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Abstract

We have introduced a new generalization of the Riemann zeta function. A special
case of our generalization converges locally uniformly to the Riemann zeta function
in the critical strip. It approximates the trivial and non-trivial zeros of the Riemann
zeta function. Some properties of the generalized Riemann zeta function are
investigated. The relation between the function and the general Hurwitz zeta
function is exploited to deduce new identities.
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1 Introduction
The family of zeta functions including Riemann, Hurwitz, Lerch and their generaliza-

tions constantly find new applications in different areas of mathematics (number the-

ory, analysis, numerical methods, etc.) and physics (quantum field theory, string

theory, cosmology, etc.). A useful generalization of the family is expected to have wide

applications in these areas as well. Some extensions of the Fermi-Dirac (FD) and Bose-

Einstein (BE) functions have been introduced in [1]. The extended Fermi-Dirac (eFD)

�ν(s; x) :=
1

�(s)

∞∫
x

(t − x)s−1 e−νt

et + 1
dt (�(s) > 0; x ≥ 0;�(ν) > −1), (1:1)

and the extended Bose-Einstein (eBE) functions

�ν(s; x) :=
1

�(s)

∞∫
x

(t − x)s−1 e−νt

et − 1
dt

(�(ν) > −1;�(s) > 1 when x = 0; �(s) > 0 when x > 0),

(1:2)

provide a unified approach to the study of the zeta family. These functions proved

useful in providing simple and elegant proofs of some known results and yielding new

results.

The Hurwitz-Lerch zeta function

�(z, s, a) :=
∞∑
n=0

zn

(n + a)s

(s := σ + iτ , a �= 0,−1,−2,−3, . . . ; s ∈ C when |z| < 1; σ > 1 when |z| = 1)

(1:3)
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has the integral representation ([[2]2, p. 27, (1.6)(3)])

�(z, s, a) =
1

�(s)

∞∫
0

ts−1e−(a−1)t

et − z
dt

(�(a) > 0, and either —z— ≤ 1, z �= 1, σ > 0 or z = 1, σ > 1)

(1:4)

If a cut is made from 1 to ∞ along the positive real z-axis, F is an analytic function

of z in the cut z-plane provided that s >0 and ℜ(a) >0. A class of functions can be

expressed in terms of the function F. For example the polylogarithm function

Lis(x) := φ(x, s) :=
∞∑
n=1

xn

ns
= x�(x, s, 1), (1:5)

Hurwitz’s zeta function

ζ (s, a) = �(1, s, a), (1:6)

and the Riemann zeta function

ζ (s) = ζ (s, 1) = �(1, s, 1), (1:7)

are special cases of this function. The Hurwitz-Lerch zeta function is related to the

above

eFD and eBE functions via

�ν(s; x) = e−(ν+1)x�(−e−x, s, ν + 1), (1:8)

�ν(s; x) = e−(ν+1)x�(e−x, s, ν + 1), (1:9)

and shows the extension of the variable x to the complex domain as described in

(1.4). The Weyl transform representation of the functions (1.1) and (1.2) leads to new

identities for the family of the zeta functions [1].

Here we provide a new generalization of the Riemann zeta function that is also

related to the eFD and eBE functions and to the Hurwitz-Lerch zeta function. We

study its properties and relations with other special functions. Before defining the new

function, it is worth putting the family of zeta functions in perspective for our purpose.

Riemann proved that the zeta-function

ζ (s) :=
∞∑
n=1

1
ns

(s = σ + iτ , σ > 1), (1:10)

has a meromorphic continuation to the complex plane, which satisfies the functional

equation [[3], p. 13 (2.1.1)]

ζ (s) = 2(2π)s−1sin
(π s
2

)
�(1 − s)ζ (1 − s) = (π)

s−
1
2

�( 1−s
2 )

�( s
2)

ζ (1 − s). (1:11)

From the equation (1.11) it is obvious that s = -2, -4, 6,..., are simple zeros of the

Riemann zeta function. They are called the trivial zeros. It is noted that the simple

zero of the sine function on the RHS of (1.11) at s = 0 is canceled by the simple pole

of the zeta function ζ(1 - s) and the simple zeros of the sine function at s = 1, 2, 3,...

are canceled by the simple poles of the gamma function Γ(1 - s) at these points. All
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other zeros of the Riemann zeta function, which are infinitely many as proven by

Hardy [4-6], are called the non-trivial zeros, are symmetric about the critical line s =

1/2 in the critical strip 0 ≤ s ≤ 1. For the detailed properties of the family of zeta func-

tions we refer to [3-5,7-12]. There have been several generalizations of the Riemann

zeta function.

Truesdell [13] studied the properties of the de Jonquière’s function or the polyloga-

rithm

Lis(x) = φ(x, s) =
∞∑
n=1

xn

ns
(1:12)

that generalizes the Riemann zeta function and has the integral representation

φ(x, s) =
x

�(s)

∞∫
0

ts−1

et − x
dt (|x| ≤ 1 − δ, δ ∈ (0, 1); x = 1, σ > 1). (1:13)

Note that if x lies anywhere except on the segment of real axis from 1 to ∞, where a

cut is imposed (1.12) defines an analytic function of x for s >0. However (1.12) coin-

cides with the zeta function in s >1 for x = 1 as we have

Lis(1) = φ(1, s) =
∞∑
n=1

1
ns

= ζ (s) (σ > 1). (1:14)

The Fermi-Dirac (FD) function ℑs-1(x) defined by [[14], p. 20 (25)]

�s−1(x) :=
1

�(s)

∞∫
0

ts−1

et−x + 1
dt (σ > 0), (1:15)

and the Bose-Einstein (BE) function defined by [[14], p. 449 (9)]

βs−1(x) :=
1

�(s)

∞∫
0

ts−1

et−x − 1
dt (σ > 1), (1:16)

are also related to the zeta family by

�s−1(−x) = −Lis(−e−x) = −φ(−e−x, s) = e−x�(−e−x, s, 1) = �0(s; x) (σ > 0),(1:17)

βs−1(−x) = Lis(e−x) = φ(e−x, s) = e−x�(e−x, s, 1) = �0(s; x) (σ > 1). (1:18)

From (1.1), we find that the weighted function

�(s)(1 − 21−s)�ν(s; 0) (σ > 0, 0 ≤ ν < 1), (1:19)

converges uniformly to g(s)(1 - 21-s)ζ(s) as ν ® 0+ in every sub-strip 0 < s1 ≤ s ≤ s2

<1 of the critical strip 0 < s <1. However, for x = 0 in (1.2) we get

�ν(s; 0) :=
1

�(s)

∞∫
0

ts−1 e−νt

et − 1
dt, (1:20)

which converges to the Riemann zeta function in the region s ≥ s1 >1 as ν ® 0+.

However, the function (1.20) is not even defined in the critical strip 0 < s <1 as the
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integral is divergent there. So it is desirable to have a generalization of the Riemann

and Hurwitz zeta functions in the critical strip, which converges locally uniformly at

least. A special case of our new generalization converges to the Riemann zeta function

locally uniformly in the critical strip and gives a unified approach, not only to the

study of Riemann, Hurwitz, Hurwitz-Lerch zeta functions, but also of the FD and BE

functions along with their extensions. An important feature of our approach is the

desired simplicity of the proofs using Weyl’s fractional transform.

The article is organized as follows. For completeness, in Sect. 2 we state some preli-

minaries and a general representation formula proved earlier in [1]. In Sect. 3, we

define the extended Riemann zeta function and prove its series representation. A con-

nection of the function with the eFD and eBE functions is shown in the next section.

In Sect. 5, we prove functional relations of the generalized Riemann zeta function.

Some concluding remarks and discussion are given in the last section.

2 Some preliminaries, Mellin and Weyl’s transforms
The function spaces H(�; l) and H(∞; l) are defined as follows (see [1]).

A function f Î C∞(0, ∞) is said to be a member of H(�; l) if:

1. f(t) is integrable on every finite subinterval [0, T] (0 < T <∞) of R+
0 := [0,∞);

2. f(t) = O(t -l) (t ® 0+);

3. f(t) = O(t -�) (t ® ∞).

Furthermore, if the above relation f(t) = O(t -�) (t ® ∞) is satisfied for every expo-

nent κ ∈ R+
0, then the function f (t) is said to be in the class H(∞; l). It is noted that

H(∞;λ) ⊂ H(κ;λ) (∀κ ∈ R+
0). Clearly, we have

f (t) = e−bt ∈ H(∞, 0) (b > 0). (2:1)

The Mellin transform of f Î H(�; l) is defined by (see [[15], p. 83])

fM(s) = M[f (t); s] :=

∞∫
0

f (t)ts−1dt (s = σ + iτ ,λ < σ < κ). (2:2)

The Weyl transform (or Weyl’s fractional integral) of order s of ω Î H(�; 0) is

defined by (see [[9], Vol. II, p. 181] and [[16], p. 237]),

�(s; x) := W−s[ω(t)](x) :=
1

�(s)
M[ω(t + x); s] =

1
�(s)

∞∫
0

ω(t + x)ts−1dt

=
1

�(s)

∞∫
x

ω(t)(t − x)s−1dt (s = σ + iτ , 0 < σ < κ, x ≥ 0).

(2:3)

For s ≤ 0, we define the Weyl transform (or Weyl’s fractional derivative) of order s

of ω Î H(�; 0) as follows (see [[16], p. 241]),

�(s; x) := W−s[ω(t)](x) := (−1)n
dn

dxn
(�(n + s; x)), (0 ≤ n + σ < k), (2:4)
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where n is the smallest positive integer greater than or equal to -s provided that

ω(0) is well defined and that

�(0; x) := ω(0). (2:5)

We can rewrite Weyl’s fractional derivative (2.4) alternately as

�(−s; x) := Ws[ω(t)](x) = (−1)n
dn

dxn
(W−(n−s)[ω(t)](x))

=: (−1)n
dn

dxn
(�(n − s; x)) (σ > 0, 0 ≤ n − σ < k),

(2:6)

where n is the smallest positive integer greater than or equal to s. In particular for s

= n (n = 0, 1, 2, 3,...) in (2.6), we find that

�(−n; x) := Wn[ω(t)](x) := (−1)n
dn

dxn
(�(0; x)) = (−1)n

dn

dxn
(ω(x)). (2:7)

Notice that {Ws} (s ∈ C) is a multiplicative group [[16], p. 245] and satisfies

W−(μ+s)[ω(t)](x) = W−μ[�(s; t)](x) = �(s + μ; x]. (2:8)

The notations ℜs{f(t); x} and Ws
x+[f (t)] are also used to represent the Weyl transform

(see [[9], Vol. II, p. 181] and [1]). Following the above terminology it was proved in [1]

that

�(s; x) =
∞∑
n=0

(−1)n�(s − n; 0)xn

n!
(ω ∈ H(κ; 0), 0 ≤ σ < k, x ≥ 0). (2:9)

Note that for the case s = 0, (2.9) yields

�(0; x) =
∞∑
n=0

(−1)n�(−n; 0)xn

n!
=

1
2π i

c+i∞∫
c−i∞

�(s)�(s; 0)x−sds =
1
2π i

c+i∞∫
c−i∞

ωM(s)x−sds

(ω ∈ H(κ; 0), 0 < c < k, x ≥ 0),

(2:10)

which is Hardy-Ramanujan’s master theorem (see [[10], p. 186 (B)]. Some special

cases of (2.10) include

�(0; x) = ω(x) := (
1

ex − 1
− 1

x
) =

∞∑
n=0

(−1)nζ (−n; 0)xn

n!

=
1
2π i

c+i∞∫
c−i∞

�(s)ζ (s)x−sds =
1
2π i

c+i∞∫
c−i∞

ωM(s)x−sds (0 < c < 1, x ≥ 0),

(2:11)

Za(0; x) = za(x) := (
e−ax

ex − 1
− 1

x
) =

∞∑
n=0

(−1)nζ (−n; a)xn

n!

=
1
2π i

c+i∞∫
c−i∞

�(s)ζ (s, a)x−sds =
1
2π i

c+i∞∫
c−i∞

zM(s)x−sds (0 < c < 1, x ≥ 0),

(2:12)

which shows that za(x) Î H(1; 0) (0 ≤ a <1). Similarly, we have (see [[15], p. 91

(3.3.6)])
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2cos(2πx) =
1
2π i

c+i∞∫
c−i∞

ζ (1 − s)
ζ (s)

x−s ds (0 < c < 1/2, x ≥ 0), (2:13)

which shows that cos(2πx) Î H(1/2, 0).

3 The generalized Riemann zeta function Ξν(s; x)
The eFD and the eBE functions defined by (1.1) and (1.2) provide a unified approach

to the study of the zeta family. The weighted function Γ(s)(1 - 21-s) Θν(s; 0) converges

uniformly to Γ(s)(1 - 21-s)ζ(s) as ν ® 0+ in every sub-strip 0 < s1 ≤ s ≤ s2 <1 of the

critical strip 0 < s <1. However, the function Γ(s)Ψν(s; 0) is not even defined in the cri-

tical strip as the integral representation (1.1) is divergent in 0 < s <1. It is desirable to

have a function that converges uniformly to the Riemann zeta function in some sense

and connects the eFD and eBE functions. We assume that ν is real and 0 ≤ ν <1 in the

rest of the article and use analytic continuation [[6], pp. 22-23] to introduce the

extended Hurwitz zeta function as follows:

�ν(s; x) :=
1

�(s)

∞∫
x

(t − x)s−1
(

1
et − 1

− 1
t

)
e−νtdt

(0 < �(s) < 1, x ≥ 0, 0 ≤ ν < 1; �(s) > 0, ν > 0).

(3:1)

For x = 0 and ν = 0 in (3.1) [[6], p. 22]

ζ (s) ≡ �0(s; 0) :=
1

�(s)

∞∫
0

ts−1
(

1
et − 1

− 1
t

)
dt (0 < �(s) < 1). (3:2)

Theorem 3.1 The generalized Riemann zeta function (3.1) is well defined and the

weighted function Γ(s)Ξν(s; 0) converges uniformly to the weighted Riemann zeta func-

tion Γ(s)ζ(s) as ν ® 0+ in every sub-strip 0 < s1 ≤ s ≤ s2 <1 of the critical strip 0 < s
<1.

Proof. First we note that

∣∣�(s)�ν(s; 0)
∣∣ =

∣∣∣∣∣∣
∞∫
0

ts−1(
1

et − 1
− 1

t
)e−νtdt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∫
0

tσ−1(
1
t

− 1
et − 1

)e−νtdt

∣∣∣∣∣∣

≤
∞∫
0

tσ−1(
1
t

− 1
et − 1

)dt = −�(σ )�0(σ ) = −�(σ )ζ (σ ),

(3:3)

which shows that the generalized Riemann zeta function (3.1) is well defined. Sec-

ond, that the difference integral representation (as 1 - e-νt ≤ 1, 0 ≤ ν <1, 0 ≤ t <∞),

∣∣�(s)(�ν(s; 0) − ζ (s))
∣∣ =

∣∣∣∣∣∣
∞∫
0

ts−1(
1

et − 1
− 1

t
)(e−νt − 1)dt

∣∣∣∣∣∣ ≤
∞∫
0

tσ−1(
1
t

− 1
et − 1

)(1 − e−νt)dt

≤
∞∫
0

tσ−1(
1
t

− 1
et − 1

)dt = −�(σ )�0(σ ) = −�(σ )ζ (σ )

(0 ≤ ν < 1, 0 < σ1 ≤ σ ≤ σ2 < 1),

(3:4)

is absolutely convergent shows that the limit as ν ® 0+ and the integral in (3.4) are

reversible. Letting ν ® 0+ in (3.4) we find that the convergence
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∣∣�(s)(�ν(s; 0) − ζ (s))
∣∣ → 0 (ν → 0+, 0 < σ1 ≤ σ ≤ σ2 < 1), (3:5)

is uniform. ■
Theorem 3.2 (Connection with the Hurwitz-zeta function)

�ν(s; 0) = ζ (s, ν + 1) − �(s − 1)
�(s)

ν1−s = ζ (s, ν + 1) − 1
s − 1

ν1−s

(0 < ν < 1, σ > 0, ν = 0, 0 < σ < 1).

(3:6)

Proof. We assume that 0 < ν <1 and s >1. In this case, from (3.1)

�ν(s; 0) :=
1

�(s)

∞∫
0

ts−1(
1

et − 1
− 1

t
)e−νtdt =

1
�(s)

∞∫
0

ts−1 e−νt

et − 1
dt − 1

�(s)

∞∫
0

ts−2e−νtdt

= ζ (s, ν + 1) − �(s − 1)
�(s)

ν1−s = ζ (s, ν + 1) − �(s − 1)
(s − 1)�(s − 1)

ν1−s = ζ (s, ν + 1) − 1
s − 1

ν1−s

(0 < ν < 1, σ > 1).

(3:7)

Note that the RHS in (3.7) remains well defined for 0 < s <1 and 0 < ν <1. More-

over, for ν = 0, we have the well known integral representation (3.2) (see [[6], p. 22])

for 0 < s <1. Hence the proof. ■
Remark 3.3 The representation (3.6) of the generalized Riemann zeta function shows

that the function is meromorphic. For ν Î (0, 1) the function has a removable singular-

ity at s = 1 as the residue of the function is zero. However, for ν = 0 the function has a

simple pole at s = 1 with residue 1. We can rewrite (3.6) as

�ν(s; 0) =
1

s − 1
[(s − 1)ζ (s, ν + 1) − ν1−s] (0 < ν < 1; ν = 0, 0 < σ < 1). (3:8)

Putting s = - n and using [[7], p. 264]

ζ (−n, a) = −Bn+1(a)
n + 1

(n = 0, 1, 2, . . .), (3:9)

we find that the function is related to the Bernoulli’s polynomials via (see [[7], p. 264,

(17)])

�ν(−n, 0) =
νn+1 − Bn+1(ν + 1)

n + 1
(0 < ν < 1, n = 0, 1, 2, 3, . . .). (3:10)

Using the relations (see [[11], pp. 26-28])

B2n+1(ν + 1) = B2n+1(ν) + (2n + 1)ν2n, (3:11)

B2n+1(ν) =
2n+1∑
k=0

(
2n + 1
k

)
Bkν

2n+1−k, (3:12)

B2n+1(0) =: B2n+1 = (2n + 1)ζ (−2n) = 0, (3:13)

B2n(0) =: B2n = −2nζ (1 − 2n) (n = 1, 2, 3, . . .), (3:14)

and

B2n(0) =: B2n = −2nζ (1 − 2n) ∼ (−1)n+1
(4n)!

(2π)2n
(1 + 2−2n) (n = 3, 4, 5, . . .),(3:15)
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we obtain the closed form

�ν(−2n, 0) =
ν2n+1 − B2n+1(ν + 1)

2n + 1
=

ν2n+1 − (B2n+1(ν) + (2n + 1)ν2n)
2n + 1

=

ν2n+1 −
{
2n+1∑
k=0

(
2n + 1
k

)
Bkν

2n+1−k + (2n + 1)ν2n
}

2n + 1
(n = 1, 2, 3, . . .),

(3:16)

which shows that

�ν(−2n, 0) = −B2nν +O(ν3) = 2nζ (1 − 2n)ν +O(ν3) (ν → 0+,n = 1, 2, 3, . . .).(3:17)

Thus the generalized Riemann zeta function approximates the trivial zeros (s = -2,

-4, -6,...) of the Riemann zeta function as ν ® 0+. The relation (3.17) gives the rate at

which these zeros are approached. One needs to see if all the zeros can be approxi-

mated uniformly. Since |2nζ(1 - 2n)| ® ∞ as n ® ∞, by setting

νn,k =
2−k∣∣2nζ (1 − 2n)

∣∣ (n = 1, 2, 3, . . .), (3:18)

we have

sup
1≤n<∞

|�νn,k(−2n, 0)| = ◦(1) (k → ∞). (3:19)

which shows that all the non-trivial zeros can, indeed, be approximated uniformly.

Remark 3.4 It is worth visualizing the behavior of the function near ν = 0 for large n

more generally. Though Ξν(-n, 0) is a function of one continuous and one discrete

variable, conceive it as if it were a sheet over the strip ν Î (0, 1), n Î (0, ∞) in the (ν,

n)-plane. At every n the sheet approaches the n-axis arbitrarily closely, but it does not

do so for all n, since the sheet rises increasingly more sharply for larger values of n.

The asymptotic formula for ζ(1 - 2n) (see [[11], pp. 26-28]) can be used in conjunction

with Stirlings formula to give the coefficient of ν (for small ν)

B2n(0) ∼ (−1)n+1
(4n)!

(2π)2n
(1 + 2−2n) ∼ (−1)n+1

√
18πn(8n2/πe2)2n. (3:20)

The function of the discrete variable can be thought of as the parts of the sheet lying

over the grid lines of the integer values of n. The sequence where the curve intersects

the grid lines gives a path. The non-trivial zeros are then clearly uniformly approxi-

mated by paths approaching ν = 0 lying between ν = 1/|2nζ(1 - 2n)| and the n-axis.

4 Connection with the eFD and eBE integral functions
Theorem 4.1 The generalized Riemann zeta function is related to the eBE integral

functions and the incomplete gamma function via

�ν(s; x) = �ν(s; x) + �(1 − s, νx)xs−1

(σ > 0, ν > 0, x > 0; ν = 0, 0 < σ < 1, x ≥ 0).
(4:1)

Proof. We have the identity

e−νt

et − 1
=

(
1

et − 1
− 1

t

)
e−νt +

e−νt

t
. (4:2)
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By taking the Weyl’s transform of both sides in (4.2) we obtain

�ν(s; x) = �ν(s; x) +W−s
[
e−νt

t

]
(x). (4:3)

However, we have (see [[9], pp. 255, 266])

W−s
[
e−νt

t

]
(x) = xs−1e−νxψ(s, s; νx) = xs−1�(1 − s, νx) (σ > 0, ν > 0, x > 0). (4:4)

From (4.3) and (4.4) we arrive at (4.1). ■
Corollary 4.2

βs−1(−x) = �0(s; x) + �(1 − s)xs−1 (0 < σ < 1, x > 0) (4:5)

Proof. This follows from (4.1) when we take ν = 0 and use (1.20). ■
Theorem 4.3

�ν(s; x) =
∞∑
n=0

(−1)n�ν(s − n : 0)xn

n!

(σ > 0, ν > 0, x > 0; ν = 0, 0 < σ < 1, 0 < x < 2π).

(4:6)

Proof. First we note that

�ν(0, x) :=
(

1
ex − 1

− 1
x

)
e−νx ∈ H(∞; 0). (4:7)

Therefore, following the general expansion result (2.9), we arrive at (4.6). ■
Remark 4.4 A very interesting special case of (4.6) arises when ν = s = 0. In this case

we have the well-known result proved by Hardy and Littlewood [5]

�0(0; x) =
1

ex − 1
− 1

x
=

∞∑
n=0

(−1)nζ (−n)xn

n!
(0 < x < 2π). (4:8)

Equations (4.5) and (4.6) lead to the useful representation

βs−1(−x) = �(1 − s)xs−1 +
∞∑
n=0

(−1)nζ (s − n : 0)xn

n!
(0 < σ < 1, 0 < x < 2π). (4:9)

Theorem 4.5 The generalized Riemann zeta and the eFD integral functions are

related by

21−s�ν(s; 2x) =�2ν(s; x) − �2ν(s, x)

(σ > 0, ν > 0, x > 0; ν = 0, 0 < σ < 1, x ≥ 0).
(4:10)

Proof. We have the identity

2
(

e−2νt

e2t − 1
− e−2νt

2t

)
=

(
1

et − 1
− 1

t

)
e−2νt − e−2νt

et + 1
. (4:11)
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Taking the Weyl transform of both sides in (4.11), we find that

2W−s
[

e−2νt

e2t − 1
− e−2νt

2t

]
(x)

= W−s
[
e−2νt

et − 1
− e−2νt

t

]
(x) − W−s

[
e−2νt

et + 1

]
(x) = �2ν(s; x) − �2ν(s, x).

(4:12)

However, we have

2W−s
[

e−2νt

e2t − 1
− e−2νt

2t

]
(x) =

2
�(s)

∞∫
x

(t − x)s−1
(

1
e2t − 1

− 1
2t

)
e−2νtdt. (4:13)

The substitution t = τ/2 in (4.13) leads to

2W−s
[

e−2νt

e2t − 1
− e−2νt

2t

]
(x) =

1
�(s)

∞∫
2x

(τ /2 − x)s−1
(

1
eτ − 1

− 1
τ

)
e−ντdτ

=
21−s

�(s)

∞∫
2x

(τ − 2x)s−1
(

1
eτ − 1

− 1
τ

)
e−ντdτ = 21−s�ν(s; 2x)

(4:14)

From (4.12), (4.13), and (4.14) we arrive at (4.10). ■
Remark 4.6 It is useful to write (4.10) in the form

�2ν(s, x) = �2ν(s; x) − 21−s�ν(s; 2x)

(σ > 0, ν > 0, x > 0; ν = 0, 0 < σ < 1, x ≥ 0).
(4:15)

Putting v = x = 0 in (4.15) we find the classical integral representation

�0(s, 0) = (1 − 21−s)ζ (s) =
1

�(s)

∞∫
0

ts−1

et + 1
dt (σ > 0), (4:16)

for the weighted Riemann zeta function. Note that the simple pole of the zeta func-

tion at s = 1 is cancelled by the (simple) zero of the factor 1 - 21-s such that the pro-

duct Θ0(s, 0) = (1 - 21-s)ζ(s) remains well defined in the sense of the Riemann

removable singularity theorem. Moreover using the relations (1.8) and (1.9) we can

rewrite (4.10) in terms of the Hurwitz-Lerch zeta function as

�2ν(s; x) − 21−s�ν(s; 2x) = e−(2ν+1)x�(−e−x, s, 2ν + 1)

(σ > 0, ν > 0, x > 0; ν = 0, 0 < σ < 1, x ≥ 0).
(4:17)

This can be extended to a function of the complex variable z as given in (1.4).

Corollary 4.7 (Connection with the FD functions)

�(s; x) − 21−s�(s; 2x) = �s−1(−x) (0 < σ < 1). (4:18)

Proof. This follows from (1.17) and (1.18) and from (4.10) when we put ν = 0. ■

5 Difference equation for the generalized Riemann zeta function
Functional relations arising from difference equations are useful for the study of special

functions. For example, the Bernoulli polynomials satisfy the difference equation ([[7],

p. 265 (18)])
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Bn(x + 1) − Bn(x) = nxn−1 (n ≥ 1). (5:1)

Do the generalized Riemann-zeta functions also satisfy such relations? The next the-

orem gives the answer to this question.

Theorem 5.1 The generalized Riemann zeta function Ξν(s; x) satisfies the difference

equation

�ν(s; x) − �ν+1(s; x)

= (ν + 1)−se−(ν+1)x − xs−1 (
�(1 − s, νx) − �(1 − s, (ν + 1)x)

)
(x, ν > 0, σ > 0; x > 0, ν = 0, 0 < σ < 1).

(5:2)

Proof. We have the identity

e−νt

et − 1
− e−νt

t
− e−(ν+1)t

et − 1
+
e−(ν+1)t

t
= e−(ν+1)t − e−νt

t
+
e−(ν+1)t

t
(ν ≥ 0). (5:3)

Applying the Weyl transform on both sides in (5.3) we obtain

W−s
[

e−νt

et−1 − e−νt

t

]
(x) − W−s

[
e−(ν+1)t

et−1 − e−(ν+1)t

t

]
(x)

= W−s
[
e−(ν+1)t

]
(x) − W−s

[
e−νt

t

]
(x) +W−s

[
e−(ν+1)t

t

]
(x)..

(5:4)

However (see [[9], Vol. II, p. 202]),

W−s[e−at](x) = a−se−ax, (5:5)

and (see [[2], p. 262 (6.9.2)(21)])

W−s
[
1
t
e−at

]
(x) = xs−1e−axψ(s, s; ax) = xs−1�(1 − s, ax). (5:6)

From (5.4), (5.5), and (5.6) we arrive at (5.2). ■

6 Concluding remarks and discussion
According to Bombieri (see [[17], (2)]), the formula

ζ (s) + 1 − 1
s − 1

=
1

�(s)

∞∫
0

(
1

et − 1
− 1

t
)e−tdt, (6:1)

was proved by Tchebychev, from which he deduced that (s - 1)ζ(s) has limit one as s

® 1. He used the above formula in his first memoir to prove the asymptotic formula

for the number of primes less than a given number. Putting ν = 1 in (3.6) we have

�1(s; 0) = ζ (s, 2) − 1
s − 1

= ζ (s) + 1 − 1
s − 1

=
1

�(s)

∞∫
0

(
1

et − 1
− 1

t

)
e−tdt, (6:2)

which is exactly Tchebychev’s formula. This shows that a very special case of our

new generalized Riemann zeta function appeared earlier in the work of Tchebychev in

the study of the Riemann zeta function and the location of the non-trivial zeros. How-

ever, the general case of the function and its relation with the zeta family does not

seem to have been realized so far. We studied the properties and functional relations

of the new function. It achieves the desired simplification of the cumbersome proofs of

elegant properties of the Hurwitz-Lerch zeta function. This simplification can be
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expected to lead to other results that may have remained unproven due to the com-

plexity of their proofs.

It was seen that the generalized Riemann zeta function has simple connections with

the recently defined eBE and eFD functions, which have also found another use in

Physics. For certain problems arising in condensed matter theory quasi-particles that

are neither fermions nor bosons had been proposed. They had been called “anyons”

(see references in [18] for the literature on these particles). The eBE and eFD functions

had been put forward as possible candidates for the anyon function as they interpolate

very naturally between the BE and FD functions. The above connections enable us to

obtain an asymptotic expansion of the function in the critical strip. It turns out that

the new function is also related to the Bernoulli polynomials via (3.12) and approxi-

mates the non-trivial zeros of the Riemann zeta function as well.

Abbreviations
BE: Bose-Einstein; eFD: extended Fermi-Dirac; FD: Fermi-Dirac.
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