
RESEARCH Open Access

Superstability of generalized cauchy functional
equations
Young-Su Lee1* and Soon-Yeong Chung2

* Correspondence: masuri@sogang.
ac.kr
1Department of Mathematics,
Sogang University, Seoul 121-741,
Republic of Korea
Full list of author information is
available at the end of the article

Abstract

In this paper, we consider the stability of generalized Cauchy functional equations
such as

f (x + y) = f (x)g(y) + f (y), f (xy) = f (x)g(y) + f (y).

Especially interesting is that such equations have the Hyers-Ulam stability or
superstability whether g is identically one or not.
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1. Introduction
The most famous functional equations are the following Cauchy functional equations:

f (x + y) = f (x) + f (y), (1:1)

f (x + y) = f (x) f (y), (1:2)

f (xy) = f (x) + f (y), (1:3)

f (xy) = f (x) f (y). (1:4)

Usually, the solutions of (1.1)-(1.4) are called additive, exponential, logarithmic and

multiplicative, respectively. Many authors have been interested in the general solutions

and the stability problems of (1.1)-(1.4) (see [1-5]).

The stability problems of functional equations go back to 1940 when Ulam [6] pro-

posed the following question:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·,·) such that

d(f (xy), f (x)f (y)) ≤ ε.

Then does there exist a group homomorphism L : G1 ® G2 and δε >0 such that

d(f (x), L(x)) ≤ δε

for all × Î G1?
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The case of (1.1) was solved by Hyers [7]. He proved that if f is a function between

Banach spaces satisfying ||f(x+y) - f(x) - f(y)|| ≤ ε for some fixed ε >0, then there exists

a unique additive mapping A such that ||f(x) - A(x)|| ≤ ε. From these historical back-

grounds, the functional equation

E1(ϕ) = E2(ϕ) (1:5)

is said to have the Hyers-Ulam stability if for an approximate solution �s such that

|E1(ϕs)(x) − E2(ϕs)(x)| ≤ ε

for some fixed constant ε >0 there exists a solution � of (1.5) such that

|ϕs(x) − ϕ(x)| ≤ δε

for some positive constant ≤ δε.

During the last decades, Hyers-Ulam stability of various functional equations has

been extensively studied by a number of authors (see [3-5,8-10]). Especially, Forti [11]

proved the Hyers-Ulam stability of (1.3). The stability of (1.2) was proved by Baker,

Lawrence and Zorzitto [12]. They proved that if f is a function satisfying |f(x + y) - f(x)

f(y)| ≤ ε for some fixed ε >0 then f is either bounded or else f(x+y) = f(x)f(y). In order

to distinguish this phenomenon from the Hyers-Ulam stability, we call this phenom-

enon superstability. Generalizing results as in [12], Baker [13] proved that the super-

stability for (1.4) does also hold.

In this paper, we consider the stability of generalized Cauchy functional equations

such as

f (x + y) = f (x)g(y) + f (y), (1:6)

f (xy) = f (x)g(y) + f (y). (1:7)

We say that (1.6) and (1.7) are generalized Cauchy functional equations because

these are reduced the Cauchy functional equations if g is identically one. It is easily

checked that the general solutions of (1.6) are additive or exponential whether g is

identically one or not. From this point of view, we can expect that (1.6) has the Hyers-

Ulam stability or superstability due to the conditions of g. Actually, if g is identically

one in (1.6), then Hyers-Ulam stability holds [7]. On the other hand, if g is not identi-

cally one in (1.6), then we shall see in Section 2 that superstability holds in this case.

That is, f and g are either bounded or else f(x + y) = f(x)g(y) + f(y).

Analogously, it is easy to see that the general solutions of (1.7) are logarithmic or

multiplicative whether g is identically one or not. If g is identically one in (1.7), then

this case is exactly the same as in [11]. And hence Hyers-Ulam stability holds in this

case. We shall prove that if g is not identically one in (1.7), then f and g are either

bounded or else f(xy) = f(x)g(y)+f(y).

2. Stability of (1.6) and (1.7)
We first consider the stability of (1.6). The general solutions of (1.6) are given by

{
f ≡ 0
g : arbitrary;

{
f : constant
g ≡ 0;

{
f (x) = A(x)
g ≡ 1;

{
f (x) = a(E(x) − 1)
g(x) = E(x),
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where A is an additive mapping, E is an exponential mapping and a is an arbitrary

nonzero constant. For the proof we refer to [[14], Lemma 1]. Although (1.6) is slightly

different from (1.1), the general solutions of (1.6) are related to (1.2) rather than (1.1)

if g is not identically one. The stability result in the case of g ≡ 1 in (1.6) is well known

as follows.

Theorem 2.1. [4,7]Let E1 be a normed vector space and E2 a Banach space. Suppose

that f : E1 ® E2 satisfies the inequality

||f (x + y) − f (x) − f (y)|| ≤ ε

for all x, y in E1, where ε >0 is a constant. Then the limit

A(x) = lim
n→∞

f (2nx)
2n

exists for all × in E1 and A : E1 ® E2 is a unique additive mapping satisfying

||f (x) − A(x)|| ≤ ε

for all × in E1.

According to the above result, we know that Hyers-Ulam stability holds if g is identi-

cally one. Thus, it suffices to show the case g ≢ 1. Especially interesting is that super-

stability holds if g is not identically one as follows.

Theorem 2.2. Let V be a vector space and let f, g : V ®≤ be complex valued func-

tions with g ≢ 1. Suppose that f and g satisfy the inequality

|f (x + y) − f (x)g(y) − f (y)| ≤ ε. (2:1)

Then, one of the following conditions holds:

(i) If f ≡ 0, then g is arbitrary;

(ii) If f(≢ 0) is bounded or f(0) ≠ 0 , then g is also bounded;

(iii) If f is unbounded, then f(0) = 0, g is also unbounded and f(x+y) = f(x)g(y) + f(y)

for all x, y Î V.

Proof. (i) If f ≡ 0, then we easily see that g is arbitrary.

(ii) Suppose that f is bounded and f ≢ 0. Then, there exists a constant M >0 such

that |f(x)| ≤ M for all x Î V. From (2.1), it follows that

|f (x)g(y)| ≤ ε + 2M (2:2)

for all x, y Î V. Since f ≢ ≡ 0, there exists a point x0 such that f(x0) ≠ 0. Putting x =

x0 in (2.2) and dividing the result by |f(x0)| we have

|g(y)| ≤ ε + 2M
|f (x0)|

for all y Î V. This shows that g is bounded.

Now assume that f(0) ≠ 0. Putting x = 0 in (2.1) yields

|f (0)g(y)| ≤ ε

for all y Î V. We see that g is bounded, since f(0) ≠ 0.
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(iii) Finally, we are going to prove the case that f is unbounded. Since f is

unbounded, we can take a sequence {xn} such that |f(xn)| ® ∞. Putting x = xn in (2.1)

and dividing both sides by |f(xn)| we have
∣∣∣∣ f (xn + y)

f (xn)
− g(y) − f (y)

f (xn)

∣∣∣∣ ≤ ε

|f (xn)| .

Letting n ® ∞ we obtain

g(y) = lim
n→∞

f (xn + y)
f (xn)

.

Substituting x = x + xn in (2.1) gives

|f (x + xn + y) − f (x + xn)g(y) − f (y)| ≤ ε.

Dividing both sides by |f(xn)| and then letting n ® ∞ we have

g(x + y) = g(x)g(y) (2:3)

for all x, y Î V. We observe that g is also unbounded. If g ≡ 0, then from (2.1) we

have

|f (x + y) − f (y)| ≤ ε

for all x, y Î V. This shows that f is bounded and hence this reduces a contradiction.

Since g satisfies (2.3) with g ≢ 0 and g ≢ 1, we conclude that g is unbounded. Choose a

sequence {yn} such that |g(yn)| ® ∞. Putting y = yn in (2.1) and dividing both sides by

|g(yn)| we have
∣∣∣∣ f (x + yn)

g(yn)
− f (x) − f (yn)

g(yn)

∣∣∣∣ ≤ ε

|g(yn)| .

Letting n ® ∞ yields

f (x) = lim
n→∞

f (x + yn) − f (yn)
g(yn)

.

We note that f(0) = 0. Substituting y = y + yn in (2.1) and using (2.3) we obtain

|f (x + y + yn) − f (x)g(y)g(yn) − f (y + yn)| ≤ ε.

Dividing both sides in the above inequality by |g(yn)| and then letting n ® ∞ we

have

f (x)g(y) = lim
n→∞

f (x + y + yn) − f (y + yn)
g(yn)

= lim
n→∞

{f (x + y + yn) − f (yn)} − {f (y + yn) − f (yn)}
g(yn)

= f (x + y) − f (y).

This completes the proof. □
Analogously, we are going to consider the stability of (1.7). The general solutions of

(1.7) are given by
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{
f ≡ 0
g : arbitrary;

{
f : constant
g ≡ 0;

{
f (x) = L(x)
g ≡ 1;

{
f (x) = b(M(x) − 1)
g(x) = M(x),

where L is a logarithmic mapping, M is a multiplicative mapping and b is an arbi-

trary nonzero constant. In case of g ≡ 1, the stability result is well known as follows:

Theorem 2.3. [5,11]Let S be a semigroup and Y a Banach space. Further, let f : S ®
Y be a mapping satisfying

||f (xy) − f (x) − f (y)|| ≤ ε

for all x, y in S. Then the limit

L(x) = lim
n→∞

f (x2
n
)

2n

exists for all × in S and L : S ® Y is a unique mapping satisfying

||f (x) − L(x)|| ≤ ε

and

L(x2) = 2L(x)

for all × in S. If S is commutative, then L is logarithmic.

For that reason, we only consider the case g ≢ 1.

Theorem 2.4. Let V be a vector space and let f, g : V ® ≤ be complex valued func-

tions with g ≢ 1. Suppose that f and g satisfy the inequality

|f (xy) − f (x)g(y) − f (y)| ≤ ε. (2:4)

Then, one of the following conditions holds:

(i) If f ≡ 0, then g is arbitrary;

(ii) If f(≢ 0) is bounded or f(1) ≠ 0 , then g is also bounded;

(iii) If f is unbounded, then f(1) = 0, g is also unbounded and f(xy) = f(x)g(y) + f(y)

for all x, y Î V.

Proof. (i) If f ≡ 0, then from (2.4) we see that g is arbitrary.

(ii) Suppose that f is bounded and f ≢ 0. Then, there exists a constant N >0 such that

|f(x)| ≤ N for all x Î V. It follows from (2.4) that we calculate

|f (x)g(y)| ≤ ε + 2N

for all x, y Î V. Since f ≢0, we see that g is bounded.

Assume that f(1) ≠ 0. Putting x = 1 in (2.4) we have g is bounded.

(iii) Now we prove the case that f is unbounded. Since f is unbounded, we can take a

sequence {xn} such that |f(xn)| ® ∞. Putting x = xn in (2.4) and dividing both sides by

|f(xn)| we have
∣∣∣∣ f (xny)f (xn)

− g(y) − f (y)
f (xn)

∣∣∣∣ ≤ ε

|f (xn)| .
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Letting n ® ∞ we obtain

g(y) = lim
n→∞

f (xny)
f (xn)

.

Replacing x by xxn in (2.4) yields

|f (xxny) − f (xxn)g(y) − f (y)| ≤ ε.

Dividing both sides by |f(xn)| and then letting n ® ∞ we have

g(xy) = g(x)g(y) (2:5)

for all x, y Î V. If g ≡ 0, then from (2.4) we have

|f (xy) − f (y)| ≤ ε (2:6)

for all x, y Î V. Putting y = 1 in (2.6) we see that f is bounded. This reduces a con-

tradiction. Since g satisfies (2.5) with g ≢ 0 and g ≢ 1, we can choose a sequence {yn}

such that |g(yn)| ® ∞. Putting y = yn in (2.4) and dividing the result by |g(yn)| we have
∣∣∣∣ f (x + yn)

g(yn)
− f (x) − f (yn)

g(yn)

∣∣∣∣ ≤ ε.

Letting n ® ∞ gives

f (x) = lim
n→∞

f (xyn) − f (yn)
g(yn)

.

Putting x = 1 yields f(1) = 0. Replacing y by yyn in (2.4) and using (2.5) we have

|f (xyyn) − f (x)g(y)g(yn) − f (y + yn)| ≤ ε.

Dividing both sides by |g(yn)| and letting n ® ∞ we obtain

f (x)g(y) = lim
n→∞

f (xyyn) − f (yyn)
g(yn)

= lim
n→∞

{f (xyyn) − f (yn)} − {f (yyn) − f (yn)}
g(yn)

= f (xy) − f (y).

This completes the proof. □
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