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Abstract

This article addresses the problem of robust pseudo state feedback stabilisation of
commensurate fractional order polytopic systems (FOS). In the proposed approach,
Linear Matrix Inequalities (LMI) formalism is used to check if the pseudo-state matrix
eigenvalues belong to the FOS stability domain whatever the value of the uncertain
parameters. The article focuses particularly on the case of a fractional order ν such
that 0 < ν < 1, as the stability region is non-convex and associated LMI condition is
not as straightforward to obtain as in the case 1 < ν < 2. In relation to the quadratic
stabilisation problem previously addressed by the authors and that involves a single
matrix to prove stability of the closed loop system, additional variables are then
introduced to decouple system matrices in the closed loop system stability
condition. This decoupling allows using parameter-dependent stability matrices and
leads to less conservative results as attested by a numerical example.
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Introduction
As for linear time invariant integer order systems, it is now well known that stability of

a linear fractional order system depends on the location of the system poles in the

complex plane. However, pole location analysis remains a difficult task in the general

case. For commensurate fractional order systems, powerful criteria have been pro-

posed. The most well known is Matignon’s stability theorem [1]. It permits to check

the system stability through the location in the complex plane of the dynamic matrix

eigenvalues of the system pseudo-state space representation. Matignon’s theorem is in

fact the starting point of several results in the field [2,3]. This is the case of the Linear

Matrix Inequalities (LMI) stability conditions recently proposed by the authors [4].

These conditions are used to synthesise a stabilising pseudo-state feedback whatever

the system fractional order ν in the set ]0,2[.

Although much progress has been made in the field of fractional system stability, lin-

ear time invariant fractional systems robust stability remains an open problem. Among

the existing results and only for interval fractional systems, the stability issue was dis-

cussed in [5-7]. As commented in [5,8], the result is rather conservative. To reduce the

conservatism, in [8], a new robust stability checking method was proposed for interval

uncertain systems, where Lyapunov inequality is used for finding the maximum
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eigenvalue of a Hermitian matrix. However, the results presented in [8] only provide

sufficient conditions. Note also that these results are dedicated to SISO systems.

In this article, the robust stability and stabilisation problems of linear time invariant

fractional order linear systems with convex polytopic uncertainties are studied. The

article particularly focuses on the case of a fractional order ν such that 0 <ν < 1, as the

stability region is non convex and associated LMI stability condition is not as straight-

forward to obtain as in the case 1 <ν < 2. A quadratic stability analysis condition that

involves a single matrix variable is proposed in [4]. This condition is used to derive a

quadratic pseudo-state feedback synthesis method [4]. In this article, additional vari-

ables are introduced to decouple system matrices from the ones proving system stabi-

lity. This decoupling allows using parameter-dependant stability matrices and lead to

less conservative results for both analysis and synthesis purposes as attested by a

numerical example.

Notations: The transpose of a matrix A is denoted A’, its conjugate Ā and its conju-

gate transpose A*. For Hermitian matrices, > (≥) denotes the Löwner partial order, i.e.

A >B iff A - B is (semi) positive definite.

Preliminaries and problem statement

In this article are considered Linear Time Invariant (LTI) commensurate FOS. In this

section, preliminary results are stated in the certain case for an LTI FOS admitting a

pseudo-state space representation of the form(
Dνx (t)
y (t)

)
=

[
A B
C D

](
x (t)
u (t)

)
(1)

where x(t) Î Rn is the pseudo-state vector, u(t) Î Rm is the input vector, y(t) Î Rp is

the output vector, ν is the fractional order of the system and A, B, C and D are con-

stant matrices. Dν is the fractional differentiation operator of order ν (presented results

are valid whatever definition is used: Riemann-Liouville [9,10] or others [11]). Transfer

matrix is H(s) = C(sνI-A)-1B + D and impulse response matrix is h(t) = L-1{H(s)}.

Definition 1 [1] A linear fractional order system defined by its impulse time

response h is bounded-input bounded-output (BIBO) stable iff ∀u Î L∞(R+, Rm), y =

h* u Î L∞ (R+, Rp).

LTI integer order systems stability can be checked via the location of the eigenvalues

of the pseudo-state matrix A in the complex plane. This result was extended to LTI

commensurate fractional order systems of order 0 <ν < 1 by Matignon.

Theorem 1 [1] System (1), with minimal triplet (A, B, C) and 0 <ν < 1, is BIBO

stable if and only if

| Arg (
eig (A)

) |> ν
π

2
. (2)

This result remains valid when 1 < ν < 2 as proved in [12]. Stability domain is thus

defined as follows:

Ds =
{
z ∈ C :| Arg (z) |> ν

π

2

}
. (3)

The corresponding stability regions of the complex plane are represented by Figure 1

(grey regions).
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Remark 1 Throughout the article, triplet (A, B, C) is always supposed to be minimal.

Testing if the eigenvalues of matrix A belong to a region of the left half plane

defined by (3) with 1 <ν < 2 is a well-known problem in LMI control theory because it

corresponds to a performance requirement on the damping ratio of the system. A solu-

tion of this problem is provided by the LMI region framework [13]. Extending this

LMI condition to the case 0 <ν < 1 is far from trivial because the location of eigenva-

lues in this region corresponds to unstable integer order systems. Moreover, region of

the complex plane defined by (3) is not convex as shown in Figure 1. However, this

problem has been solved in [4] in which the following result was proposed.

Theorem 2 Fractional system (1) of order 0 < ν < 1 is BIBO stable iff ∃X = X*Î
Cnxn >0 s.t.

(
rX + r̄X̄

)′
A′ + A

(
rX + r̄X̄

)
< 0 (4)

where
r = e

j(1−ν)
π

2
.

Using this result, the pseudo-state feedback stabilisation problem has been solved in [4].

Theorem 3 [4] Fractional system (1) of order 0 <ν < 1 is BIBO stabilisable by

pseudo-state feedback control law u = Kx + yr iff ∃X = X* Î Cnxn >0 and Y Î Rmxn >0

s.t.

(
rX + r̄X̄

)′
A′ + A

(
rX + r̄X̄

)
+ Y ′B′ + BY < 0 (5)

where
r = e

j(1−ν)
π

2
. A stabilising controller gain is then:

K = Y
(
rX + r̄X̄

)−1
. (6)

Feedback stabilisation of polytopic fractional order systems

Problem statement

Let the polytopic fractional order system described by:(
Dνx (t)
y (t)

)
=

[
A (λ) B (λ)

C (λ) D (λ)

] (
x (t)
u (t)

)
= M (λ)

(
x (t)
u (t)

)
(7)

Figure 1 Stability domain of fractional systems (grey region).
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where l is a vector of parametric uncertainties. The parameter-dependent system

matrix M(l) belongs to the convex polytope M with N vertices defined by

M = co {M1, · · · ,MN} =
{
M (λ) =

N∑
i=1

λiMi : λ ∈ �

}
andMi =

[
Ai Bi

Ci Di

]
(8)

where � =

{
λ ∈ RN : λ ≥ 0,

N∑
i=1

λi = 1

}
.

This article is devoted to giving constructive conditions for pseudo-state feedback

control laws of the form u = Kx + yr, where K is a constant matrix gain and yr is the

reference signal, robustly stabilising the closed loop system:

(
Dνx (t)
y (t)

)
=

[
A (λ) + B (λ)K B (λ)

C (λ) +D (λ)K D (λ)

](
x (t)
yr (t)

)
=

[
Acl (K,λ) Bcl (K,λ)

Ccl (K,λ) Dcl (K,λ)

](
x (t)
yr (t)

)
= Mcl (K,λ)

(
x (t)
yr (t)

)
(9)

The closed loop system matrices Mcl(l) belong to the polytope Mcl defined by:

Mcl = co
{
Mcl

1 , . . .M
cl
N

}
(10)

where

Mcl
i =

[
Ai + BiK Bi

Ci +DiK Di

]
=

[
Acl
i Bcl

i
Ccl
i Dcl

i

]
.

The next sections present two results on robust control of MIMO fractional order

systems. The first one is a straightforward extension of Theorem 3 to handle uncertain

polytopic fractional systems (7). In the second one, elimination lemma is used to derive

a less conservative condition.

Polytopic stabilisation

Using a single matrix X to attest stability for the whole set of uncertainty is known to

be overly conservative. However, the coupling between stability matrix X and dynamic

matrix A(l) prevents from directly using a parameter-dependent stability matrix Xcl

(l). The following result allows us to overcome this problem.

Theorem 4 Fractional polytopic system (7) of order 0 <ν < 1 is robustly BIBO stable

if there exist N matrices Xi = Xi* Î Cn×n, Xi > 0 and a matrix G Î C2n × n s.t. ∀i Î {1.N}:

[
(0)

(
rXi + r̄X̄i

)′(
rXi + r̄X̄i

)
(0)

]
+

[
Ai

−I

]
G′ + G

[
Ai

′ −I
]

< 0. (11)

Proof Suppose a solution (Xi, G) to (11). Computation of convex combination over

the N vertices allows to write for all uncertainties:

[
(0)

(
rX (λ) + r̄X̄ (λ)

)′(
rX (λ) + r̄X̄ (λ)

)
(0)

]
+

[
A (λ)

−I

]
G′ + G

[
A′ (λ) −I

]
< 0 (12)

with

X (λ) =
∑N

i=1
λiXi. (13)
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Applying elimination lemma [14] to the last inequality leads to:

[
In A (λ)

] [
0

(
rX (λ) + r̄X̄ (λ)

)′

rX (λ) + r̄X̄ (λ) 0

] [
In

A′ (λ)

]
< 0 (14)

which is exactly (4) with parameter-dependant matrices and thus, according to

Theorem 2, proves the robust stability of the system.

Theorem 4 provides a sufficient condition for stability but decoupling between stabi-

lity matrix and dynamic matrix in (12) allows to use the parameter-dependant stability

matrix X(l) defined by (13). As proved in [15,16], stability condition of Theorem 4 is

always less conservative than the one of theorem 18 in [4] based on the use of quadra-

tic stability condition.

Based on Theorem 4, the following result allows to design a pseudo state feedback

control law while stability of the closed loop system is attested by a parameter-depen-

dant stability matrix.

Theorem 5 Fractional polytopic system (7) of order 0 <ν < 1 is robustly BIBO stabili-

sable by pseudo-state feedback control law u = Kx + yr if there exist N matrices Xi =

Xi* Î Cn×n , Xi > 0, F Î Rn×n and Kt Î Rm×n s.t. ∀i Î {1.N}:

[
(0)

(
rXi + r̄X̄i

)′(
rXi + r̄X̄i

)
(0)

]
+
[
AiF + BiKt

−F

] [
A0

′ −Im
]
+
[

A0

−Im

] [
(AiF + BiKt)

′ −F′ ] < 0. (15)

A stabilising controller gain is then:

K = KtF
−1. (16)

Proof Suppose a solution (Xi, F, Kt) to (15). Then the controller definition implies

that Kt = KF, which allows to write:[
(0)

(
rXi + r̄X̄i

)′(
rXi + r̄X̄i

)
(0)

]
+

[
Ai + BiK

−I

]
F

[
A0

′ −I
]
+

[
A0

−I

]
F′ [ (Ai + BiK)′ −I

]
< 0. (17)

Defining G =
[
A0

−I

]
F′ gives

[
(0)

(
rXi + r̄X̄i

)′(
rXi + r̄X̄i

)
(0)

]
+

[
Ai + BiK

−I

]
G′ + G

[
(Ai + BiK)′ −I

]
< 0. (18)

According to Theorem 4, this last inequality proves that the closed loop system is

robustly stable.

In order to maintain convexity, matrix A0 appearing in Theorem 5 cannot be a vari-

able but must be chosen a priori such that it is stable. Indeed, elimination lemma

shows that existence of matrices Xi = Xi* > 0, F and A0 verifying (15) is equivalent to

existence of matrices Xi = Xi* > 0 and A0 verifying the following two inequalities:

[
I Ai

] [
0

(
rXi + r̄X̄i

)′

rXi + r̄X̄i 0

] [
1
Ai

′

]
< 0, (19)

[
I A0

] [
0

(
rXi + r̄X̄i

)′

rXi + r̄X̄i 0

] [
1
A0

′

]
< 0. (20)
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Remark Contrary to the analysis case, synthesis result of Theorem 5 cannot be

proved to be always less conservative than the one of Theorem 18 in [4] based on the

use of quadratic stability condition. However, improvement can be significant on some

given examples, as shown in next section.

Numerical example

The proposed numerical application is a fractional version of an example proposed in

[17]. Studied system is described by representation (7) where:

A =
[−3 + α 2

−3 1.5 + γ

]
B =

[
1
β

]
(21)

with

| α |≤ αmax | β |≤ 0.5 | γ |≤ 1.5 (22)

Fractional order ν is chosen equal to 0.7. As parameters a, b and g vary in the inter-

vals defined by relation (22), eigenvalues of matrix A are represented Figure 2 for amax

= 0.7. That figure demonstrates that the system can be stable or unstable depending

on the values a, b and g uncertain parameters values.

The goal is now to compute a pseudo-state feedback control law of the form u = Kx

+ yr that robustly stabilises the system.

For comparison purpose, quadratic stabilisation theorem proposed in [4] and theo-

rem proposed in section “Feedback stabilisation of polytopic fractional order systems”

are applied to compute a stabilising pseudo-state feedback for model (21-22).
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ar
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pa
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Figure 2 Matrix A eigenvalues locus (·) with ∣a∣ ≤ 0.7, ∣g∣ ≤ 1.5, and stability domain limits (–) (+ a =
-0.7, ○ a = 0.7, ◇ g = -1.5, □ g = 1.5).
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First, Theorem 18 in [4] is used to compute a stabilising controller of gain K. Parser

Yalmip [18] and LMI solver SDPT3 are used to get matrices X and Y solutions of the

semi-definite problem associated with LMI condition

(
rX + r̄X̄

)′
Ai

′ + Ai
(
rX + r̄X̄

)
+ Y ′Bi

′ + BiY < 0 (23)

where
r = e

j(1−ν)
π

2
, × = X* Î Cn×n, X > 0 and Y Î Rm×n s.t. ∀i Î {1.N}. A stabilising

controller gain is then:

K = Y
(
rX + r̄X̄

)−1
. (24)

For such a problem, a solution exists for values of amax up to α
quad
max = 0.57 .

Then, this solver has been used to get matrices Xi, i Î {1.N}, F and Kt associated

with LMI condition (15) of Theorem 5 with the matrix A0 chosen equal to:

A0 =
[−2 0

0 −2

]
. (25)

A solution exists for values of amax up to α
A0
max = 0.74 and corresponding gain K is

obtained using Equation 14:

K =
[−15.56 33.29

]
. (26)

This represents an improvement of about 30%.

Eigenvalues of matrix A + BK (closed loop state matrix) as parameters a, b and g
vary in the intervals defined by relation (24) with amax = 0.74 are represented Figure 3.

This figure confirms that the closed loop system is robustly BIBO stable.

The degrees of freedom offered by matrix A0 are now used to find a controller K for

higher values of parameter amax. Matrix A0 is first chosen equal to:

A1
0 =

[
λr −λi

λi λr

]
. (27)

Figure 4 represents the amax values obtained with -50 ≤ lr ≤ 0 and 0 ≤ li ≤ 2. This

figure highlights the existence of an infinity of matrices A0 that permit to obtain a

solution and provides a value of amax equal to α
A1
0

max = 0.86 for lr = -15.86 and li = 0.

Matrix A0 is now chosen equal to:

A2
0 =

[
λr1 0
0 λr2

]
. (28)

Figure 5 represents the amax values obtained with −50 ≤ λr1 ≤ 0 and 0 ≤ λr2 ≤ 2 .

As previously, this figure shows that the maximal value of αmax(α
A2
0

max = 0.88) is

obtained for A0 eigenvalues λr1 = −19.31 and λr2 = −19.31 .

As shown in Table 1, the result provided by Theorem 5, substantially increases the

size of the uncertain domain for which a controller can be computed. The best

obtained amax is 0.88 and corresponds to an improvement of 54% over the quadratic

case.
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Figure 3 Matrix A + BK eigenvalues locus (·) with ∣a∣ ≤ 0.7, ∣g∣ ≤ 1.5, ∣b∣ ≤ 0.5, stability domain
limits (–) (+ a = -0.7, ○ a = 0.7, ◇ g = -1.5, □ g = 1.5,∇ b = -0.5, Δ b = 0.5).
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Figure 4 Research of amax for various values of lr and li.
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Conclusion
In this article, a solution is proposed for the robust stability and stabilisation problems

of fractional order linear systems subjected to convex polytopic uncertainties. Pre-

sented results are derived from the LMI stability analysis and synthesis conditions

recently proposed by the authors for the certain case [4].

In relation to the analysis result proposed in [4] that involves a single matrix in order

to prove stability of the system, additional variables are then introduced to decouple

system matrices from the ones proving stability of the closed loop system. This decou-

pling allows using parameter-dependant stability matrices and obtained LMI stability

analysis condition is always less conservative than the one involving a single stability

matrix.

The method is extended to handle the state feedback synthesis problem. Although,

synthesis result based on the use of parameter-dependant matrices cannot be proved

to be always less conservative than the quadratic one, significant improvement is

obtained on a numerical example.

As shown in the numerical example, this last condition offers some degree of free-

dom. Some parameters have to be set a priori and this choice has an influence on the

quality of the obtained result. Authors are currently working on a systematic method

to choose those parameters.

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
-100

-50

0

0

0.1

0.2

0.3

0.4

0.5

0.6
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Figure 5 Research of amax for various values of λr1 and λr2 .

Table 1 Values of amax obtained

α
quad
max α

A0
max α

A1
0

max α
A2
0

max

0.57 0.74 0.86 0.88
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