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Abstract

In this article, we consider the existence of at least one positive solution to the
three-point boundary value problem for nonlinear fractional-order differential
equation with an advanced argument{

CDαu(t) + a(t)f (u(θ(t))) = 0, 0 < t < 1,
u(0) = u′′(0) = 0, βu(η) = u(1),

where 2 <a ≤ 3, 0 <h < 1, 0 < β <
1
η
, CDa is the Caputo fractional derivative. Using

the well-known Guo-Krasnoselskii fixed point theorem, sufficient conditions for the
existence of at least one positive solution are established.
MSC (2010): 34A08; 34B18; 34K37.
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1 Introduction
The study of three-point BVPs for nonlinear integer-order ordinary differential equa-

tions was initiated by Gupta [1]. Many authors since then considered the existence and

multiplicity of solutions (or positive solutions) of three-point BVPs for nonlinear inte-

ger-order ordinary differential equations. To identify a few, we refer the reader to

[2-13] and the references therein.

Fractional differential equations arise in many engineering and scientific disciplines

as the mathematical modeling of systems and processes in the fields of physics, chem-

istry, aerodynamics, electrodynamics of complex medium, polymer rheology, etc.

[14-17]. In fact, fractional-order models have proved to be more accurate than integer-

order models, i.e., there are more degrees of freedom in the fractional-order models. In

consequence, the subject of fractional differential equations is gaining much impor-

tance and attention. For details, see [18-36] and the references therein.

Differential equations with deviated arguments are found to be important mathema-

tical tools for the better understanding of several real world problems in physics,

mechanics, engineering, economics, etc. [37,38]. In fact, the theory of integer order dif-

ferential equations with deviated arguments has found its extensive applications in rea-

listic mathematical modelling of a wide variety of practical situations and has emerged
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as an important area of investigation. For the general theory and applications of integer

order differential equations with deviated arguments, we refer the reader to the refer-

ences [39-45].

As far as we know, fractional order differential equations with deviated arguments

have not been much studied and many aspects of these equations are yet to be

explored. For some recent work on equations of fractional order with deviated argu-

ments, see [46-48] and the references therein. In this article, we consider the following

three-point BVPs for nonlinear fractional-order differential equation with an advanced

argument
{

CDαu(t) + a(t)f (u(θ(t))) = 0, 0 < t < 1,
u(0) = u′′(0) = 0, βu(η) = u(1),

(1:1)

where 2 <a ≤ 3, 0 <h < 1, 0 < β <
1
η
,CDa is the Caputo fractional derivative and f :

[0, ∞) ® [0, ∞) is a continuous function.

By a positive solution of (1.1), one means a function u(t) that is positive on 0 < t <1

and satisfies (1.1).

Our purpose here is to give the existence of at least one positive solution to problem

(1.1), assuming that

(H1): a Î C ([0, 1], [0, ∞)) and a does not vanish identically on any subinterval.

(H2): The advanced argument θ Î C((0, 1), (0, 1)) and t ≤ θ(t) ≤ 1, ∀t Î (0, 1).

Let E = C[0, 1] be the Banach space endowed with the sup-norm. Set

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

.

The main results of this paper are as follows.

Theorem 1.1 Assume that (H1) and (H2) hold. If f0 = ∞ and f∞ = 0, then problem

(1.1) has at least one positive solution.

Theorem 1.2 Assume that (H1) and (H2) hold. If f0 = ∞ and f∞ = ∞, then problem

(1.1) has at least one positive solution.

Remark 1.1 It is worth mentioning that the conditions of our theorems are easily to

verify, so they are applicable to a variety of problems, see Examples 4.1 and 4.2.

The proof of our main results is based upon the following well-known Guo-Krasno-

selskii fixed point theorem:

Theorem 1.3 [49] Let E be a Banach space, and let P ⊂ E be a cone. Assume that

Ω1, Ω2 are open subsets of E with 0 Î Ω1, �̄1 ⊂ �2, and let T : P ∩ (�̄2\�1) → Pbe a

completely continuous operator such that

(i) ||Tu|| ≥ ||u||, u Î P ∩ ∂Ω1, and ||Tu|| ≤ ||u||, u Î P ∩ ∂Ω2; or

(ii) ||Tu|| ≤ ||u||, u Î P ∩ ∂Ω1, and ||Tu|| ≥ ||u||, u Î P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (�̄2\�1).

2 Preliminaries
For the reader’s convenience, we present some necessary definitions from fractional

calculus theory and Lemmas.

Definition 2.1 For a function f : [0, ∞) ® ℝ, the Caputo derivative of fractional order

a is defined as
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CDα f (t) =
1

�(n − α)

t∫
0

(t − s)n−α−1f (n)(s)ds, n − 1 < α < n, n = [α] + 1,

where [a] denotes the integer part of real number a.
Definition 2.2 The Riemann-Liouville fractional integral of order a is defined as

Iαf (t) =
1

�(α)

t∫
0

(t − s)α−1f (s)ds, α > 0,

provided the integral exists.

Definition 2.3 The Riemann-Liouville fractional derivative of order a for a function f

(t) is defined by

Dαf (t) =
1

�(n − α)
(
d
dt
)n

t∫
0

(t − s)n−α−1f (s)ds, n = [α] + 1,

provided the right-hand side is pointwise defined on (0, ∞).

Lemma 2.1 [15] Let a >0, then fractional differential equation

CDαu(t) = 0

has solution

u(t) = C0 + C1t + C2t2 + · · · + Cn−1tn−1, Ci ∈ R, i = 0, 1, 2, . . . , n − 1,

where n is the smallest integer greater than or equal to a.
Lemma 2.2 [15] Let a >0, then

IαCDαu(t) = u(t) + C0 + C1t + C2t
2 + · · · + Cn−1t

n−1

for some Ci Î ℝ, i = 0, 1, 2, . . . , N - 1, where N is the smallest integer greater than

or equal to a.
Lemma 2.3 Let 2 < a ≤ 3, 1 ≠ bh. Assume y(t) Î C[0, 1], then the following problem

CDαu(t) + y(t) = 0, 0 < t < 1, (2:1)

u(0) = u′′(0) = 0, βu(η) = u(1), (2:2)

has a unique solution

u(t) = −
t∫

0

(t − s)α−1

�(α)
y(s)ds+

1
1 − βη

1∫
0

t(1 − s)α−1

�(α)
y(s) ds− β

1 − βη

η∫
0

t(η − s)α−1

�(α)
y(s) ds.

Proof. We may apply Lemma 2.2 to reduce Equation (2.1) to an equivalent integral

equation

u(t) = −Iαy(t) − b1 − b2t − b3t
2 = −

t∫
0

(t − s)α−1

�(α)
y(s) ds − b1 − b2t − b3t

2, (2:3)

for some b1, b2, b3 Î ℝ.

Wang et al. Advances in Difference Equations 2011, 2011:2
http://www.advancesindifferenceequations.com/content/2011/1/2

Page 3 of 11



In view of the relation C Da Iau(t) = u(t) and IaIbu(t) = Ia+bu(t) for a, b >0, we can

get that

u′(t) = −
t∫

0

(t − s)α−2

�(α − 1)
y(s)ds − b2 − 2b3t.

u′′(t) = −
t∫

0

(t − s)α−3

�(α − 2)
y(s)ds − 2b3.

By u(0) = u″ (0) = 0, it follows b1 = b3 = 0. Then by the condition bu(h) = u(1), we

have

−b2 =
1

1 − βη

1∫
0

(1 − s)α−1

�(α)
y(s)ds − β

1 − βη

η∫
0

(η − s)α−1

�(α)
y(s) ds.

Combine with (2.3), we get

u(t) = −
t∫

0

(t − s)α−1

�(α)
y(s)ds+

1
1 − βη

1∫
0

t(1 − s)α−1

�(α)
y(s)ds− β

1 − βη

η∫
0

t(η − s)α−1

�(α)
y(s) ds.

This complete the proof.

Lemma 2.4 Let 2 < a ≤ 3, 0 < β <
1
η
. Assume y Î C([0, 1], [0, ∞)), then the unique

solution u of (2.1) and (2.2) satisfies u(t) ≥ 0, ∀t Î [0, 1].

Proof. By Lemma 2.3, we know that u′′(t) = − ∫ t
0

(t − s)α−3

�(α − 2)
y(s)ds ≤ 0. It means that

the graph of u(t) is concave down on (0, 1).

In addition,

u(1) = −
1∫

0

(1 − s)α−1

�(α)
y(s)ds +

1
1 − βη

1∫
0

(1 − s)α−1

�(α)
y(s)ds − β

1 − βη

η∫
0

(η − s)α−1

�(α)
y(s)ds

=
βη

1 − βη

1∫
0

(1 − s)α−1

�(α)
y(s)ds − β

1 − βη

η∫
0

(η − s)α−1

�(α)
y(s)ds

≥ β

1 − βη

⎡
⎣

η∫
0

η(1 − s)α−1

�(α)
y(s)ds −

η∫
0

(η − s)α−1

�(α)
y(s)ds

⎤
⎦

=
β

(1 − βη)�(α)

η∫
0

[
η(1 − s)α−1 − (η − s)α−1

]
y(s)ds

≥ β

(1 − βη)�(α)

η∫
0

[
(η − ηs)α−1 − (η − s)α−1

]
y(s)ds ≥ 0

Combine with u(0) = 0, it follows u(t) ≥ 0, ∀t Î [0, 1].

Lemma 2.5 Let 2 < a ≤ 3, 0 < β <
1
η
. Assume y Î C([0, 1], [0, ∞)), then the unique

solution u of (2.1) and (2.2) satisfies
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inf
t∈[η,1]

u(t) ≥ γ ||u||,

where γ = min{βη,
β(1 − η)
1 − βη

, η}.
Proof. Note that u“ (t) ≤ 0, by applying the concavity of u, the proof is easy. So we

omit it.

3 Proofs of main theorems
Define the operator T : C[0, 1] ® C[0, 1] as follows,

Tu(t) = −
t∫

0

(t − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

1
1 − βη

1∫
0

t(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

− β

1 − βη

η∫
0

t(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds.

(3:1)

Then the problem (1.1) has a solution if and only if the operator T has a fixed point.

Define the cone P = {u|u ∈ C[0, 1], u ≥ 0, inf
t∈[η,1]

u(θ(t)) ≥ γ ||u||}, where

γ = min{βη,
β(1 − η)
1 − βη

, η}.
Proof of Theorem 1.1. The operator T is completely continuous. Obviously, T is

continuous.

Let Ω ⊂ C[0, 1] be bounded, then there exists a constant K >0 such that ||a(t) f (u

(θ(t))|| ≤ K, ∀u Î Ω. Thus, we have

Tu (t) ≤ 1
1 − βη

∫ 1

0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ K

1 − βη

∫ 1

0

(1 − s)α−1

�(α)
ds

=
K

(1 − βη)�(α + 1)
,

which implies ||Tu|| ≤ K
(1 − βη)�(α + 1)

.

On the other hand, we have

|(Tu)′(t)| ≤
t∫

0

(t − s)α−2

�(α − 1)
a(s)f (u(θ(s)))ds +

1
1 − βη

1∫
0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

+
β

1 − βη

∫ η

0

(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ K

1∫
0

(1 − s)α−2

�(α − 1)
ds +

K
1 − βη

1∫
0

(1 − s)α−1

�(α)
ds +

Kβ

1 − βη

1∫
0

(1 − s)α−1

�(α)
ds

=
K

�(α)
+

(1 + β)K
(1 − βη)�(α + 1)

:= M.
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Hence, for each u Î Ω, let t1, t2 Î [0, 1], t1 < t2, we have

|(Tu)(t2) − (Tu)(t1)| ≤
t2∫

t1

∣∣(Tu)′(s)∣∣ds ≤ M(t2 − t1).

So, T is equicontinuous. The Arzela-Ascoli Theorem implies that T : C[0, 1] ® C[0,

1] is completely continuous.

Since t ≤ θ (t) ≤ 1, t Î (0, 1), then

inf
t∈[η,1]

u(θ(t)) ≥ inf
t∈[η,1]

u(t) ≥ γ ||u||. (3:2)

Thus, Lemmas 2.5 and 3.2 show that TP ⊂ P. Then, T : P ® P is completely

continuous.

In view of f0 = ∞, there exists a constant r1 >0 such that f(u) ≥ δ1u for 0 < u < r1,
where δ1 >0 satisfies

ηδ1γ

(1 − βη)

1∫
η

(1 − s)α−1

�(α)
a(s)ds ≥ 1. (3:3)

Take u Î P , such that ||u|| = r1. Then, we have

||Tu|| ≥ Tu(η)

= −
η∫

0

(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

1
1 − βη

1∫
0

η(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

− β

1 − βη

η∫
0

η(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds

= − 1
1 − βη

η∫
0

(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

η

1 − βη

1∫
0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

= − 1
1 − βη

η∫
0

(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

η

1 − βη

η∫
0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

+
η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≥ − 1
1 − βη

η∫
0

(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

1
1 − βη

η∫
0

(η − ηs)α−1

�(α)
a(s)f (u(θ(s)))ds

+
η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)δ1u(θ(s))ds

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)δ1γ ||u||ds

=
ηδ1γ

(1 − βη)

1∫
η

(1 − s)α−1

�(α)
a(s)ds||u|| ≥ ||u||.

(3:4)

Let Ωr1 = {u Î C 0[1] | ||u|| <r1}. Thus, (3.4) shows ||Tu|| ≥ ||u||, u ∈ P ∩ ∂�ρ1.
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Next, in view of f∞ = 0, there exists a constant R > r1 such that f(u) ≤ δ2u for u ≥ R,

where δ2 >0 satisfies

δ2

(1 − βη)

1∫
0

(1 − s)α−1

�(α)
a(s)ds ≤ 1. (3:5)

We consider the following two cases.

Case one. f is bounded, which implies that there exists a constant r1 >0 such that f

(u) ≤ r1 for u Î [0, ∞). Now, we may choose u Î P such that ||u|| = r2, where r2 ≥

max {μ, R}.

Then we have

Tu (t) = −
t∫

0

(t − s)α−1

�(α)
a(s)f (u(θ(s)))ds +

1
1 − βη

1∫
0

t(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

− β

1 − βη

η∫
0

t(η − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ 1
1 − βη

1∫
0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ r1
(1 − βη)

1∫
0

(1 − s)α−1

�(α)
a(s)ds

� μ ≤ ρ2 = ||u||.

Case two. f is unbounded, which implies then there exists a constant ρ2 > R
γ

> R

such that f(u) ≤ f(r2) for 0 < u ≤ r2 (note that f Î C([0, ∞), [0, ∞)). Let u Î P such

that ||u|| = r2, we have

Tu (t) ≤ 1
1 − βη

∫ 1

0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ 1
1 − βη

∫ 1

0

(1 − s)α−1

�(α)
a(s)f (ρ2)ds

≤ 1
1 − βη

∫ 1

0

(1 − s)α−1

�(α)
a(s)δ2ρ2ds

=
δ2

(1 − βη)

∫ 1

0

(1 − s)α−1

�(α)
a(s)ds||u||

≤ ||u||.
Hence, in either case, we may always let Ωr2 = {u Î C[0, 1] | ||u|| <r2} such that ||

Tu|| ≤ ||u|| for u ∈ P ∩ ∂�ρ2.

Thus, by the first part of Guo-Krasnoselskii fixed point theorem, we can conclude

that (1.1) has at least one positive solution.

Proof of Theorem 1.2. Now, in view of f0 = 0, there exists a constant r1 >0 such that f

(u) ≤ τ1u for 0 < u < r1, where τ1 >0 satisfies
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τ1

(1 − βη)

1∫
0

(1 − s)α−1

�(α)
a(s)ds ≤ 1. (3:6)

Take u Î P, such that ||u|| = r1. Then, we have

Tu (t) ≤ 1
1 − βη

1∫
0

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≤ 1
1 − βη

1∫
0

(1 − s)α−1

�(α)
a(s)τ1u(θ(s))ds

≤ τ1

(1 − βη)

1∫
0

(1 − s)α−1

�(α)
a(s)ds||u||

≤ ||u||.

(3:7)

Let Ω1 = {u Î C[0, 1] | ||u|| <r1}. Thus, (3.7) shows ||Tu|| ≤ ||u||, u Î P ∩ ∂Ω1.

Next, in view of f∞ = ∞, there exists a constant r2 > r1 such that f(u) ≥ τ2u for u ≥ r2,

where τ2 >0 satisfies

τ2ηγ

(1 − βη)

1∫
η

(1 − s)α−1

�(α)
a(s)ds ≥ 1. (3:8)

Let Ω2 = {u Î C[0, 1] | ||u|| <r2},where ρ2 >
r2
γ

> r2, then, u Î P and ||u|| = r2

implies

inf
t∈[η,1]

u(θ(t)) ≥ γ ||u|| > r2,

and so

||Tu|| ≥ Tu(η)

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)f (u(θ(s)))ds

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)τ2u(θ(s))ds

≥ η

1 − βη

1∫
η

(1 − s)α−1

�(α)
a(s)τ2γ ||u||ds

=
τ2ηγ

(1 − βη)

1∫
η

(1 − s)α−1

�(α)
a(s)ds||u|| ≥ ||u||.

This shows that ||Tu|| ≥ ||u|| for u Î P ∩ ∂Ω2.

Therefore, by the second part of Guo-Krasnoselskii fixed point theorem, we can con-

clude that (1.1) has at least one positive solution u ∈ P ∩ (�̄2\�1).
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4 Examples
Example 4.1 Consider the fractional differential equation

{
CDαu(t) + e−tf (u(θ(t))) = 0, 0 < t < 1,
u(0) = u′′(0) = 0, βu(η) = u(1),

(4:1)

where 2 <a ≤ 3, 0 <h < 1, 0 < β <
1
η
, θ(t) = tv, 0 < v <1 and

f (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin u

u2
, 0 ≤ u ≤ π

2
,

4
√
2u + cos u

π

5
2

, u >
π

2
.

Note that conditions (H1) and (H2) of Theorem 1.1 hold. Through a simple calcula-

tion we can get f0 = ∞ and f∞ = 0. Thus, by Theorem 1.1, we can get that the problem

(4.1) has at least one positive solution.

Example 4.2 Consider the fractional differential equation
{

CDαu(t) + a(t)f (u(θ(t))) = 0, 0 < t < 1,
u(0) = u′′(0) = 0, βu(η) = u(1),

(4:2)

where 2 <a ≤ 3, 0 <h < 1, 0 < β <
1
η
, θ(t) =

√
t, a(t) = etan tand

f (u) = u

3
2 ln(1 + u) + u3+sin u.

Obviously, it is not difficult to verify conditions (H1) and (H2) of Theorem 1.2 hold.

Through a simple calculation we can get f0 = 0 and f∞ = ∞. Thus, by Theorem 1.2, we

can get that the problem (4.2) has at least one positive solution.

Remark 4.1 In the above two examples, a, b, h could be any constants which satisfy

2 <a ≤ 3, 0 <h < 1, 0 < β <
1
η
. For example, we can take a = 2.5, h = 0.5, b = 1.5.
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