RESEARCH

Open Access

Superstability of generalized cauchy functional equations

Young-Su Lee^{1*} and Soon-Yeong Chung²

* Correspondence: masuri@sogang. ac.kr

¹Department of Mathematics, Sogang University, Seoul 121-741, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we consider the stability of generalized Cauchy functional equations such as

 $f(x + y) = f(x)g(y) + f(y), \quad f(xy) = f(x)g(y) + f(y).$

Especially interesting is that such equations have the Hyers-Ulam stability or superstability whether *g* is identically one or not. **2000 Mathematics Subject Classification:** 39B52, 39B82.

Keywords: Cauchy functional equation, stability; superstability

1. Introduction

The most famous functional equations are the following Cauchy functional equations:

$$f(x + y) = f(x) + f(y),$$
(1.1)

$$f(x + y) = f(x) f(y),$$
 (1.2)

$$f(xy) = f(x) + f(y),$$
 (1.3)

$$f(xy) = f(x) f(y).$$
 (1.4)

Usually, the solutions of (1.1)-(1.4) are called additive, exponential, logarithmic and multiplicative, respectively. Many authors have been interested in the general solutions and the stability problems of (1.1)-(1.4) (see [1-5]).

The stability problems of functional equations go back to 1940 when Ulam [6] proposed the following question:

Let f be a mapping from a group G_1 *to a metric group* G_2 *with metric* $d(\cdot, \cdot)$ *such that*

 $d(f(xy), f(x)f(y)) \leq \varepsilon.$

Then does there exist a group homomorphism $L: G_1 \to G_2$ and $\delta_{\varepsilon} > 0$ such that

 $d(f(x), L(x)) \leq \delta_{\varepsilon}$

for all $x \in G_1$?

SpringerOpen[⊍]

© 2011 Lee and Chung; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The case of (1.1) was solved by Hyers [7]. He proved that if *f* is a function between Banach spaces satisfying $||f(x+y) - f(x) - f(y)|| \le \varepsilon$ for some fixed $\varepsilon > 0$, then there exists a unique additive mapping *A* such that $||f(x) - A(x)|| \le \varepsilon$. From these historical backgrounds, the functional equation

$$E_1(\varphi) = E_2(\varphi) \tag{1.5}$$

is said to have the *Hyers-Ulam stability* if for an approximate solution ϕ_s such that

$$|E_1(\varphi_s)(x) - E_2(\varphi_s)(x)| \leq \varepsilon$$

for some fixed constant ε >0 there exists a solution ϕ of (1.5) such that

 $|\varphi_s(x) - \varphi(x)| \leq \delta_{\varepsilon}$

for some positive constant $\leq \delta_{\varepsilon}$.

During the last decades, Hyers-Ulam stability of various functional equations has been extensively studied by a number of authors (see [3-5,8-10]). Especially, Forti [11] proved the Hyers-Ulam stability of (1.3). The stability of (1.2) was proved by Baker, Lawrence and Zorzitto [12]. They proved that if *f* is a function satisfying $|f(x + y) - f(x) f(y)| \le \varepsilon$ for some fixed $\varepsilon > 0$ then *f* is either bounded or else f(x+y) = f(x)f(y). In order to distinguish this phenomenon from the Hyers-Ulam stability, we call this phenomenon superstability. Generalizing results as in [12], Baker [13] proved that the superstability for (1.4) does also hold.

In this paper, we consider the stability of generalized Cauchy functional equations such as

$$f(x + y) = f(x)g(y) + f(y),$$
(1.6)

$$f(xy) = f(x)g(y) + f(y).$$
(1.7)

We say that (1.6) and (1.7) are generalized Cauchy functional equations because these are reduced the Cauchy functional equations if g is identically one. It is easily checked that the general solutions of (1.6) are additive or exponential whether g is identically one or not. From this point of view, we can expect that (1.6) has the Hyers-Ulam stability or superstability due to the conditions of g. Actually, if g is identically one in (1.6), then Hyers-Ulam stability holds [7]. On the other hand, if g is not identically one in (1.6), then we shall see in Section 2 that superstability holds in this case. That is, f and g are either bounded or else f(x + y) = f(x)g(y) + f(y).

Analogously, it is easy to see that the general solutions of (1.7) are logarithmic or multiplicative whether g is identically one or not. If g is identically one in (1.7), then this case is exactly the same as in [11]. And hence Hyers-Ulam stability holds in this case. We shall prove that if g is not identically one in (1.7), then f and g are either bounded or else f(xy) = f(x)g(y)+f(y).

2. Stability of (1.6) and (1.7)

We first consider the stability of (1.6). The general solutions of (1.6) are given by

$$\begin{cases} f \equiv 0 \\ g : \text{arbitrary;} \end{cases} \begin{cases} f : \text{constant} \\ g \equiv 0; \end{cases} \begin{cases} f(x) = A(x) \\ g \equiv 1; \end{cases} \begin{cases} f(x) = a(E(x) - 1) \\ g(x) = E(x), \end{cases}$$

where *A* is an additive mapping, *E* is an exponential mapping and *a* is an arbitrary nonzero constant. For the proof we refer to [[14], Lemma 1]. Although (1.6) is slightly different from (1.1), the general solutions of (1.6) are related to (1.2) rather than (1.1) if *g* is not identically one. The stability result in the case of $g \equiv 1$ in (1.6) is well known as follows.

Theorem 2.1. [4,7]*Let* E_1 *be a normed vector space and* E_2 *a Banach space. Suppose that* $f: E_1 \rightarrow E_2$ *satisfies the inequality*

$$||f(x+\gamma) - f(x) - f(\gamma)|| \le \varepsilon$$

for all x, y in E_1 , where $\varepsilon > 0$ is a constant. Then the limit

$$A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exists for all \times in E_1 and $A : E_1 \rightarrow E_2$ is a unique additive mapping satisfying

$$||f(x) - A(x)|| \le \varepsilon$$

for all \times in E_1 .

According to the above result, we know that Hyers-Ulam stability holds if g is identically one. Thus, it suffices to show the case $g \boxtimes 1$. Especially interesting is that superstability holds if g is not identically one as follows.

Theorem 2.2. Let V be a vector space and let f, $g : V \rightarrow \leq$ be complex valued functions with $g \boxtimes 1$. Suppose that f and g satisfy the inequality

$$|f(x+y) - f(x)g(y) - f(y)| \le \varepsilon.$$

$$(2.1)$$

Then, one of the following conditions holds:

(i) If f = 0, then g is arbitrary;
(ii) If f(⊠ 0) is bounded or f(0) ≠ 0, then g is also bounded;
(iii) If f is unbounded, then f(0) = 0, g is also unbounded and f(x+y) = f(x)g(y) + f(y) for all x, y ∈ V.

Proof. (i) If $f \equiv 0$, then we easily see that *g* is arbitrary.

(ii) Suppose that f is bounded and $f \boxtimes 0$. Then, there exists a constant M > 0 such that $|f(x)| \le M$ for all $x \in V$. From (2.1), it follows that

$$|f(x)g(y)| \le \varepsilon + 2M \tag{2.2}$$

for all $x, y \in V$. Since $f \boxtimes \equiv 0$, there exists a point x_0 such that $f(x_0) \neq 0$. Putting $x = x_0$ in (2.2) and dividing the result by $|f(x_0)|$ we have

$$|g(\gamma)| \leq \frac{\varepsilon + 2M}{|f(x_0)|}$$

for all $y \in V$. This shows that *g* is bounded. Now assume that $f(0) \neq 0$. Putting x = 0 in (2.1) yields

$$|f(0)g(\gamma)| \leq \varepsilon$$

for all $y \in V$. We see that *g* is bounded, since $f(0) \neq 0$.

$$\left|\frac{f(x_n+\gamma)}{f(x_n)}-g(\gamma)-\frac{f(\gamma)}{f(x_n)}\right|\leq \frac{\varepsilon}{|f(x_n)|}.$$

Letting $n \to \infty$ we obtain

$$g(\gamma) = \lim_{n \to \infty} \frac{f(x_n + \gamma)}{f(x_n)}.$$

Substituting $x = x + x_n$ in (2.1) gives

$$|f(x+x_n+\gamma)-f(x+x_n)g(\gamma)-f(\gamma)| \leq \varepsilon.$$

Dividing both sides by $|f(x_n)|$ and then letting $n \to \infty$ we have

$$g(x + y) = g(x)g(y)$$
 (2.3)

for all $x, y \in V$. We observe that g is also unbounded. If $g \equiv 0$, then from (2.1) we have

$$|f(x+\gamma) - f(\gamma)| \le \varepsilon$$

for all $x, y \in V$. This shows that f is bounded and hence this reduces a contradiction. Since g satisfies (2.3) with $g \boxtimes 0$ and $g \boxtimes 1$, we conclude that g is unbounded. Choose a sequence $\{y_n\}$ such that $|g(y_n)| \to \infty$. Putting $y = y_n$ in (2.1) and dividing both sides by $|g(y_n)|$ we have

$$\left|\frac{f(x+y_n)}{g(y_n)}-f(x)-\frac{f(y_n)}{g(y_n)}\right|\leq\frac{\varepsilon}{|g(y_n)|}$$

Letting $n \to \infty$ yields

$$f(x) = \lim_{n \to \infty} \frac{f(x + y_n) - f(y_n)}{g(y_n)}.$$

We note that f(0) = 0. Substituting $y = y + y_n$ in (2.1) and using (2.3) we obtain

$$|f(x+\gamma+\gamma_n)-f(x)g(\gamma)g(\gamma_n)-f(\gamma+\gamma_n)| \leq \varepsilon.$$

Dividing both sides in the above inequality by $|g(y_n)|$ and then letting $n \to \infty$ we have

$$f(x)g(y) = \lim_{n \to \infty} \frac{f(x + y + y_n) - f(y + y_n)}{g(y_n)}$$

=
$$\lim_{n \to \infty} \frac{\{f(x + y + y_n) - f(y_n)\} - \{f(y + y_n) - f(y_n)\}}{g(y_n)}$$

=
$$f(x + y) - f(y).$$

This completes the proof. \square

Analogously, we are going to consider the stability of (1.7). The general solutions of (1.7) are given by

$$\begin{cases} f \equiv 0 \\ g : \text{ arbitrary;} \end{cases} \begin{cases} f : \text{ constant} \\ g \equiv 0; \end{cases} \begin{cases} f(x) = L(x) \\ g \equiv 1; \end{cases} \begin{cases} f(x) = b(M(x) - 1) \\ g(x) = M(x), \end{cases}$$

where *L* is a logarithmic mapping, *M* is a multiplicative mapping and *b* is an arbitrary nonzero constant. In case of $g \equiv 1$, the stability result is well known as follows:

Theorem 2.3. [5,11]*Let S* be a semigroup and Y a Banach space. Further, let $f : S \rightarrow Y$ be a mapping satisfying

 $||f(xy) - f(x) - f(y)|| \le \varepsilon$

for all x, y in S. Then the limit

$$L(x) = \lim_{n \to \infty} \frac{f(x^{2^n})}{2^n}$$

exists for all \times in S and $L: S \rightarrow Y$ is a unique mapping satisfying

$$||f(x) - L(x)|| \le \varepsilon$$

and

$$L(x^2) = 2L(x)$$

for all \times in S. If S is commutative, then L is logarithmic.

For that reason, we only consider the case $g \boxtimes 1$.

Theorem 2.4. Let V be a vector space and let f, $g : V \rightarrow \leq$ be complex valued functions with $g \boxtimes 1$. Suppose that f and g satisfy the inequality

 $|f(xy) - f(x)g(y) - f(y)| \le \varepsilon.$ (2.4)

Then, one of the following conditions holds:

(i) If f = 0, then g is arbitrary;
(ii) If f(⊠ 0) is bounded or f(1) ≠ 0, then g is also bounded;
(iii) If f is unbounded, then f(1) = 0, g is also unbounded and f(xy) = f(x)g(y) + f(y) for all x, y ∈ V.

Proof. (i) If $f \equiv 0$, then from (2.4) we see that *g* is arbitrary.

(ii) Suppose that *f* is bounded and $f \boxtimes 0$. Then, there exists a constant N > 0 such that $|f(x)| \le N$ for all $x \in V$. It follows from (2.4) that we calculate

 $|f(x)g(y)| \le \varepsilon + 2N$

for all $x, y \in V$. Since $f \boxtimes 0$, we see that g is bounded.

Assume that $f(1) \neq 0$. Putting x = 1 in (2.4) we have g is bounded.

(iii) Now we prove the case that f is unbounded. Since f is unbounded, we can take a sequence $\{x_n\}$ such that $|f(x_n)| \to \infty$. Putting $x = x_n$ in (2.4) and dividing both sides by $|f(x_n)|$ we have

$$\left|\frac{f(x_n\gamma)}{f(x_n)} - g(\gamma) - \frac{f(\gamma)}{f(x_n)}\right| \leq \frac{\varepsilon}{|f(x_n)|}$$

Letting $n \to \infty$ we obtain

$$g(\gamma) = \lim_{n \to \infty} \frac{f(x_n \gamma)}{f(x_n)}.$$

Replacing x by xx_n in (2.4) yields

$$|f(xx_n\gamma) - f(xx_n)g(\gamma) - f(\gamma)| \leq \varepsilon.$$

Dividing both sides by $|f(x_n)|$ and then letting $n \to \infty$ we have

$$g(xy) = g(x)g(y) \tag{2.5}$$

for all $x, y \in V$. If $g \equiv 0$, then from (2.4) we have

$$|f(xy) - f(y)| \le \varepsilon \tag{2.6}$$

for all $x, y \in V$. Putting y = 1 in (2.6) we see that f is bounded. This reduces a contradiction. Since g satisfies (2.5) with $g \boxtimes 0$ and $g \boxtimes 1$, we can choose a sequence $\{y_n\}$ such that $|g(y_n)| \to \infty$. Putting $y = y_n$ in (2.4) and dividing the result by $|g(y_n)|$ we have

$$\left|\frac{f(x+\gamma_n)}{g(\gamma_n)}-f(x)-\frac{f(\gamma_n)}{g(\gamma_n)}\right|\leq\varepsilon.$$

Letting $n \to \infty$ gives

$$f(x) = \lim_{n \to \infty} \frac{f(xy_n) - f(y_n)}{g(y_n)}$$

Putting x = 1 yields f(1) = 0. Replacing y by yy_n in (2.4) and using (2.5) we have

$$|f(x\gamma\gamma_n) - f(x)g(\gamma)g(\gamma_n) - f(\gamma + \gamma_n)| \leq \varepsilon.$$

Dividing both sides by $|g(y_n)|$ and letting $n \to \infty$ we obtain

$$f(x)g(y) = \lim_{n \to \infty} \frac{f(xyy_n) - f(yy_n)}{g(y_n)}$$
$$= \lim_{n \to \infty} \frac{\{f(xyy_n) - f(y_n)\} - \{f(yy_n) - f(y_n)\}}{g(y_n)}$$
$$= f(xy) - f(y).$$

This completes the proof. \Box

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No.2011-0000092).

Author details

¹Department of Mathematics, Sogang University, Seoul 121-741, Republic of Korea ²Department of Mathematics and Program of Integrated Biotechnology, Sogang University, Seoul 121-741, Republic of Korea

Authors' contributions

YL carried out the main part of this manuscript. SC participated discussion and corrected the main theorem. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 26 February 2011 Accepted: 28 July 2011 Published: 28 July 2011

References

- 1. Aczél, J: Lectures on Functional Equations and Their Applications. Academic Press, New York (1966)
- 2. Aczél, J, Dhombres, J: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)
- Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Co., Inc., River Edge, NJ (2002)
- 4. Hyers, DH, Isac, G, Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- 5. Kannappan, Pl: Functional Equations and Inequalities with Applications. Springer (2009)
- 6. Ulam, SM: Problems in Mordern Mathematics. Wiley, New York (1964)
- Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222–224 (1941). doi:10.1073/ pnas.27.4.222
- Chung, J: Stability of a Jensen type logarithmic functional equation on restricted domains and its asymptotic behaviors. Adv Diff Equ 2010, 13 (2010). Art. ID 432796
- Moghimi, MB, Najati, A, Park, C: A fixed point approach to the stability of a quadratic functional equation in C*-algebras. Adv Diff Equ 2009, 10 (2009). Art. ID 256165
- Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
- Forti, GL: The stability of homomorphisms and amenability, with applications to functional equations. Abh Math Sem Univ Hamburg. 57, 215–226 (1987). doi:10.1007/BF02941612
- 12. Baker, J, Lawrence, J, Zorzitto, F: The stability of the equation f(x+y) = f(x)f(y). Proc Am Math Soc. 74, 242–246 (1979)
- 13. Baker, JA: The stability of the cosine equation. Proc Am Math Soc. 80, 411–416 (1980). doi:10.1090/S0002-9939-1980-0580995-3
- 14. Kannappan, PI, Sahoo, PK: On generalizations of the Pompeiu functional equation. Int J Math Math Sci. 21, 117–124 (1998). doi:10.1155/S0161171298000155

doi:10.1186/1687-1847-2011-23

Cite this article as: Lee and Chung: Superstability of generalized cauchy functional equations. Advances in Difference Equations 2011 2011:23.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com