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Abstract

The aim of this article is to study the attracting and quasi-invariant sets for a class of
impulsive stochastic difference equations. By establishing a difference inequality, we
obtain the attracting and quasi-invariant sets of systems under consideration. An
example is given to illustrate the theory.
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Introduction
Difference equations usually appear in the investigation of systems with discrete time

or in the numerical solution of systems with continuous time [1]. A lot of difference

systems have variable structures subject to stochastic abrupt changes, which may result

from abrupt phenomena such as stochastic failures and repairs of the components,

changes in the interconnections of subsystems, sudden environment changes, etc. In

recent years, the stability investigation of stochastic difference equations has been

interesting to many investigators, and various advanced results on this problem have

been reported [2-5].

However, besides the stochastic effect, an impulsive effect likewise exists in a wide

variety of evolutionary processes in which states are changed abruptly at certain

moments of time, involving such fields as medicine and biology, economics, mechanics,

electronics and telecommunications. Recently, the asymptotic behaviors of impulsive

difference equations have attracted considerable attention. Many interesting results on

impulsive effect have been obtained [6-8]. In [9], some stability conditions on impul-

sive stochastic difference equations are given. As is well known, stability is one of the

major problems encountered in applications, and has attracted considerable attention

due to its important role in applications. However, under impulsive perturbation, an

equilibrium point sometimes does not exist in many physical systems, especially, in

non-linear and nonautonomous dynamical systems. Therefore, an interesting subject is

to discuss the invariant sets and the attracting sets of impulsive systems. Some signifi-

cant progress has been made in the techniques and methods of determining the invar-

iant sets and attracting sets for delay difference equations, delay differential equations,

and impulsive functional differential equations [10-12]. Unfortunately, the correspond-

ing problems for impulsive stochastic difference equations have not been considered.
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Motivated by the above discussion, we here make a first attempt to arrive at results

on the invariant sets and attracting sets of impulsive stochastic difference equations.

Model description and preliminaries
Let Rn be the space of n-dimensional real column vectors and R+ = [0, +∞). N[a, b] {a,

a + 1,..., b}, where a < b and a, b are integral numbers. C denotes the set of all func-

tions j : N[-h, 0] ® Rn, h is a nonnegative integer. For any � Î C, we define

||ϕ|| = sup
s∈N[−h,0]

|ϕ(s)|. Z denotes the integer set. Let {Ω, P, Σ} be a basic probability

space, Σi-1 ⊂ Σi ⊂ Σ, i Î Z be a sequence of Σ-algebras E be the mathematical expecta-

tion, ξ0, ξ1,... be a sequence of mutually independent random variables, ξi Î R, ξi be Σi-

adapted and independent on. Σi-1, Eξi = 0, Eξ2i = 1, i Î Z. Let CΩ denote the family of

C-valued random variables on {Ω, P, Σ}.

In this article, we mainly consider the following impulsive stochastic difference equa-

tions {
x(i + 1) = F(i, x(i − h), . . . , x(i)) + G(i, x(i − h), . . . , x(i))ξi+1, i �= ik, i ∈ Z,

x(i + 1) = Hi(x(i)), i = ik,
(1)

with initial condition

x(i) = ϕ(i), i ∈ N[−h, 0],

where F, G : Z × Rh+1 ® R, Hi : R ® R. � (i) Î CΩ. The fixed moments of time ik Î

Z, and satisfy 0 < i1 < i2 < . . . , lim
k→∞

ik = ∞. xi is an element of CΩ defined by xi = x (i

+ s), s Î N [-h, 0].

Throughout this article, we assume that for any � (i) Î CΩ, there exists at least one

solution of (1), which is denoted by x(i, 0, �) or xi(0, �) (simply x(i) and xi if no confu-

sion should occur).

Definition 2.1. The set S ⊂ CΩ is called a quasi-invariant set of (1), if there exists a

constant k such that for any initial value � Î S, the solution kxi(0, �) Î S, i Î Z. Espe-

cially, if k = 1, S is called a invariant set.

Dedinition 2.2. The set S ⊂ CΩ is called a global attracting set of (1), if for any

initial value � Î CΩ, the solution xi(0, �) satisfies

dist(xi, S) → 0, as i → ∞,

where

dist(ϕ, S) = inf
ψ∈S

ρ(ϕ(s) , ψ(s)) for ϕ ∈ C�,

where r(·,·) is any distance in CΩ.

Definition 2.3. The zero solution of Equation (1) is called mean square exponential

stable if there are positive constants l and M such that for any initial condition � Î
CΩ,

Ex2(i) ≤ ME||ϕ||2e−λi, i ∈ Z.

Here l is called the exponential convergence rate. Of course, conditions are needed

to ensure that the zero function is a solution of (1).
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Based on discrete Halanay inequality [13] and its extension [9], we develop the fol-

lowing difference in-equality with the impulsive initial condition.

Lemma 2.1. Suppose cj(i) Î R+, i Î Z, j Î N[0,h], sup
i∈Z

{
h∑
j=0

cj(i)

}
= η < 1 and b > 0.

Let u(i) be a sequence of real numbers satisfying the following difference inequality:

u(i + 1) ≤
h∑
j=0

cj(i)u(i − j) + b, i ≥ i′, i ∈ Z. (2)

(a) Then

u(i) ≤ de−λi + (1 − η)−1b, i ≥ i′, i ∈ Z, (3)

provided that the initial condition satisfies

u(i) ≤ de−λi + (1 − η)−1b, i ∈ N[i′ − h, i′], (4)

where i’ Î Z, d Î R+ and l satisfies

0 < λ ≤ 1
h + 1

ln
1
η
. (5)

(b) Then

u(i) ≤ γ (1 − η)−1b, i ≥ i′, i ∈ Z, (6)

provided the initial condition

u(i) ≤ γ (1 − η)−1b, i ∈ N [i′ − h, i′], (7)

where i’ Î Z and g ≥ 1.

Proof. (a) Since h <1, there exists a constant l satisfying the inequality (5). Then,

eλ(h+1)η ≤ 1. (8)

If (3) is not true, then there must be a positive integral number i* ≥ i’ such that

u(i∗+1) > de−λ(i∗+1)+(1 − η)−1b and u(i) ≤ de−λi+(1 − η)−1b, i ∈ N [i′−h, i∗]. (9)

By (2), (8), and (9), we have

u(i∗ + 1) ≤
h∑
j=0

cj(i∗)u(i∗ − j) + b

≤
h∑
j=0

cj(i∗)
[
de−λ(i∗−j) + (1 − η)−1b

]
+ b

≤ eλ(h+1)ηde−λ(i∗+1) + η(1 − η)−1b + b

= eλ(h+1)ηde−λ(i∗+1) + (1 − η)−1b

≤ de−λ(i∗+1) + (1 − η)−1b,
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which contradicts the first inequality of (9). So (3) holds. The proof of part (a) is

complete. (b) If (6) is not true, then there must be a positive integral number i* ≥ i’

such that

u(i∗ + 1) > γ (1 − η)−1b and u(i) ≤ γ (1 − η)−1b, i ∈ N [i′ − h, i∗]. (10)

By (2), (10), we have

u(i∗ + 1) ≤
h∑
j=0

cj(i∗)u(i∗ − j) + b

≤ γ η(1 − η)−1b + b

≤ γ
(
η(1 − η)−1b + b

)
= γ (1 − η)−1b,

which contradicts the first inequality of (10). So (6) holds. The proof of part (b) is

complete.

Main results
To establish the main results of system (1), we will employ the following assumptions.

(A1) For any i Î Z, there exist positive constants aj(i), bj(i), J1 and J2 such that

|F (i, x(i − h), . . . , x(i))| ≤
h∑
j=0

aj(i)|x(i − j)| + J1,

|G (i, x(i − h), . . . , x(i))| ≤
h∑
j=0

bj(i)|x(i − j)| + J2.

(A2) sup
i∈Z

2{a2(i) + b2(i)} = μ < 1, where a(i) =
∑h

j=0 aj(i) and b(i) =
∑h

j=0 bj(i).

(A3) There exist constants dk ≥ 1 such that

|Hik(x(ik))| ≤ dk|x(ik)|, k = 1, 2, . . . .

(A4) There exists constant a ≥ 0 such that

2lndk
ik − ik−1

≤ α∗ < λ∗, k = 1, 2, . . . ,

where i0 = 0 and l* satisfies

0 < λ∗ =
1

h + 1
ln

1
μ
,

and

σ = 2
∞∑
k=1

ln dk < ∞, k = 1, 2, . . . .

(A5) There exist nonnegative constants dk ≤ 1 such that

|Hik(x(ik))| ≤ dk|x(ik)|.
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(A6) For any i Î Z, there exist positive constants aj(i) and bj(i) such that

|F (i, x(i − h), . . . , x(i))| ≤
h∑
j=0

aj(i)|x(i − j)|,

|G (i, x(i − h), . . . , x(i))| ≤
h∑
j=0

bj(i)|x(i − j)|.

(A7) sup
i∈Z

{a2(i) + b2(i)} = μ < 1, where a(i) =
∑h

j=0 aj(i) and b(i) =
∑h

j=0 bj(i).

Theorem 3.1. If (A1)- (A4) hold, then S = {j Î CΩ|E||j||2 ≤es(1-μ)-1J} is a global

attracting set of (1), where J = 2 (J21 + J22).

Proof. From (1), Condition (A1), (a + b)2 ≤ 2 (a2 + b2) and the Hölder inequality, we

have

Ex2(i + 1) = EF2(i, x(i − h), . . . , x(i)) + EG2(i, x(i − h), . . . , x(i))

≤ E

⎛
⎝ h∑

j=0

aj(i)|x(i − j)| + J1

⎞
⎠

2

+ E

⎛
⎝ h∑

j=0

bj(i)|x(i − j)| + J2

⎞
⎠

2

≤ 2E

⎛
⎝ h∑

j=0

aj(i)|x(i − j)|
⎞
⎠

2

+ 2E

⎛
⎝ h∑

j=0

bj(i)|x(i − j)|
⎞
⎠

2

+ 2(J21 + J22)

≤ 2
h∑
j=0

aj(i)
h∑
j=0

aj(i)E|x(i − j)|2 + 2
h∑
j=0

bj(i)
h∑
j=0

bj(i)E|x(i − j)|2 + J

= 2
h∑
j=0

[a(i)aj(i) + b(i)bj(i)] Ex2(i − j) + J, i �= ik, k = 1, 2, . . . .

(11)

From condition (A2), we obtain

sup
i∈Z

2
h∑
j=0

[a(i)aj(i) + b(i)bj(i)] = sup
i∈Z

2{a2(i) + b2(i)} = μ < 1. (12)

For the initial conditions x(s) = �(s), s Î N[-h, 0], where � ÎCΩ, we have a positive

constant K such that

Ex2(i) ≤ Ke−λ∗i + (1 − μ)−1J, i ∈ N[−h, 0]. (13)

Then, all the conditions of the part (a) of Lemma 2.1 are satisfied by (11)-(13). So,

we can obtain

Ex2(i) ≤ Ke−λ∗i + (1 − μ)−1J, i ∈ N[0, i1].

Suppose for all q = 1, 2,..., k, the inequalities

Ex2(i) ≤ d20d
2
1 · · · d2q−1Ke

−λ∗i + d20d
2
1 · · · d2q−1(1 − μ)−1J, i ∈ N[iq−1, iq], (14)

hold, where d0 = 1 and i0 = 0. Then from condition (A3) and (14), we have

Ex2(ik + 1) = E|Hik(x(ik))|2
≤ | d2kEx2(ik)
≤ d20d

2
1 · · · d2k−1d

2
kKe

−λ∗i + d20d
2
1 · · · d2k−1d

2
k (1 − μ)−1J.
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This, together with (14) and dk ≥ 1, k = 1, 2,..., leads to

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kKe

−λ∗i + d20d
2
1 · · · d2k−1d

2
k (1 − μ)−1J, i ∈ N[ik +1− h, ik +1]. (15)

It follows from (11), (12), (15), and the part (a) of Lemma 2.1 that

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kKe

−λ∗i + d20d
2
1 · · · d2k−1d

2
k (1 − μ)−1J, i ∈ N[ik + 1, ik+1],

yielding, together with (14) that

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kKe

−λ∗i + d20d
2
1 · · · d2k−1d

2
k (1 − μ)−1J, i ∈ N[ik, ik + 1].

By mathematical induction, we can conclude that

Ex2(i) ≤ d20d
2
1 · · · d2k−1Ke

−λ∗i + d20d
2
1 · · · d2k−1(1 − μ)−1J, i ∈ N[ik−1, ik], k = 1, 2, . . . . (16)

Noticing that d2k ≤ eα
∗(ik−ik−1) and eσ =

∏∞
k=1 d

2
k < ∞, by condition (A4), we can use

(16) to conclude that

Ex2(i) ≤ eα
∗(i1−i0) · · · eα∗(ik−1−ik−2)Ke−λ∗i + d20d

2
1 · · · d2k−1(1 − μ)−1J

≤ κeα
∗ie−λ∗i + eσ (1 − μ)−1J

= κe−(λ∗−α∗)i + eσ (1 − μ)−1J, i ∈ N[ik−1, ik], k = 1, 2, . . . .

This implies that the conclusion holds and the proof is complete.

Theorem 3.2. If (A1)-(A4) hold, then S = {j Î CΩ |E||j||2 ≤ g (1-μ)-1 J, g ≥ 1}is a

quasi-invariant set of (1).

Proof. For the initial conditions x(s) = �(s), s Î N [-h, 0], where � Î S we have

Ex2(i) ≤ γ (1 − μ)−1J, i ∈ N[−h, 0]. (17)

By (17) and the part (b) of Lemma 2.1, we have

Ex2(i) ≤ γ (1 − μ)−1J, i ∈ N[0, i1].

Suppose for all q = 1, 2,..., k, the inequalities

Ex2(i) ≤ d20d
2
1 · · · d2q−1γ (1 − μ)−1J, i ∈ N[iq−1, iq], (18)

hold, where d0 = 1 and i0 = 0. Then from condition (A3) and (18), we have

Ex2(ik + 1) = E|Hik(x(ik))|2
≤ d2kEx

2(ik)

≤ d20d
2
1 · · · d2k−1d

2
kγ (1 − μ)−1J.

This, together with (18) and dk ≥ 1, k = 1, 2,..., leads to

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kγ (1 − μ)−1J, i ∈ N[ik + 1 − h, ik + 1]. (19)

It follows from (19) and the part (b) of Lemma 2.1 that

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kγ (1 − μ)−1J, i ∈ N[ik + 1, ik+1],

yielding, together with (18), that

Ex2(i) ≤ d20d
2
1 · · · d2k−1d

2
kγ (1 − μ)−1J, i ∈ N[ik, ik+1].

By mathematical induction, we can conclude that

Ex2(i) ≤ d20d
2
1 · · · d2k−1γ (1 − μ)−1J, i ∈ N[ik−1, ik], k = 1, 2, . . . . (20)
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Noticing that eσ =
∏∞

k=1 d
2
k < ∞,by condition (A4), we can use (20) to conclude that

Ex2(i) ≤ d20d
2
1 · · · d2k−1γ (1 − μ)−1J

≤ eσ γ (1 − μ)−1J, i ∈ N[ik−1, ik], k = 1, 2, . . . .

This implies that the conclusion holds and the proof is complete.

Theorem 3.3. If (A1)-(A2) and (A5) hold, then S = {j Î CΩ |E||j||2 ≤ g (1-μ)-1 J} is a
invariant set and also a global attracting set of (1).

Proof. Since dk ≤ 1, a direct calculation shows that a* = 0 and s = 0 in Theorems 3.1

and 3.2. It follows from Theorem 3.1 the set S is a global attracting set of (1). It fol-

lows from Theorem 3.2 the set S is a invariant set of (1).

If Hik(x(ik)) ≡ x(ik), k = 1,2,..., the system (1) reduce to the following system without

impulses

x(i + 1) = F(i, x(i − h), . . . , x(i)) + G(i, x(i − h), . . . , x(i))ξi+1, i ∈ Z, (21)

with initial condition

x(i) = ϕ(i), i ∈ N[−h, 0].

By Theorem 3.3, we can obtain the following result.

Corollary 3.1. If (A1) and (A2) hold, then S = {j Î CΩ|E||j||2 ≤ (1-μ)-1 J} is a invar-

iant set and also a global attracting set of (21).

We easily observe x(i) = 0 is a solution of (1) from (A3) and (A6). In the following,

we give the attractivity of the zero solution and the proof is similar to that of Theorem

3.1.

Theorem 3.4. If (A3), (A4), (A6), and (A7) hold, then the zero solution of Equation

(1) is mean square exponential stable and the exponential convergence rate is equal to

l* - a*.

Example

In this section, we shall discuss an example in order to illustrate the effectiveness of

our results. Example 4.1. Consider the following impulsive stochastic difference equa-

tion: ⎧⎨
⎩
x(i + 1) =

1
4
sin(x(i)) − 1

3
x(i − 1) + 1 +

1
2
x(i)ξi+1, i �= ik, i ∈ Z,

x(ik + 1) = e1/25
k
x(ik), i = ik,

(22)

where ik = ik-1 + 5k. Thus,

h = 1, F(i, x(i − h), . . . , x(i)) =
1
4
sin(x(i)) − 1

3
x(i − 1) + 1,

G(i, x(i − h), . . . , x(i)) =
1
2
x(i), Hik(x(ik)) = e1/25

k
x(ik),

yielding

|F(i, x(i − h), . . . , x(i))| ≤ 1
4

|x(i)| + 1
3

|x(i − 1)| + 1

|G(i, x(i − h), . . . , x(i))| ≤ 1
2

|x(i)|, |Hik(x(ik))| = e1/25
k |x(ik)|.
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So, the parameters of conditions (A1), (A2), and (A3) are as follows:

a0(i) =
1
4
, a1(i) =

1
3
, b0(i) =

1
3
, b1(i) = 0, J1 = 1, J2 = 0, i ∈ Z,

μ =
85
144

< 1, dk = e1/25
k
> 1, k = 1, 2, . . . .

Since 2lndk
ik − ik−1

=
2lne1/25

k

5k
=

2

25k × 5k
≤ 0.016, we can get a* = 0.016 and

λ∗ = 0.52ln
85
144

. Moreover, σ = 2
∑∞

k=1 ln dk = 2
∑∞

k=1 ln e1/25
k
=

1
12

. Then the condi-

tion (A4) is satisfied. So, by Theorem 3.1, we can get that

S =

⎧⎨
⎩φ ∈ C�

∣∣∣∣∣∣E||φ||2 ≤ eσ (1 − μ)−1J =
144
59

e

1
12

⎫⎬
⎭

is a global attracting set of (22). By Theorem 3.2, we can get that S is a quasi-invar-

iant set of (22).

Conclusion
The aim of this article is to study the attracting and quasi-invariant sets for a class of

impulsive stochastic difference equations. By establishing a difference inequality, we

obtain the attracting and quasi-invariant sets of systems under consideration. As

pointed out by the reviewer, when F and G do not depend on i, the solutions of (1)

are time-homogeneous Markovian in character except that there is an impulse at pre-

determined times i1, i2, i3.... For time-homogeneous Markov chains there is a well-

established stability theory most eloquently summarized by Meyn and Tweedie [14].

We will explore the relationship between our work and the established theory of sto-

chastic stability for Markov chains in the next article.
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