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Abstract

In the article, an alternative elementary method for steering a controllable fractional
linear control system with open-loop control is presented. It takes a system from an
initial point to a final point in a state space, in a given finite time interval.
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1 Introduction
Fractional integration and differentiation are generalizations of the notions of integer-

order integration and differentiation. It turns out that in many real-life cases, models

described by fractional differential equations much more better reflect the behavior of

a phenomena than models expressed by means of the classical calculus (see, e.g., [1,2]).

This idea was used successfully in various fields of science and engineering for model-

ing numerous processes [3]. Mathematical fundamentals of fractional calculus are

given in the monographs [4-9]. Some fractional-order controllers were developed in,

e.g., [10,11]. It is also worth mentioning that there are interesting results in optimal

control of fractional order systems, e.g., [12-14].

In this article, it will be shown how to steer a controllable single-input fractional lin-

ear control system from a given initial state to a given final point of state space, in a

given time interval. There is also shown how to derive hypothetical open-loop control

functions, and some of them are presented. This method of control is an alternative

to, e.g., introduced in [15], in which a derived open-loop control is based on controll-

ability Gramian matrix, defined in [16] that seems to be much more complex to calcu-

late than in our approach.

The article is divided into two main parts: in Sect. 2 we study control systems

described by the Riemann-Liouville derivatives and in Sect. 3–systems expressed by

means of the Caputo derivatives. In each of these sections, we consider three cases of

linear control systems: in the form of an integrator of fractional order a, in the form

of sequential na-integrator, and finally, in a general (controllable) vector state space

form. In Sect. 3.3, an illustrative example is given. Conclusions are given in Sect. 4.

2 Fractional control systems with Riemann-Liouville derivative
Let (Iαts+g)(t) and (Dα

ts+h)(t) denote the Riemann-Liouville fractional left-sided integral

and fractional derivative, respectively, of order a Î ℂ, on a finite interval of the real

line [4,9]:
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(Iαts+g)(t) :=
1

�(α)

t∫
ts

g(τ )

(t − τ )1−α
dτ for �(α) > 0, t > ts,

(Dα
ts+h)(t) :=

1
�(n − α)

dn

dtn

t∫
ts

h(τ )

(t − τ )α−n+1 dτ for �(α) ≥ 0, t > ts,

where n = [ℜ(a)] + 1, and [ℜ(a)] denotes the integer part of ℜ(a).
Let us consider a fractional-order (a Î ℝ and a > 0) differential equation of the

form:

(Dα
ts+x)(t) = f (t, x(t)), t > ts, (2:1)

with the initial conditions

(Dα−k
ts+ x)(ts+) = wk, k = 1, . . . , n, (2:2)

where n = [a] + 1 for a ∉ N, and n = a for a Î N. By (Dα−k
ts+ x)(ts+), we mean the

following limit

(Dα−k
ts+ x)(ts+) = lim

t→ts+
(Dα−k

ts+ x)(t), k = 1, . . . , n,

i.e., the limit taken in ]ts, ts + ε [for ε > 0.

The existence and uniqueness of solutions of (2.1) and (2.2) were considered by

numerous authors, e.g., [4,8].

2.1 Linear control system in the form of a-integrator
Consider a control system of the form

(Dα
ts+z)(t) = v(t), (2:3)

where 0 <a < 1, z(t) is a scalar solution of (2.3), and v(t) is a scalar control function.

The aim of the control is to bring system (2.3), i.e., the state trajectory z(t), from the

start point

z(ts+) = zs, (2:4)

i.e., from the point z(t) = z(ts+) for t ® ts+, to the final point

z(tf) = zf, (2:5)

in a finite time interval tf - ts. In other words, we are looking for such an open-loop

control function v = v(t), which will achieve it in a finite time interval tf - ts. The start

and final points will be also called the terminal points.

In order to solve Equation 2.3, we need to use an initial condition of the form

(Dα−1
ts+ z)(ts+) = (I1−α

ts+ z)(ts+) = w1 (2:6)

that will correspond to condition (2.4), i.e., we have to find an appropriate value w1

corresponding to (2.4). To this end, initial condition (2.6) can be rewritten (see [4]) as

lim
t→ts+

(t − ts)1−αz(t) =
w1

�(α)
,
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from which

w1 = �(α) lim
t→ts+

z(t) lim
t→ts+

(t − ts)1−α = zs�(α) lim
t→ts+

(t − ts)1−α . (2:7)

Proposition 1. A control v(t) that steers system (2.3) from the start point (2.4) to the

final point (2.5) is of the form

v(t) = (Dα
ts+ϕ)(t), (2:8)

where j(t) is an arbitrary C1-function satisfying

ϕ(ts) = zs and ϕ(tf) = zf. (2:9)

Proof. Take (2.8) as a control applied to (2.3), i.e.,

(Dα
ts+z)(t) = (Dα

ts+ϕ)(t). (2:10)

Integrating both sides of (2.10) by means of Iαts+, i.e.,

(Iαts+D
α
ts+z)(t) = (Iαts+D

α
ts+ϕ)(t),

we get (using the rule of integration given, e.g., in [4])

z(t) − (I1−α
ts+ z)(ts+)

�(α)
(t − ts)α−1 = ϕ(t) − (I1−α

ts+ ϕ)(ts+)

�(α)
(t − ts)α−1. (2:11)

Since j(ts) = zs, and the system starts from z(ts) = zs, we get

(I1−α
ts+ z)(ts+) = (I1−α

ts+ ϕ)(ts+),

which finally yields z(t) = j(t). In particular, z(tf) = j(tf) = zf. □
Example 2. We want to steer system (2.3) from the start point (2.4) to the final point

(2.5) by means of the control given by (2.8), where

ϕ(t) = a1(t − ts) + a0, a0, a1 ∈ R. (2:12)

The values of coefficients a0 and a1 have to be chosen such that conditions (2.9)

hold, i.e., from

ϕ(ts) = a0 = zs,

ϕ(tf) = a1(tf − ts) + a0 = zf,

we calculate, for tf >ts,

a0 = zs,

a1 =
zf − zs
tf − ts

.
(2:13)

Thus, polynomial (2.12) has the form

ϕ(t) =
zf − zs
tf − ts

(t − ts) + zs,

and then, Equation 2.3, with control v(t) = (Dα
ts+ϕ)(t), is the following

(Dα
ts+z)(t) = a1

�(2)
�(2 − α)

(t − ts)1−α + a0
1

�(1 − α)
(t − ts)−α . (2:14)
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In order to show that the above-calculated control v(t) is right, we integrate (2.14) by

means of Iαts+, giving

z(t)−(I1−α
ts+ z)(ts+)

�(α)
(t − ts)α−1 = a1

�(2)
�(2 − α)

(Iαts+(t − ts)1−α)(t)+a0
1

�(1 − α)
(Iαts+(t − ts)−α)(t).

Since the value of initial condition (I1−α
ts+ z)(ts+) corresponding to the start point zs is

given by (2.6) and (2.7), and substituting already calculated coefficients a0 and a1 given

by (2.13), we get

z(t) − zs(t − ts)α−1 lim
t→ts+

(t − ts)1−α =
zf − zs
tf − ts

(t − ts) + zs. (2:15)

Since limt→ts+(t − ts)1−α = 0 for a < 1, evaluating (2.15) at t = ts yields z(ts) = zs, and

for t = tf gives z(tf) = zf .

2.2 Linear control system in the form of na-integrator
Consider a control system of order na, for 0 <a < 1, n Î N+ such that na < 1, given

by

(Dnα
ts+z)(t) = v(t) (2:16)

with the initial conditions

(I1−α
ts+ Dkα

ts+z)(ts+) = wk, wk ∈ R, k = 0, . . . , n − 1, (2:17)

where z(t) is a scalar solution of (2.16), (2.17), and v(t) is a scalar control function. By

Dkα
ts+z we mean

Dα
ts+z = Dα

ts+z,

Dkα
ts+z = Dα

ts+D
(k−1)α
ts+ z, k = 2, 3, . . . , n.

(2:18)

We introduce the notion of Dα
ts+z (see Property 2.4 in [4]), because, in general,

Dα
ts+D

α
ts+ · · ·Dα

ts+z︸ ︷︷ ︸
n - times

�= Dnα
ts+z.

Initial conditions (2.17) are equivalent (see [4]) to

lim
t→ts+

(t − ts)1−α(Dkα
ts+z)(t) =

wk

�(α)
, wk ∈ R, k = 0, . . . , n − 1. (2:19)

The aim of the control is to bring system (2.16) from the start point

Z(ts) := (z(ts), (Dα
ts+z)(ts), . . . , (D

(n−1)α
ts+ z)(ts))T = (zs0, zs1, . . . , zsn−1)T =: Zs (2:20)

at time ts, to the final point

Z(tf) := (z(tf), (Dα
ts+z)(tf), . . . , (D

(n−1)α
ts+ z)(tf))T = (zf0, zf1, . . . , zfn−1)T =: Zf (2:21)

at time tf , in the finite time interval tf - ts.

For initial conditions (2.17) to correspond to the start point Zs, we calculate (from

(2.19))
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wk = �(α) lim
t→ts+

(t − ts)1−α lim
t→ts+

(Dkα
ts+z)(t)

= �(α) lim
t→ts+

(t − ts)1−α(Dkα
ts+z)(ts)

= �(α) lim
t→ts+

(t − ts)1−αzsk, k = 0, . . . , n − 1.

Proposition 3. A control v(t) that steers system (2.16) from the start point (2.20) to

the final point (2.21) is of the form

v(t) = (Dnα
ts+ϕ)(t),

where j(t) is an arbitrary Cn-function satisfying

Dkα
ts+ϕ(ts) = zsk, Dkα

ts+ϕ(tf) = zfk, 0 ≤ k ≤ n − 1, (2:22)

i.e.,

(ϕ(ts), . . . , (D(n−1)α
ts+ ϕ)(ts))T = Zs and (ϕ(tf), . . . , (D(n−1)α

ts+ ϕ)(tf))T = Zf.

For such defined conditions (2.22), the initial conditions are

(I1−α
ts+ Dkα

ts+ϕ)(ts+) = �(α) lim
t→ts+

(t − ts)1−α(Dkα
ts+ϕ)(t), k = 0, . . . , n − 1. (2:23)

Proof. Apply the control

v(t) = Dnα
ts+ϕ(t)

to (2.16), and we obtain

(Dnα
ts+z)(t) = (Dnα

ts+ϕ)(t). (2:24)

Next, integrating (2.24) by means of Iαts+

(Iαts+D
α
ts+D

(n−1)α
ts+ z)(t) = (Iαts+D

α
ts+D

(n−1)α
ts+ ϕ)(t),

we get

(D(n−1)α
ts+ z)(t)−(I1−α

ts+ D(n−1)α
ts+ z)(ts+)

�(α)
(t − ts)α−1 = (D(n−1)α

ts+ ϕ)(t)−(I1−α
ts+ D(n−1)α

ts+ ϕ)(ts+)

�(α)
(t − ts)α−1.(2:25)

Since the system starts from (2.20), and (2.22) holds, i.e., D(n−1)α
ts+ ϕ(ts) = zsn−1, we get

(I1−α
ts+ D(n−1)α

ts+ z)(ts+) = (I1−α
ts+ D(n−1)α

ts+ ϕ)(ts+),

which yields

(D(n−1)α
ts+ z)(t) = (D(n−1)α

ts+ ϕ)(t). (2:26)

In particular, for t = tf we obtain

(D(n−1)α
ts+ z)(tf) = (D(n−1)α

ts+ ϕ)(tf) = zfn−1.

Analogously, consecutive integrations of (2.26) by means of Iαts+, together for all n

integrations, yields

(Dkα
ts+z)(ts) = (Dkα

ts+ϕ)(ts) = zsk, k = 0, . . . , n − 1
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and

(Dkα
ts+z)(tf) = (Dkα

ts+ϕ)(tf) = zfk, k = 0, . . . , n − 1.

□
One of the possible choices of function j(t) is

ϕ(t) =
2n−1∑
i=0

ai(Iiαts+1)(t), (2:27)

where

(Iiαts+1)(t) =
1

�(iα + 1)
(t − ts)iα , 0 ≤ i ≤ 2n − 1, ((I0ts+1)(t) = 1) (2:28)

satisfying (2.22).

For a function of type (t - ts)
ia , the following holds

(Dα
ts+ · · ·Dα

ts+︸ ︷︷ ︸
n - times

(t − ts)iα)(t) = (Dnα
ts+(t − ts)iα)(t) for iα + 1 > 0,

which is always satisfied, since we have i = 0, ..., 2n - 1 and a > 0 (0 <a < 1). It fol-

lows that for the function (Iiαts+1)(t) (given by (2.28)), we have

(Dα
ts+ · · ·Dα

ts+︸ ︷︷ ︸
n - times

Iiαts+1)(t) = (Dnα
ts+I

iα
ts+1)(t) = (I(i−n)α

ts+ 1)(t).

Thus, for the function j(t) given by (2.27), we have (Dnα
ts+ϕ)(t) = (Dnα

ts+ϕ)(t), and then

v(t) = (Dnα
ts+ϕ)(t) =

2n−1∑
i=0

ai(I
(i−n)α
ts+ 1)(t).

Example 4. Consider control system (2.16) of order 2a (n = 2), i.e.,

(D2α
ts+z)(t) = v(t),

which we want to bring from the start point

Z(ts) := (z(ts), (Dα
ts+z)(ts))

T = (zs0, zs1)T =: Zs

to the final point

Z(tf) := (z(tf), (Dα
ts+z)(tf))

T = (zf0, zf1)T =: Zf,

in the finite time interval tf - ts.

We take function j(t) in the form

ϕ(t) =
3∑
i=0

ai(Iiαts+1)(t),

for which

(Dα
ts+ϕ)(t) =

3∑
i=0

ai
1

�((i − 1)α + 1)
(t − ts)(i−1)α .
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According to (2.22), the following must be satisfied

ϕ(ts) = a0 = zs0,

(Dα
ts+ϕ)(ts) = a1 = zs1,

ϕ(tf) =
3∑
i=0

ai(Iiαts+1)(tf) = zf0,

(Dα
ts+ϕ)(tf) =

3∑
i=0

ai(I
(i−1)α
ts+ 1)(tf) = zf1,

or, in the matrix form⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
1 (Iαts+1)(tf) (I

2α
ts+1)(tf) (I

3α
ts+1)(tf)

(I−α
ts+ 1)(tf) 1 (Iαts+1)(tf) (I

2α
ts+1)(tf)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a0
a1
a2
a3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
zs0
zs1
zf0
zf1

⎞
⎟⎟⎠ , (2:29)

from which we can calculate coefficients ai, 0 ≤ i ≤ 3, assuming that tf >ts.

Therefore, a control function steering the system from the start point Zs to the final

point Zf , is

v(t) = (D2α
ts+ϕ)(t) =

3∑
i=0

ai
1

�((i − 2)α + 1)
(t − ts)(i−2)α,

where ai, 0 ≤ i ≤ 3, are already calculated from (2.29).

2.3 Linear control system in the general state space form

Consider a linear fractional control system of the form

� : (Dα
ts+x)(t) = Ax + bu, 0 < α < 1, (2:30)

where x(t) = (x1(t), ..., xn(t))
T Î ℝn is a state space vector, A Î ℝn×n, u(t) Î ℝ, b Î

ℝn×1 and (Dα
ts+x)(t) = ((Dα

ts+x1)(t), . . . , (D
α
ts+xn)(t))

T. The initial conditions are

(I1−α
ts+ xi)(ts+) = wi, wi ∈ R, 1 ≤ i ≤ n,

or, in the equivalent form

lim
t→ts+

(t − ts)1−αxi(t) =
wi

�(α)
, 1 ≤ i ≤ n.

The aim of the control is to bring the control system Λ from the start point

x(ts) := (x1(ts), . . . , xn(ts))T = (xs1, . . . , xsn)T =: xs (2:31)

to the final point

x(tf) := (x1(tf), . . . , xn(tf))T = (xf1, . . . , xfn)T =: xf, (2:32)

in the finite time interval tf - ts. To this end, since Λ is assumed to be controllable

[15,16], i.e.,

rank R(A, b) = rank(b,Ab, ...,An−1b) = n,
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we can change the state coordinates x to new coordinates x̃, in the following linear

way

x̃ = Tx, where T ∈ Rn×n, det T �= 0

such that Λ expressed in the new coordinates x̃ = (x̃1, . . . , x̃n)T will be in the Frobe-

nius form, i.e.,

�̃Fr : ˙̃x =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ã0 −ã1 −ã2 . . . −ãn−1

⎞
⎟⎟⎟⎟⎟⎠ x̃ +

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠ u = Ãx̃ + b̃u, x̃ ∈ Rn.

In order to find a linear transformation T we take a row vector t1 Î ℝ1 × n such that

t1Ajb =
{
0 0 ≤ j ≤ n − 2
1 j = n − 1,

(2:33)

which yields

T =

⎛
⎜⎜⎜⎝

t1
t1A
...

t1An−1

⎞
⎟⎟⎟⎠ .

Indeed, if we take x̃ = Tx, where the first coordinate function is given by x̃1 = t1x, and

such that t1 satisfies (2.33), then, using the linearity of Riemann-Liouville derivative, we

have

(Dα
ts+x̃i)(t) = t1Ai−1(Dα

ts+x)(t) = t1Aix = x̃i+1, 1 ≤ i ≤ n − 1,

(Dα
ts+x̃n)(t) = t1An−1(Dα

ts+x)(t) = t1Anx + t1An−1bu = t1Anx + u

getting x̃ = (t1, t1A, . . . , t1An−1)Tx. Condition (2.33) can also be rewritten in the

matrix form

t1 (b,Ab, ...,An−1b) = (0, 0, . . . , 1),

which gives rise to

t1 = (0, 0, . . . , 1)R−1(A, b) = R−1
(n)(A, b),

where R−1
(n)(A, b) is the nth row of the matrix R-1(A, b).

Next, applying to the system �̃Fr a feedback of the form

u(t) = k̃x̃ + v(t), (2:34)

where k̃ = −t1AnT−1 = (ã0, ã1, ã2, . . . , ãn−1) ∈ R1×n and v(t) Î ℝ, we get

(Dα
ts+x̃i)(t) = x̃i+1, 1 ≤ i ≤ n − 1,

(Dα
ts+x̃n)(t) = v(t).
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Denoting z = x̃1, and using notation (2.18), we get

(Dα
ts+x̃i)(t) = (Diα

ts+z)(t) = x̃i+1, 1 ≤ i ≤ n − 1,

(Dα
ts+x̃n)(t) = (Dnα

ts+z)(t) = v(t),

then

(Dnα
ts+z)(t) = v(t). (2:35)

Since the transformation x̃ = Tx is already known, for the given start point (2.31) and

final point (2.32) we can calculate corresponding terminal points expressed in the new

coordinates x̃, i.e.,

x̃(ts) := (x̃1(ts), . . . , x̃n(ts))T = Txs = (x̃s1, . . . , x̃sn)T =: x̃s

and

x̃(tf) := (x̃1(tf), . . . , x̃n(tf))T = Txf = (x̃f1, . . . , x̃fn)T =: x̃f.

Then, for system (2.35) the terminal points are the following

Z(ts) := (z(ts), (Dα
ts+z)(ts), . . . , (D

(n−1)α
ts+ z)(ts))T = (x̃s1, . . . , x̃sn)T =: x̃s = Zs (2:36)

and

Z(tf) := (z(tf), (Dα
ts+z)(tf), . . . , (D

(n−1)α
ts+ z)(tf))T = (x̃f1, . . . , x̃fn)T =: x̃f = Zf. (2:37)

In such a way, we have transformed the problem of finding a control u(t) for the sys-

tem (2.30) steering from the start point (2.31) to the final point (2.32), into an equiva-

lent problem of finding a control v(t) for system (2.35) steering from the start point

(2.36) to the final point (2.37), which has already been explained in Sect. 2.2.

To this end, we take a Cn-function j(t) satisfying (2.22) for given (2.36) and (2.37).

For such a function j(t), the control is

v(t) = (Dnα
ts+ϕ)(t).

Finally, using (2.34), the desired control u(t) taking system Λ from xs to xf is the fol-

lowing

u(t) = k̃x̃(t) + v(t) = k̃Tx(t) + v(t) = −R−1
(n)(A, b)A

nx(t) + (Dnα
ts+ϕ)(t).

3 Fractional control systems with Caputo derivative
We will use the following definition of Caputo derivative. Let a Î ℂ and ℜ(a) ≥ 0. If a
∉ N0, n = [ℜ(a)] + 1, and then

(CDα
ts+f )(t) :=

1
�(n − α)

t∫
ts

f (n)(τ )

(t − τ )α−n+1 dτ =: (In−α
ts+ Dnf )(t).

If a = n Î N0, then

(CDn
ts+f )(t) = f (n)(t).
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Consider a differential equation, for a Î ℝ and a > 0,

(CDα
ts+x)(t) = f (t, x(t)), ts ≤ t ≤ tf, (3:1)

with the initial conditions

x(k)(ts) = wk, wk ∈ R, k = 0, . . . , n − 1. (3:2)

It has been already shown, e.g., in [4] that for (3.1) and (3.2) a solution exists.

3.1 Linear control system in the form of a-integrator
Consider a linear fractional differential equation

(CDα
ts+z)(t) = v(t), α ∈ R, α > 0 (3:3)

with the initial conditions

z(k)(ts) = wk, wk ∈ R, k = 0, . . . , n − 1, (3:4)

where z(t) is a scalar solution and v(t) is a scalar control function.

The aim of the control is to steer system (3.3) from the start point

Z(ts) := (z(ts), ż(ts), . . . , z(n−1)(ts))T = (zs0, . . . , zsn−1)T =: Zs (3:5)

to the final point

Z(tf) := (z(tf), ż(tf), . . . , z(n−1)(tf))T = (zf0, . . . , zfn−1)T =: Zf (3:6)

in a finite time interval tf - ts. In contrast to the equation defined by means of Rie-

mann-Liouville derivative, initial conditions (3.4) coincide with start point (3.5), i.e.,

wi = zsi, 0 ≤ i ≤ n − 1.

Proposition 5. A control v(t) that steers system (3.3) from the start point (3.5) to the

final point (3.6) is of the form

v(t) = (CDα
ts+ϕ)(t), (3:7)

where j(t) is an arbitrary Cn-function satisfying

ϕ(k)(ts) = zsk, ϕ(k)(tf) = zf k, 0 ≤ k ≤ n − 1, (3:8)

i.e.,

�(ts) := (ϕ(ts), . . . ,ϕ(n−1)(ts))T = Zs and �(tf) := (ϕ(tf), . . . ,ϕ(n−1)(tf))T = Zf.

Proof. As a control applied to (3.3) take (3.7), and then

(CDα
ts+z)(t) = (CDα

ts+ϕ)(t). (3:9)

Integrating (3.9) (according to the rule given by Lemma 2.22 in [4]) by means of Iαts+,

i.e.,

(Iαts+
CDα

ts+z)(t) = (Iαts+
CDα

ts+ϕ)(t),
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we get

z(t) −
n−1∑
k=0

z(k)(ts)
k!

(t − ts)k = ϕ(t) −
n−1∑
k=0

ϕ(k)(ts)
k!

(t − ts)k. (3:10)

If the system starts from Z(ts) = Zs, and F (ts) = Zs, then from (3.10) we get

z(t) = ϕ(t),

which implies

Z(tf) = �(tf) = Zf.

□
A possible choice of the function j(t) is to take a (2n - 1)-degree polynomial of the

form

ϕ(t) =
2n−1∑
k=0

ak(t − ts)k, ak ∈ R, 0 ≤ k ≤ 2n − 1, (3:11)

satisfying (3.8). A control function v(t) for the function j(t) given by (3.11) is

v(t) =
2n−1∑
k=0

ak(CDα
ts+(t − ts)k)(t) =

⎧⎨
⎩
0 for 0 ≤ k ≤ n − 1,

ak
k!

�(k + 1 − α)
(t − ts)

k−α for n ≤ k ≤ 2n − 1,

and thus,

v(t) =
2n−1∑
k=n

ak
k!

�(k + 1 − α)
(t − ts)k−α. (3:12)

Example 6. Consider control system (3.3), for 0 <a < 1, where n = [a] + 1 = 1. We

want to find a control function v(t), which steers (3.3) from the given start point

z(ts) = zs0 to the given final point z(tf ) = zf0.

To this end, take j(t) of the form

ϕ(t) = a1(t − ts) + a0, (3:13)

where a0 and a1 are such that conditions (3.8) are met, i.e.,

ϕ(ts) = a0 = zs0,

ϕ(tf) = a1(tf − ts) + a0 = zf0.

A solution of the above system of equations, for tf >ts, is

a0 = zs0,

a1 =
zf0 − zs0
tf − ts

.

Therefore, polynomial (3.13) is of the form

ϕ(t) =
zf0 − Zs0

tf − ts
(t − ts) + zs0,
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and the control given by (3.12) is as follows

v(t) = (CDα
ts+ϕ)(t) =

zf0 − zs0
tf − ts

1
�(2 − α)

(t − ts)1−α . (3:14)

So, system (3.3), with calculated control, is of the form

(CDα
ts+z)(t) =

zf0 − zs0
tf − ts

1
�(2 − α)

(t − ts)1−α . (3:15)

To be sure that such a control is correct, let us integrate (3.15) by means of Iαts+
obtaining

z(t) − z(ts) =
zf0 − zs0
tf − ts

1
�(2 − α)

(Iαts+(t − ts)1−α)(t).

Since

(Iαts+(t − ts)1−α)(t) = �(2 − α)(t − ts),

we get

z(t) − zs0 =
zf0 − zs0
tf − ts

(t − ts). (3:16)

Evaluating (3.16) at t = ts gives z(ts) = zs0 and for t = tf yields z(tf ) = zf0, which

means that control (3.14) correctly steers the system from zs0 to zf0.

Remark 7. For 0 <a < 1, the problem of steering system (3.3) from start point (initial

condition) (3.5) to final point (3.6) can be also solved using the known relation

between Caputo and Riemanna-Liouville derivative, i.e.,

(CDα
ts+z)(t) = (Dα

ts+[z(t) − z(ts)])(t).

Therefore, system (3.3) together with terminal points (3.5) and (3.6) can be trans-

formed to the following form

(Dα
ts+y)(t) = v(t), y(ts+) = 0, y(tf) = zf − zs, (3:17)

where

y (t) = z (t) − zs. (3:18)

Indeed, control v(t) steering system (3.17) from the given point y(ts+) to the given

point y(tf ), steers system (3.3) from the given point z(ts) to the given final point z(tf ),

which follows from the inverse transformation of (3.18), i.e.,

z(t) = y(t) + zs, z(ts) = y(ts+) + zs = zs, z(tf) = y(tf) + zs = zf.

3.2 Linear control system in the form of na-integrator
Consider a control system of order na, where a Î ℝ, 0 <a ≤ 1, and n Î N+, such that

na < 1, given by

(Dnα
ts+z)(t) = v(t) (3:19)
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with initial conditions

(Dkα
ts+z)(ts) = wk, wk ∈ R, k = 0, . . . , n − 1,

where z(t) is a scalar solution, v(t) is a scalar control function, and Dkα
ts+z is defined

like in (2.18), but for the Caputo derivative.

The aim of the control is to steer system (3.19) from the start point

Z(ts) := (z(ts), (Dα
ts+z)(ts), . . . , (D

(n−1)α
ts+ z)(ts))T = (zs0, zs1, . . . , zsn−1)T =: Zs, (3:20)

to the final point

Z(tf) := (z(tf), (Dα
ts+z)(tf), . . . , (D

(n−1)α
ts+ z)(tf))T = (zf0, zf1, . . . , zfn−1)T =: Zf, (3:21)

in a finite time interval tf - ts. Obviously, we have

wk = zsk, 0 ≤ k ≤ n − 1.

Proposition 8. A control v(t) that steers system (3.19) from start point (3.20) to final

point (3.21) is of the form

v(t) = (Dnα
ts+ϕ)(t), (3:22)

where j(t) is an arbitrary Cn-function satisfying

(Dkα
ts+ϕ)(ts) = zsk, (Dkα

ts+ϕ)(tf) = zf k, 0 ≤ k ≤ n − 1, (3:23)

i.e.,

(ϕ(ts), . . . , (D(n−1)α
ts+ ϕ)(ts))T = Zs and (ϕ(tf), . . . , (D(n−1)α

ts+ ϕ)(tf))T = Zf.

Proof. Apply to (3.19) control (3.22) obtaining

(Dnα
ts+z)(t) = (Dnα

ts+ϕ)(t). (3:24)

Next, integrating both sides of (3.24) by means of Iαts+, i.e.,

(Iαts+
CDα

ts+D
(n−1)α
ts+ z)(t) = (Iαts+

CDα
ts+D

(n−1)α
ts+ ϕ)(t),

we get

(D(n−1)α
ts+ z)(t) − (D(n−1)α

ts+ z)(ts) = (D(n−1)α
ts+ ϕ)(t) − (D(n−1)α

ts+ ϕ)(ts).

Since, system (3.19) starts from (3.20), and (3.23) holds, that is

(D(n−1)α
ts+ z)(ts) = (D(n−1)α

ts+ ϕ)(ts), we get

(D(n−1)α
ts+ z)(t) = (D(n−1)α

ts+ ϕ)(t). (3:25)

Analogously, consecutive integrations of (3.25) by means of Iαts+, yields (for all n inte-

grations)

(Dkα
ts+z)(t) = (Dkα

ts+ϕ)(t), k = 0, . . . , n − 1,

and then

(Dkα
ts+z)(tf) = (Dkα

ts+ϕ)(tf) = zf k, k = 0, . . . , n − 1.
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□
A possible choice of function j(t) is

ϕ(t) =
2n−1∑
i=0

ai(Iiαts+1)(t),

where (Iiαts+1)(t) is given by (2.28), and satisfying (3.23). Since, for a function of type (t

- ts)
ia is

(CDnα
ts+(t − ts)iα)(t) = (CDα

ts+· · ·CDα
ts+︸ ︷︷ ︸

n - times

(t − ts)iα)(t) = 0, for i = 0, . . . , n − 1,

it follows that for (Iiαts+1)(t) we have

(CDα
ts+· · ·CDα

ts+︸ ︷︷ ︸
k−times

(Iiαts+1)(t) = (CDkα
ts+I

iα
ts+1)(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
�((i − k)α + 1)

(t − ts)
(i−k)α for k < i,

1 for k = i,
0 for k > i.

(3:26)

Therefore, it follows that (Dnα
ts+ϕ)(t) = (CDnα

ts+ϕ)(t), and after applying (3.26), we get

v(t) = (CDnα
ts+ϕ)(t) =

2n−1∑
i=n

ai(I
(i−n)α
ts+ 1)(t) =

2n−1∑
i=n

ai
1

�((i − n)α + 1)
(t − ts)(i−n)α .(3:27)

3.3 Linear control system in the general state space form

Consider a controllable linear fractional control system of the form

� : (CDα
ts+x)(t) = Ax + bu, 0 < α < 1,

where x(t) = (x1(t), ..., xn(t))
T Î ℝn is the state space vector, A Î ℝn×n, u(t) Î ℝ, b Î

ℝn×1 and (CDα
ts+x)(t) = ((CDα

ts+x1)(t), . . . , (
CDα

ts+xn)(t))
T. The initial conditions are

x0i (ts) = x0i , 1 ≤ i ≤ n.

The aim of control is to bring the control system Λ from the start point

x(ts) := (x1(ts), . . . , xn(ts))T = (xs1, . . . , xsn)T =: xs

to the final point

x(tf) := (x1(tf), . . . , xn(tf))T = (xf1, . . . , xf n)T =: xf,

in a finite time interval tf - ts. Then, obviously, the initial conditions have to be set to

(x01, . . . , x
0
n)

T = (xs1, . . . , xsn)T .

The consecutive proceeding is analogous to that already presented in Sect. 2.3, but

for Caputo derivative, arriving at a system of the form

(Dnα
ts+z)(t) = v(t),

for which we apply the theory presented in Sect. 3.2.
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Example 9. For a linear control system in the form

� :

⎛
⎝CD

1
4
ts+x1

CD
1
4
ts+x2

⎞
⎠ =

(−1 1
0 −1

)(
x1
x2

)
+

(
1
1

)
u,

calculate a control function u(t) taking system Λ from the start (initial) point (at time

ts = 1 s)

x(ts) = x(1) = (1,−1)T := xs

to the final point (at time tf = 5 s)

x(tf) = x(5) = (−5,−2)T := xf,

in the finite time interval tf - ts = 4 s.

Transform Λ by means of x̃ = Tx given by

T =
(

1 −1
−1 2

)
,

to �̃ in the form

�̃ :

⎛
⎝CD

1
4
ts+x̃1

CD
1
4
ts+x̃2

⎞
⎠ =

(
0 1

−1 −2

)(
x̃1
x̃2

)
+

(
0
1

)
u.

Apply to �̃ control

u = k̃x̃ = x̃1 + 2x̃2 + v(t), where k̃ = (1, 2), (3:28)

resulting

�̃ :

⎛
⎝CD

1
4
ts+x̃1

CD
1
4
ts+x̃2

⎞
⎠ =

(
0 1
0 0

)(
x̃1
x̃2

)
+

(
0
1

)
v.

Denoting z = x̃1 (and as a consequence CD
1
4
ts+z = x̃2), we get

CD
1
4
ts+

CD
1
4
ts+z = (D

1
2
ts+z)(t) = v(t). (3:29)

Now, we want to find a control v(t), which takes (3.29) from the start point

Z(ts) := Z(1) := (z(1), (CD
1
4
ts+z) (1))

T = (x̃s1, x̃s2)T = (2,−3)T = (zs0, zs1)T =: Zs,

to the final point

Z(tf) := Z(5) := (z(5), (CD
1
4
ts+z) (5))

T = (x̃f1, x̃f2)T = (−3, 1)T = (zf0, zf1)T =: Zf.

As a control function, of the form (3.27), we take

v(t) = (CD
1
2
ts+ϕ)(t),
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where

ϕ(t) =
3∑
i=0

ai
1

�(
1
4
i + 1)

(t − 1)
1
4 i,

and the coefficients ai, 0 ≤ i ≤ 3, are such that

ϕ(1) = a0 = 2,

(CD
1
4
ts+ϕ)(1) = a1 = −3,

ϕ(5) =
3∑
i=0

ai
(
√
2)

i

�(
1
4
i + 1)

= −3,

(CD
1
4
ts+ϕ) (5) =

3∑
i=1

ai
(
√
2)

(i−1)

�(
1
4
(i − 1) + 1)

= 1,

or, in the matrix form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

1

√
2

�( 54)

2

�( 32)

2
√
2

�( 74 )

0 1

√
2

�( 54)

2

�( 32 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
a0
a1
a2
a3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2
−3
−3
1

⎞
⎟⎟⎠ .

The calculated coefficients are

a0 = 2,

a1 = −3,

a2 =
1
4

−36�( 34 )
2
+ 15π �( 34 ) + 8

√
2π

3
2

√
π�( 34 )(−3 + 2

√
2)

,

a3 = −3
4

−12�( 34)
2
+ 5π �( 34 ) + 4π

3
2

π(−3 + 2
√
2)

,

and according to (3.27), we have

v(t) = (CD
1
2
ts+ϕ) (t) =

3∑
i=2

ai
1

�( 14(i − 2) + 1)
(t − 1)

1
4 (i−2).

Finally, complete control (3.28) applied to Λ, achieving the task, is

u(t) = −x1+3x2+
1
4

−36�( 34)
2
+ 15π�( 34 ) + 8

√
2π

3
2

√
π�( 34)(−3 + 2

√
2)

−3
−12�( 34 )

3
+ 5π�( 34)

2
+ 4π

3
2 �( 34)

π2
√
2(−3 + 2

√
2)

(t − 1)
1
4 .

Conclusions
In the article, a method for steering a control system from one point to another in a

state space was presented. Both for the system described by Riemann-Liouville deriva-

tive and Caputo derivative three forms of control systems were studied. In both cases,
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the na-integrator form was introduced as a scalar representation equation of a control

system in a controllable state space form. Because of the specific nature of initial con-

ditions for systems defined by means of Riemann-Liouville derivative, numerical exam-

ple was given only for the systems with Caputo derivative. The choice of possible

candidates for control functions presented in the article is not the only one possible.

Other functions achieving the task can also be found. Since in our approach no restric-

tions are posed on the trajectory joining two given points, a family of such trajectories,

and thereby “base-functions,” can be relatively wide, and authors have proposed some

selected examples of such functions (e.g., (2.27), (3.11)). If one would wish, addition-

ally, to steer a system from a given point to another one in an optimal way, i.e., with

minimizing some cost function, this implies a specific trajectory. In such a case it is

still possible to look for the other type of functions (satisfying one of Propositions 1, 3,

5, and 8) restricted additionally by these optimality constraints. In other words, it can

be possible to find some other type of functions, perhaps different from these selected

by authors, achieving the desired task. Interesting results in optimal control of frac-

tional systems can be found, e.g., in [12-14].
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