tant subject in aquatic ecology. For detailed studies, we refer to [1, 2, 7, 9–11, 13] and
references cited therein.

Maynard-Smith [9] and Chattopadhyay [2] proposed the following two species Lotka-
Volterra competition system, which describes the changes of size and density of phyto-
plankton:

dN1

dt
=N1

[
r1− a11N1(t)− a12N2(t)− b1N1(t)N2(t)

]
,

dN2

dt
=N1

[
r2− a21N1(t)− a22N2(t)− b2N1(t)N2(t)

]
,

(1.1)

where b1 and b2 are the rates of toxic inhibition of the first species by the second and vice
versa, respectively.
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Naturally, more realistic models require the inclusion of the periodic changing of envi-
ronment (e.g., seasonal effects of weather, food supplies, etc). For such systems, as pointed
out by Freedman andWu [5] and Kuang [8], it would be of interest to study the existence
of periodic solutions. This motivates us to modify system (1.1) to the form

dN1

dt
=N1(t)

[
r1(t)− a11(t)N1(t)− a12(t)N2(t)− b1(t)N1(t)N2(t)

]
,

dN2

dt
=N1(t)

[
r2(t)− a21(t)N1(t)− a22(t)N2(t)− b2(t)N1(t)N2(t)

]
,

(1.2)

where ri(t), ai j(t) > 0, bi(t) > 0 (i, j = 1,2) are continuous ω-periodic functions.
The main purpose of this paper is to propose a discrete analogue of system (1.2) and

to obtain sufficient conditions for the existence of multiple positive periodic solutions by
employing the coincidence degree theory. To our knowledge, no work has been done for
the existence of multiple positive periodic solutions for this model using this way.

The paper is organized as follows. In Section 2, we propose a discrete analogue of sys-
tem (1.2). In Section 3, motivated by the recent work of Fan and Wang [4] and Chen [3],
we study the existence of multiple positive periodic solutions of the difference equations
derived in Section 2.

2. Discrete analogue of system (1.2)

Assume that the average growth rates in (1.2) change at equally spaced time intervals and
estimates of the population size are made at equally spaced time intervals, then we can
incorporate this aspect in (1.2) and obtain the following system:

dN1(t)
dt

1
N1(t)

= r1
(
[t]
)− a11

(
[t]
)
N1
(
[t]
)− a12

(
[t]
)
N2
(
[t]
)− b1

(
[t]
)
N1
(
[t]
)
N2
(
[t]
)
,

dN2(t)
dt

1
N2(t)

= r2
(
[t]
)− a21

(
[t]
)
N1
(
[t]
)− a22

(
[t]
)
N2
(
[t]
)− b2

(
[t]
)
N1
(
[t]
)
N2
(
[t]
)
,

(2.1)

where t �= 0,1,2, . . . , [t] denotes the integer part of t, t ∈ (0,+∞).
By a solution of (2.1), we mean a function x = (x1,x2)T , which is defined for t ∈

[0,+∞), and possesses the following properties.
(1) x is continuous on [0,+∞).
(2) The derivatives dx1(t)/dt, dx2(t)/dt exist at each point t ∈ [0,+∞) with the pos-

sible exception of the points t ∈ {0,1,2, . . .}, where left-sided derivatives exist.
The equations in (2.1) are satisfied on each interval [k,k+1) with k = 0,1,2, . . . .

For k ≤ t < k+1, k = 0,1,2, . . . , integrating (2.1) from k to t, we obtain

N1(t)=N1(k)exp
{[
r1(k)− a11(k)N1(k)− a12(k)N2(k)− b1(k)N1(k)N2(k)

]
(t− k)

}
,

N2(t)=N2(k)exp
{[
r2(k)− a21(k)N1(k)− a22(k)N2(k)− b2(k)N1(k)N2(k)

]
(t− k)

}
.

(2.2)
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Letting t→ k+1, we have

N1(k+1)=N1(k)exp
{
r1(k)− a11(k)N1(k)− a12(k)N2(k)− b1(k)N1(k)N2(k)

}
,

N2(k+1)=N2(k)exp
{
r2(k)− a21(k)N1(k)− a22(k)N2(k)− b2(k)N1(k)N2(k)

}
,

(2.3)

for k = 0,1,2, . . . . Equation (2.3) is a discrete analogue of system (1.2). Notice that the
periodicity of parameters of (2.1) is sufficient, but not necessary for the periodicity of
coefficients in (2.3).

In system (2.3), we always assume that ri, ai j > 0, bi > 0 (i, j = 1,2) are ω-periodic, that
is,

ri(k+ω)= ri(k), bi(k+ω)= bi(k), ai j(k+ω)= ai j(k), (2.4)

for any k ∈ Z (the set of all integers), i, j = 1,2, where ω, a fixed positive integer, denotes
the prescribed common period of the parameters in (2.3).

3. Existence of multiple positive periodic solutions

In this section, in order to obtain the existence of multiple positive periodic solutions of
(2.3), we first make the following preparations.

Let X and Y be normed vector spaces. Let L : DomL ⊂ X → Y be a linear mapping
and N : X → Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimkerL = codimImL < ∞ and ImL is closed in Z. If L is
a Fredholm mapping of index zero, then there exist continuous projectors P : X → X
and Q : Y → Y such that ImP = kerL and ImL = kerQ = Im(I −Q). It follows that L |
DomL∩ kerP : (I − P)X → ImL is invertible and its inverse is denoted by Kp. If Ω is
a bounded open subset of X , the mapping N is called L-compact on Ω if (QN)(Ω) is
bounded and Kp(I −Q)N :Ω→ X is compact. Because ImQ is isomorphic to kerL, there
exists an isomorphism J : ImQ→ kerL.

For convenience, we introduce Mawhin’s continuation theorem as follows.

Lemma 3.1 [6, page 40] (Continuation theorem). Let L be a Fredholm mapping of index
zero and let N : Ω̄→ Z be L-compact on Ω̄. Suppose

(a) Lx �= λNx for every x ∈ domL∩ ∂Ω and every λ∈ (0,1);
(b) QNx �= 0 for every x ∈ ∂Ω∩KerL, and Brouwer degree

degB
(
JQN ,Ω∩KerL,0) �= 0. (3.1)

Then Lx =Nx has at least one solution in domL∩ Ω̄.

Let Z, Z+, R, R+, and R2 denote the sets of all integers, nonnegative integers, real num-
bers, nonnegative real numbers, and two-dimensional Euclidean vector space, respec-
tively.
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Suppose {g(k)} is an ω-periodic (ω ∈ Z+) sequence of real numbers defined for k ∈ Z.
Throughout this paper, we will use the following notation:

Iω =
{
0,1, . . . ,ω− 1

}
, g = 1

ω

ω−1∑

k=0
g(k), R̄i = 1

ω

ω−1∑

k=0

∣
∣ri(k)

∣
∣,

αi j = ā jib̄i− āiib̄ j , α′i j = ā jib̄i− āiib̄ j e
R̄ jω, α′′i j =

(
ā jib̄ie

R̄ jω− āiib̄ j
)
eR̄iω,

βi j = āiiā j j + b̄ir̄ j − āi j ā ji− b̄ j r̄i,

β′i j = āiiā j j e
R̄ jω + b̄ir̄ j − āi j ā jie

R̄iω− b̄ j r̄ie
(R̄i+R̄ j )ω,

β′′i j = āiiā j j e
R̄iω + b̄ir̄ j e

(R̄i+R̄ j )ω− āi j ā jie
R̄ jω− b̄ j r̄i,

γi j = r̄iā j j − r̄ j āi j , γ′i j =
(
r̄iā j j e

R̄ jω− r̄ j āi j
)
eR̄iω,

γ′′i j = r̄iā j j − r̄ j āi j e
R̄ jω, i, j = 1,2, i �= j,

N1(α,β,γ)=
β−

√
β2− 4αγ

2α
, N2(α,β,γ)=

β+
√
β2− 4αγ

2α
(α �= 0, β2− 4αγ > 0

)
.

(3.2)

Define

l2 =
{
x = {x(k)} : x(k)∈ R2, k ∈ Z

}
. (3.3)

For a = (a1,a2)T ∈ R2, define |a| =max{|a1|,|a2|}. Let lω ⊂ l2 denote the subspace of
all ω-periodic sequences equipped with the usual supremum norm ‖ · ‖, that is, for x =
{x(k) : k ∈ Z} ∈ lω, ‖x‖ =maxk∈Iω |x(k)|. It is not difficult to show that lω is a finite-
dimensional Banach space.

Let the linear operator S : lω → R2 be defined by

S(x)= 1
ω

ω−1∑

k=0
x(k), x = {x(k) : k ∈ Z

}∈ lω. (3.4)

Then we obtain two subspaces lω0 and lωc of lω defined by

lω0 =
{
x = {x(k)}∈ lω : S(x)= 0

}
,

lωc =
{
x = {x(k)}∈ lω : x(k)≡ β, for some β ∈ R2 and∀k ∈ Z

}
,

(3.5)

respectively. Denote by L : lω → lω the difference operator given by Lx = {(Lx)(k)} with

(Lx)(k)= x(k+1)− x(k), for x ∈ lω and k ∈ Z. (3.6)

Let a linear operator K : lω → lωc be defined by Kx = {(Kx)(k)} with

(Kx)(k)≡ S(x), for x ∈ lω and k ∈ Z. (3.7)

Then we have the following lemma.
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Lemma 3.2 [12, Lemma 2.1]. (i) Both lω0 and lωc are closed linear subspaces of lω and lω =
lω0 ⊕ lωc , dim lωc = 2.

(ii) L is a bounded linear operator with kerL= lωc and ImL= lω0 .
(iii) K is a bounded linear operator with ker(L+K)= {0} and Im(L+K)= lω.

Lemma 3.3. Let g, r : Z → R beω-periodic, that is, g(k+ω)= g(k), r(k+ω)= r(k). Assume
that for any k ∈ Z,

g(k+1)− g(k)≤ ∣∣r(k)∣∣. (3.8)

Then for any fixed k1,k2 ∈ Iω, and any k ∈ Z, one has

g(k)≤ g
(
k1
)
+

ω−1∑

s=0

∣
∣r(s)

∣
∣,

g(k)≥ g
(
k2
)−

ω−1∑

s=0

∣
∣r(s)

∣
∣.

(3.9)

Proof. It is only necessary to prove that the inequalities hold for any k ∈ Iω. For the first
inequality, it is easy to see the first inequality holds if k = k1. If k > k1, then

g(k)− g
(
k1
)=

k−1∑

s=k1

(
g(s+1)− g(s)

)≤
k−1∑

s=k1

∣
∣r(s)

∣
∣≤

ω−1∑

s=0

∣
∣r(s)

∣
∣, (3.10)

and hence, g(k)≤ g(k1) +
∑ω−1

s=0 |r(s)|. If k < k1, then k+ω > k1. Therefore,

g(k)− g
(
k1
)= g(k+ω)− g

(
k1
)=

k+ω−1∑

s=k1

(
g(s+1)− g(s)

)

≤
k+ω−1∑

s=k1

∣
∣r(s)

∣
∣≤

k1+ω−1∑

s=k1

∣
∣r(s)

∣
∣=

ω−1∑

s=0

∣
∣r(s)

∣
∣,

(3.11)

equivalently, g(k) ≤ g(k1) +
∑ω−1

s=0 |r(s)|. Now we can claim that the first inequality is
valid. �

Similar to the above proof, we can prove that the second inequality is valid.
In the following, we make the following assumptions.
(H1) R̄i = (1/ω)

∑ω−1
k=0 |ri(k)| ≥ (1/ω)

∑ω−1
k=0 ri(k) > 0.

(H2) γ′′i j = r̄iā j j − r̄ j āi j eR̄ jω > 0, i �= j, i, j = 1,2.
(H3) α′12 > 0.
(H4) β12/α12 > β′12/α

′
12.

Lemma 3.4 [13, Lemma 3.2]. Consider the following algebraic equations:

ā11N1 + ā12N2 + b̄1N1N2 = r̄1,

ā21N1 + ā22N2 + b̄2N1N2 = r̄2.
(3.12)

Assuming that (H1), (H2) hold, then the following conclusions hold.
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(i) If α12 > 0, then (3.12) have two positive solutions:

(
Ni
(
α12,β12,γ12

)
,N1

(
α21,β21,γ21

))
, i= 1,2. (3.13)

(ii) If α21 > 0, then (3.12) have two positive solutions:

(
N1
(
α12,β12,γ12

)
,Ni
(
α21,β21,γ21

))
, i= 1,2. (3.14)

Lemma 3.5. Assume that (H1)–(H3) hold, then the following conclusions hold.
(i) β12 > 0, β212− 4α12γ12 > 0;
(ii) β′12 > 0, β

′2
12− 4α′12γ

′
12 > 0.

Proof. (i)

β12 =
(
b̄1
ā11

+
ā12
r̄1

)
γ21 +

(
r̄1α12
ā11

+
ā11γ12
r̄1

)
> 0,

β212− 4α12γ12 =
(
b̄1
ā11

+
ā12
r̄1

)2
γ221 +

(
r̄1α12
ā11

− ā11γ12
r̄1

)2

+2
(
b̄1
ā11

+
ā12
r̄1

)(
r̄1α12
ā11

+
ā11γ12
r̄1

)
γ21 > 0.

(3.15)

(ii)

β′12 =
(
b̄1
ā11

+
ā12
r̄1

)
γ′′21 +

(
r̄1α

′
12e

R̄1ω

ā11
+
ā11γ

′
12

r̄1eR̄1ω

)
> 0,

β
′2
12− 4α′12γ

′
12 =

(
b̄1
ā11

+
ā12
r̄1

)2
γ
′′2
21 +

(
r̄1α

′
12e

R̄1ω

ā11
− ā11γ

′
12

r̄1eR̄1ω

)2

+2
(
b̄1
ā11

+
ā12
r̄1

)(
r̄1α

′
12e

R̄1ω

ā11
+
ā11γ

′
12

r̄1eR̄1ω

)
γ′′21 > 0.

(3.16)

�

Lemma 3.6. Assume that (H1)–(H4) hold, then the following conclusions hold,

N1
(
α12,β12 +m,γ12−n

)
< N1

(
α12,β12,γ12

)
< N1

(
α′12,β

′
12,γ

′
12

)

< N2
(
α′12,β

′
12,γ

′
12

)
< N2

(
α12,β12,γ12

)
< N2

(
α12,β12 +m,γ12−n

)
,

(3.17)

where

m= ā11ā22
(
eR̄1ω− 1

)
+ b̄1r̄2

(
e(R̄1+R̄2)ω− 1

)
> 0,

n= ā12r̄2
(
eR̄2ω− 1

)
> 0.

(3.18)

Proof. Under the conditions that α > 0, β > 0, γ > 0, β2− 4αγ > 0, we have

N1(α,β,γ)= 2γ

β+
√
β2− 4αγ

= 2γ/α

β/α+
√
β2/α2− 4(γ/α)

=N1

(
1,
β

α
,
γ

α

)
,

N2(α,β,γ)=
β+

√
β2− 4αγ

2α
= 1

2

(
β

α
+

√
β2

α2
− 4

γ

α

)

=N2

(
1,
β

α
,
γ

α

)
.

(3.19)
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Thus N1(α,β,γ) (N2(α,β,γ)) is increasing (decreasing) in the first variable, decreasing
(increasing) in the second variable, increasing (decreasing) in the third variable. Notice
that

α′′12 > α12 > α′12 > 0, γ′12 > γ12 > γ′′12 > 0, (3.20)

we have

γ′12
α′12

>
γ12
α12

. (3.21)

So from (3.19), (3.20), (3.21) and (H1)–(H4), we obtain that

N1
(
α12,β12 +m,γ12−n

)
< N1

(
α12,β12,γ12

)=N1

(
1,
β12
α12

,
γ12
α12

)

< N1

(
1,
β′12
α′12

,
γ′12
α′12

)
=N1

(
α′12,β

′
12,γ

′
12

)
< N2

(
α′12,β

′
12,γ

′
12

)=N2

(
1,
β′12
α′12

,
γ′12
α′12

)

< N2

(
1,
β12
α12

,
γ12
α12

)
=N2

(
α12,β12,γ12

)
< N2

(
α12,β12 +m,γ12−n

)
.

(3.22)

�

Theorem 3.7. In addition to (H1)–(H3), assume further that system (2.3) satisfies
(H5) N1(α12,β12,γ12) < N1(α′12,β

′
12,γ

′
12) < N2(α12,β12,γ12).

Then system (2.3) has at least two positive ω-periodic solutions.

Proof. Since we are concerned with positive solutions of (2.3), we make the change of
variables,

Ni(k)= exp
(
xi(k)

)
, i= 1,2. (3.23)

Then (2.3) is rewritten as

xi(k+1)− xi(k)= ri(k)− aii(k)exp
(
xi(k)

)− ai j(k)exp
(
xj(k)

)

− bi(k)exp
(
xi(k)

)
exp

(
xj(k)

)
,

(3.24)

where i, j = 1,2, i �= j. Take X = Y = lω, (Lx)(k)= x(k+1)− x(k), and denote

(�x)(k)=
(
r1(k)−a11(k)exp

(
x1(k)

)−a12(k)exp
(
x2(k)

)−b1(k)exp
(
x1(k)

)
exp

(
x2(k)

)

r2(k)−a22(k)exp
(
x2(k)

)−a21(k)exp
(
x1(k)

)−b2(k)exp
(
x2(k)

)
exp

(
x1(k)

)

)

,

(3.25)

for any x ∈ X and k ∈ Z. It follows from Lemma 3.2 that L is a bounded linear operator
and

kerL= lωc , ImL= lω0 , dimkerL= 2= codimImL, (3.26)

then it follows that L is a Fredholm mapping of index zero.
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Define

Px = 1
ω

ω−1∑

s=0
x(s), x ∈ X , Qy = 1

ω

ω−1∑

s=0
y(s), y ∈ Y. (3.27)

It is not difficult to show that P and Q are two continuous projectors such that

ImP = kerL, ImL= kerQ = Im(I −Q). (3.28)

Furthermore, the generalized inverse (of L) Kp: ImL→ kerP∩DomL exists and is given
by

Kp(z)=
k−1∑

s=0
z(s)− 1

ω

ω−1∑

s=0
(ω− s)z(s). (3.29)

Notice that Q�, Kp(I −Q)� are continuous and X is a finite-dimensional Banach space,

it is not difficult to show thatKp(I −Q)�(Ω) is compact for any open bounded setΩ⊂ X .
Moreover, Q�(Ω) is bounded. Thus, � is L-compact on with any open bounded set
Ω⊂ X .

Corresponding to the operator equation Lx = λ�x, λ∈ (0,1), we have

xi(k+1)− xi(k)= λ
[
ri(k)− aii(k)exp

(
xi(k)

)− ai j(k)exp
(
xj(k)

)

− bi(k)exp
(
xi(k)

)
exp

(
xj(k)

)]
,

(3.30)

where i, j = 1,2, i �= j. Suppose that x = (x1(k),x2(k))T ∈ X is a solution of (3.30) for a
certain λ∈ (0,1). Summing on both sides of (3.30) from 0 to ω− 1 about k, we get

0=
ω−1∑

k=0

(
xi(k+1)− xi(k)

)

= λ
ω−1∑

k=0

[
ri(k)− aii(k)exp

(
xi(k)

)− ai j(k)exp
(
xj(k)

)− bi(k)exp
(
xi(k)

)
exp

(
xj(k)

)]
,

(3.31)

that is

r̄iω =
ω−1∑

k=0

[
aii(k)exp

(
xi(k)

)
+ ai j(k)exp

(
xj(k)

)
+ bi(k)exp

(
xi(k)

)
exp

(
xj(k)

)]
, (3.32)

where i, j = 1,2, i �= j.
It follows from (3.30) that

xi(k+1)− xi(k) <
∣
∣ri(k)

∣
∣, k ∈ Z, i= 1,2. (3.33)

Since x(t)∈ X , there exist ξi, ηi ∈ Iω such that

xi
(
ξi
)=min

k∈Iω

{
xi(k)

}
, xi

(
ηi
)=max

k∈Iω

{
xi(k)

}
, i= 1,2. (3.34)
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From (3.32), (3.34), one obtains

ā11 exp
(
x1
(
η1
))

+ ā12 exp
(
x2
(
η2
))

+ b̄1 exp
(
x1
(
η1
))
exp

(
x2
(
η2
))≥ r̄1, (3.35)

ā21 exp
(
x1
(
ξ1
))

+ ā22 exp
(
x2
(
ξ2
))

+ b̄2 exp
(
x1
(
ξ1
))
exp

(
x2
(
ξ2
))≤ r̄2. (3.36)

We can derive from Lemma 3.3, (3.33) and (3.36) that

x2
(
η2
)≤ x2

(
ξ2
)
+ R̄2ω ≤ ln

r̄2− ā21 exp
(
x1
(
ξ1
))

ā22 + b̄2 exp
(
x1
(
ξ1
)) + R̄2ω, (3.37)

which, together with (3.35), leads to

exp
(
x1
(
η1
))≥ r̄1− ā12 exp

(
x2
(
η2
))

ā11 + b̄1 exp
(
x2
(
η2
))

≥ r̄1
(
ā22 + b̄2 exp

(
x1
(
ξ1
)))− ā12 exp

(
R̄2ω

)(
r̄2− ā21 exp

(
x1
(
ξ1
)))

ā11
(
ā22 + b̄2 exp

(
x1
(
ξ1
)))

+ b̄1 exp
(
R̄2ω

)(
r̄2− ā21 exp

(
x1
(
ξ1
))) .

(3.38)

From Lemma 3.3 and (3.33), we have

x1
(
ξ1
)
> x1

(
η1
)− R̄1ω. (3.39)

This is

exp
(
x1
(
ξ1
))

> exp
(
x1
(
η1
))
exp

(− R̄1ω
)
, (3.40)

which, together with (3.38), leads to

exp
(
R̄1ω

)
exp

(
x1
(
ξ1
))

>
r̄1
(
ā22 + b̄2 exp

(
x1
(
ξ1
)))− ā12 exp

(
R̄2ω

)(
r̄2− ā21 exp

(
x1
(
ξ1
)))

ā11
(
ā22 + b̄2 exp

(
x1
(
ξ1
)))

+ b̄1 exp
(
R̄2ω

)(
r̄2− ā21 exp

(
x1
(
ξ1
))) ,

(3.41)

which implies

α′′12 exp
(
2x1
(
ξ1
))−β′′12 exp

(
x1
(
ξ1
))

+ γ′′12 < 0. (3.42)

So from (3.20), one obtains

α12 exp
(
2x1
(
ξ1
))− (β12 +m

)
exp

(
x1
(
ξ1
))

+ γ12−n < 0, (3.43)

where

m= ā11ā22
(
eR̄1ω− 1

)
+ b̄1r̄2

(
e(R̄1+R̄2

)
ω− 1

)
> 0, n= ā11r̄2

(
eR̄2ω− 1

)
> 0. (3.44)

According to (i) of Lemma 3.5, we obtain

(
β12 +m

)2− 4α12
(
γ12−n

)
> β212− 4α12γ12 > 0. (3.45)
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Therefore, the equation

α12x
2− (β12 +m

)
x+ γ12−n= 0 (3.46)

has two positive solutions

Ni
(
α12,β12 +m,γ12−n

)
, i= 1,2. (3.47)

Thus, we have

N1
(
α12,β12 +m,γ12−n

)
< exp

(
x1
(
ξ1
))

< N2
(
α12,β12 +m,γ12−n

)
. (3.48)

In a similar way as the above proof, we can conclude from

ā21 exp
(
x1
(
η1
))

+ ā22 exp
(
x2
(
η2
))

+ b̄2 exp
(
x1
(
η1
))
exp

(
x2
(
η2
))≥ r̄2,

ā11 exp
(
x1
(
ξ1
))

+ ā12 exp
(
x2
(
ξ2
))

+ b̄1 exp
(
x1
(
ξ1
))
exp

(
x2
(
ξ2
))≤ r̄1,

(3.49)

that

α′12 exp
(
2x1
(
η1
))−β′12 exp

(
x1
(
η1
))

+ γ′12 > 0. (3.50)

According to (ii) of Lemma 3.5, one has

β
′2
12− 4α′12γ

′
12 > 0. (3.51)

Therefore, the equation

α′12x
2−β′12x+ γ′12 = 0 (3.52)

has two positive solutions

Ni
(
α′12,β

′
12,γ

′
12

)
, i= 1,2. (3.53)

Thus, we have

exp
(
x1
(
η1
))

> N2
(
α′12,β

′
12,γ

′
12

)
, or exp

(
x1
(
η1
))

< N1
(
α′12,β

′
12,γ

′
12

)
. (3.54)

It follows from Lemma 3.3, (3.33) and (3.48) that

x1
(
η1
)≤ x1

(
ξ1
)
+ R̄1ω

< lnN2
(
α12,β12 +m,γ12−n

)
+ R̄1ω :=H.

(3.55)

On the other hand, it follows from (3.32) and (3.34) that

āiiωexp
(
xi
(
ξi
))≤

ω−1∑

k=0
aii(k)exp

(
xi(k)

)
< r̄iω, i= 1,2, (3.56)
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that is

xi
(
ξi
)
< ln

r̄i
āii

, i= 1,2. (3.57)

From Lemma 3.3, (3.33) and (3.57), one obtains

xi(k)≤ xi
(
ξi
)
+ R̄iω < ln

r̄i
āii

+ R̄iω, k ∈ Z, i= 1,2. (3.58)

It follows from (3.32) and (3.34) that

r̄2ω =
ω−1∑

k=0

[
a22(k)exp

(
x2(k)

)
+ a21(k)exp

(
x1(k)

)
+ b2(k)exp

(
x2(k)

)
exp

(
x1(k)

)]

≤
2∑

j=1
ā2 jωexp

(
xj
(
ηj
))

+ b̄2ωexp
(
x1
(
η1
))
exp

(
x2
(
η2
))
,

(3.59)

which implies that

exp
(
x2
(
η2
))≥ r̄2− ā21 exp

(
x1
(
η1
))

ā22 + b̄2 exp
(
x1
(
η1
)) . (3.60)

From (3.58) and (3.60), we have

x2
(
η2
)≥ ln

ā11r̄2− ā21r̄1 exp
(
R̄1ω

)

ā11ā22 + b̄2r̄1 exp
(
R̄1ω

) :=M, (3.61)

which, together with Lemma 3.3, leads to

x2(k)≥ x2
(
η2
)− R̄2ω >M− R̄2ω. (3.62)

By (3.58) and (3.62), we obtain that

∣
∣x2(k)

∣
∣ <max

{∣∣
∣
∣ ln

r̄2
ā22

+ R̄2ω
∣
∣
∣
∣,
∣
∣M− R̄2ω

∣
∣
}
:= A, k ∈ Z. (3.63)

Now, let us consider Q�x with x = (x1,x2)∈ R2. Note that

Q�
(
x1,x2

)=
(
r̄1− ā11 exp

(
x1
)− ā12 exp

(
x2
)− b̄1 exp

(
x1
)
exp

(
x2
)

r̄2− ā21 exp
(
x1
)− ā22 exp

(
x2
)− b̄2 exp

(
x1
)
exp

(
x2
)

)

. (3.64)

According to Lemma 3.4, we can show that Q�x = 0 has two distinct solutions

x̂ i = ( lnNi
(
α12,β12,γ12

)
, lnN1

(
α21,β21,γ21

))
, i= 1,2. (3.65)

Choose C > 0 such that

C >
∣
∣ lnN1

(
α21,β21,γ21

)∣∣. (3.66)
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Let

Ω1=
⎧
⎨

⎩x ∈ X

∣
∣
∣
∣
∣
∣

x1(k)∈
(
lnN1

(
α12,β12 +m,γ12−n

)
, lnN1

(
α′12,β

′
12,γ

′
12

))
,

∣
∣x2(k)

∣
∣ < A+C.

⎫
⎬

⎭ ,

Ω2=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
x ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣

mink∈Iω x1(k)∈(lnN1
(
α12,β12 +m,γ12−n

)
, lnN2

(
α12,β12 +m,γ12−n

)
,

maxk∈Iω x1(k)∈
(
min

{
lnN2

(
α12,β12,γ12

)
, lnN2

(
α′12,β

′
12,γ

′
12

)}− δ,H
)
,

∣
∣x2(k)

∣
∣ < A+C.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

(3.67)

where δ is a constant such that

min
{
lnN2

(
α12,β12,γ12

)
, lnN2

(
α′12,β

′
12,γ

′
12

)}− lnN1
(
α′12,β

′
12,γ

′
12

)
> δ > 0. (3.68)

Then both Ω1 and Ω2 are bounded open subsets of X . It follows from Lemma 3.4 and
(3.66) that x̂i ∈Ωi, i = 1,2. With the help of (3.48), (3.54), (3.55), (3.63) and (H5), it is
easy to see that Ω̄1

⋂
Ω̄2 = φ andΩi satisfies the requirement (a) in Lemma 3.1 for i= 1,2.

Moreover, Q�x �= 0 for x ∈ ∂Ωi
⋂
KerL, i= 1,2. A direct computation gives

degB
(
JQ�,Ωi∩KerL,0

) �= 0. (3.69)

Here J is taken as the identity mapping since ImQ = KerL. So far we have proved that Ωi

satisfies all the assumptions in Lemma 3.1. Hence (3.24) has at least two ω-periodic solu-
tions x̆i with x̆i ∈DomL

⋂
Ω̄i (i= 1,2). Obviously x̆i (i= 1,2) are different. Let N̆ i

j(k)=
exp(x̆ij(k)), i, j = 1,2. Then N̆ i = (N̆ i

1,N̆
i
2) (i = 1,2) are two different positive ω-periodic

solutions of (2.3). The proof is complete. �

With the help of Lemma 3.6 and Theorem 3.7, we have the following.

Corollary 3.8. Under Assumptions (H1)–(H4), system (2.3) has at least two positive ω-
periodic solutions.

Example 3.9. As an application of Corollary 3.8, we consider the following system

N1(k+1)=N1(k)exp
{
0.0002+0.0002cos

(
πk/50

)

− (0.0001+0.00005cos
(
πk/50

))
N1(k)

− (1000+ cos
(
πk/50

))
N2(k)

− (20000+ cos
(
πk/50

))
N1(k)N2(k)

}
,

N2(k+1)=N1(k)exp
{
0.00041+0.00041cos

(
πk/50

)

− (0.0002+0.0001cos
(
πk/50

))
N1(k)

− (10000+ cos
(
πk/50

))
N2(k)

− (20000+ cos
(
πk/50

))
N1(k)N2(k)

}
.

(3.70)
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A direct computation gives that

r̄1 = 0.0002= R̄1, r̄2 = 0.00041= R̄2, ā11 = 0.0001, ā12 = 1000,

ā21 = 0.0002, ā22 = 10000, b̄1 = b̄2 = 20000, ω = 100,

α′12 > 1.91629, γ′′12 > 1.57284, γ′′21 > 1.9194× 10−10,

α′12β12−α12β
′
12 > 0.00904.

(3.71)

So according to Corollary 3.8, the above system has at least two positive 100-periodic
solutions.

Similar to the proof of Theorem 3.7, we can prove the following results.

Theorem 3.10. In addition to (H1) and (H2), assume further that system (2.3) satisfies
(H′

3) α
′
21 > 0.

(H′
5) N1(α21,β21,γ21) < N1(α′21,β

′
21,γ

′
21) < N2(α21,β21,γ21).

Then system (2.3) has at least two positive ω-periodic solutions.

Corollary 3.11. In addition to (H1), (H2) and (H′
3), assume further that system (2.3)

satisfies
(H′

4) β21/α21 > β′21/α
′
21.

Then system (2.3) has at least two positive ω-periodic solutions.
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