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Abstract

We study a superlinear Schrödinger equation in the whole Euclidean space ℝn. By
using a suitable sign-changing critical point, we prove that the problem admits
infinitely many sign-changing solutions, under weaker conditions.
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1 Introduction
In this paper, we consider the following Schrödinger equation,{

−�u + V(x)u = f (x, u), x ∈ RN

u(x) → 0, |x| → ∞.
(1:1)

In order to overcome the lack of compactness of the problem, we assume that the

potential V (x) has a “good” behavior at infinity, in such a way the Schrödinger opera-

tor -Δ + V (x) on L2(ℝN) has a discrete spectrum. More precisely, we suppose

(V1)V ∈ L2loc(R
N), V is bounded from below;

(V2) There exists r0 >0 such that for any h >0

meas(Br0 (y) ∩ Vh) → 0, |y| → +∞,

where meas(A) denotes the Lebesgue measure of A on ℝN, Br0 (y) is the ball centered

at y with radius r0 and Vh = {x Î ℝN : V (x) < h}.

Of course, V (x) above can satisfy the condition (S1) or ((S̄1), (S̃1)) in [1], so that the

Schrödinger operator could have the same good properties.

We denote {lj} to be the eigenvalues sequence of - Δ+V (x) (see Proposition 2.1 in

Section 2). Set F(x, t) =
∫ t
0 f (x, s)ds,F(x, t) = f (x, t)t − 2F(x, t).

We assume the following conditions.

(f1) f : ℝ
N × ℝ ® ℝ is a Carathéodory function with a subcritical growth,

|f (x, t)| ≤ c(1 + |t|s−1), t ∈ R, x ∈ RN,

where s Î (2, 2*), f(x, t) ≥ 0 for all (x, t) Î ℝN × ℝ and f(x, t) = o(|t|) as |t| ® 0.

(f2) lim
|t|→+∞

f (x, t)t
|t|2 = +∞ uniformly for x Î ℝN.
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(f3) There exist θ ≥ 1, s Î [0, 1] s.t.

θF(x, t) ≥ F(x, st), (x, t) ∈ RN × R. (1:2)

(f4) f (x, t) is odd in t.

Let us point out that, under our assumptions on f(x, t), we can assume without loss

of generality that V is strictly positive just replacing V (x) with V (x) + L and f(x, u)

with f(x, u) + Lu, L large enough. We shall prove the following result.

Theorem 1.1 Under assumptions (V1), (V2), (f1) - (f4), problem (1.1) has infinitely

many sign-changing solutions.

Remark 1.1 In [2,3], they got sign-changing solutions for elliptic problem with

Dirichlet boundary value. Those abstract results involved a Banach space of continuous

functions in the Hilbert space, where the cone has a nonempty interior. This plays a

crucial role. While the abstract theory in this paper only involved a Hilbert space,

where the cone has an empty interior.

Remark 1.2 In [4], they showed infinitely many solutions for p-Laplace equation

with Dirichlet boundary value, while we get infinitely many sign-changing solutions

under similar conditions.

Remark 1.3 Equation 1.1 has been studied in [5], where they obtained the existence

for sign-changing solutions in a asymptotically case.

Remark 1.4 In [1, §5.3], they also obtained infinitely many sign-changing solutions

for elliptic problem with Dirichlet boundary value, under (AR) condition stronger than

(f2) and (f3) above.

Remark 1.5 In [1, §6.4], Equation 1.1 has been studied the existence for infinitely

many sign-changing solutions under conditions stronger than ours above.

2 Preliminaries
We consider the Hilbert space

E = {u ∈ H1(RN) :
∫
RN

(|�u|2 + V(x)u2)dx < ∞}

endowed with the inner product (u, v) =
∫
RN (�u�v + V(x)uv)dx for u, v Î E and

norm ||u|| = (u, u)
1
2. Clearly it is E ≲ H1(ℝN). Denote |u|q to be the norm of u in Lq

(ℝN). In order to overcome the lack of compactness of the problem, the following pro-

position is crucial.

Proposition 2.1 [1,5] Assume V (x) satisfies condition (V1) and (V2), or (S1) or (S̄1)

and (S̃1) in [1]. Then the imbedding E ≲ Lq(ℝN) is continuous if q Î [2, 2*] and com-

pact if q Î [2, 2*[. Hence, the eigenvalue problem

−�u + V(x)u = λu, x ∈ RN

possesses a sequence of positive eigenvalue

0 < λ1 < λ3 < · · · < λk < · · · → ∞

with finite multiplicity for each lk. Moreover, the principle eigenvalue l1 is simple

with a positive eigenfunction �1, and the eigenfunctions �k corresponding to lk, k ≥ 2

are sign changing.
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Let us consider the functional J : E ® ℝ

J(u) =
1
2

‖u‖2 −
∫
RN

F(x, u)dx. (2:1)

Then J Î C1(E, ℝ) and J’ = id (-Δ + V )-1 f = id - KJ. The critical point of J is just the

weak solution of problem (1.1).

The proof if our main results will be obtained by a suitable applications of an

abstract critical point theorem stated in [1]. For completeness, we recall here this

theorem.

Let E be Hilbert space with norm ||u||, and Y, M be two subspaces of E with dim Y

<∞, dim Y - co dim M ≥ 1. Let G be C1 - functional on E with G’(u) = u - KG(u) and

P denote a closed convex positive cone of E. Denote ±D0 by open convex subsets of E,

containing the positive cone P in its interior and K = {u Î E : G’(u) = 0}, K[a, b] = {u

Î K : G(u) Î [a, b]}. Set D = D0 ∪ (-D0), S = E \ D. In applications, D contains all

positive and negative critical points, and S includes all possible sign-changing critical

points. Hence, nontrivial sign-changing solutions can be obtained by different choose

of ±D0 and S.

Next, we assume that there is another norm || · ||* of E such that ||u||* ≤ c*||u|| for

all u Î E, where c* >0 is a constant. Moreover, we assume that ||un - u||* ® 0 when-

ever un ⇀ u weakly in (E, || · ||). Write E = M1 ⊕ M.

Let

Q∗(ρ) = {u ∈ M :
‖u‖p∗
‖u‖2 +

‖u‖ ‖u‖∗
‖u‖ +D∗‖u‖∗

= ρ}

where r >0, D* >0, p >2 are fixed constants. Let Q** = Q*(r) ∩ Gb ⊂ S and γ = inf
Q∗∗

G,

where Gb = {u Î E : G(u) ≤ b}, then b ≥ g.
Let us assume that

(A) KG(±D0) ⊂ ±D0;

(A∗
1) Assume that for any a, b >0, there is a c2 = c2(a, b) >0 such that G(u) ≤ a and

||u||* ≤ b ⇒ ||u|| ≤ c2;

(A∗
2) lim

u∈Y ,‖u‖→∞
= −∞, sup

Y
G = β.

In the sequel, we shall consider the following Palais-Smale condition, shortly (w* -

PS) condition.

Definition 2.1 The functional G is said to satisfy the (w* - PS) condition if any

sequence {un} such that {G(un)} is bounded and G’(un) ® 0, we have either {un} is

bounded and has a convergent subsequence or ∃s, R, b >0 s.t. for any u Î J-1([c - s, c
+ s]) with ||u|| ≥ R, ||J’(u)|| ||u|| ≥ b. If in particular, {G(un)} ® c, we say that (w*-

PS)c is satisfied.

The following results hold (see [1, Theorem 5.6]).

Theorem 2.1 Assume (A) and (A∗
1) and (A∗

2). If the even functional G satisfies the

(w* - PS)c condition at lever c for each c Î [r, b], then

K[r − ε,β + ε] ∩ (E\P ∪ (−P)) �= ∅

for all ε >0 small.
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3 Proof of the main theorems
From now on, we will denote by Nk the eigenspace of lk. Then dim Nk <∞. We fix k

and let Ek = N1 ⊕ ... ⊕ Nk. In order to give the proof of Theorem 1.1, first we state

some useful lemmas.

Lemma 3.1 J(u) ® -∞, as ||u|| ® ∞, for all u Î Ek.

Proof. Because dim Ek <∞, all norms in it are equivalent, then by (f2),

J(u)
||u||2 ≤ 1

2
− ∫RN

F(x, u)
||u||2 dx → −∞.

Consider another norm ||·||* := ||·||s of E, s Î (2, 2*). Then ||u||s ≤ C*||u|| for all u

Î E, here C* >0 is a constant and by lemma 2.1 ||un - u||* ® 0 whenever un ⇀ u

weakly in E. Write E = Ek−1 ⊕ E⊥
k−1. Let

Q∗(ρ) = {u ∈ E⊥
k−1 :

||u||ss
||u||2 +

||u||||u||s
||u|| +D∗||u||s = ρ}

where r, D* are fixed constants.

Lemma 3.2 ||u||s ≤ c1, ∀u Î Q*(r), where c1 >0 is a constant.

Proof. If ||u||s ® ∞, then so does ||u|| ® ∞. Hence

||u|| ||u||s
||u|| +D∗||u||s → ∞,

a contradiction.

By (f1), there exist CF >0, s Î (2, 2*) such that

|F(x, u)| ≤ λ1

4
u2 + CF|u|s, x ∈ RN, u ∈ R. (3:1)

Therefore, for any a, b >0, there is a c2 = c2(a, b) >0 such that

J(u) ≤ a, ||u||s ≤ b ⇒ ||u|| ≤ c2.

By lemma 3.1,

lim
u∈Y ,||u||→∞

J(u) = −∞,

where Y = Ek. Then, conditions (A∗
1) and (A∗

2) are satisfied. We define

sup
Y

G := β .

Let

Q∗∗ := Q∗(ρ) ∩ Jβ ⊂ S, inf
Q∗∗

J := γ .

Set P = {u Î E : u(x) ≥ 0 for a.e. x Î ℝN}. Then, P(-P) is the positive (negative) cone

of E and weakly closed. By Lemma 5.4 or Lemma 6.8 [1], there is a δ := δ(b) such that

dist(Q**, P) = δ(b) >0. We define

D(μ0) := {u ∈ E : dist(u,P) < μ0},

where μ0 us determined by the following lemma.

Lemma 3.3 Under the assumptions (V1), (V2), and (f1), there is a μ0 Î (0, δ) (may be

chosen small enough) such that KJ (±D(μ0)) ⊂ ±D(μ0). Therefore, (A) is satisfied.
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Proof. Please see Lemma 2.9 of [1] for the similar proof.

Let D := -D(μ0) ∪ D(μ0), S := E \ D. By Lemma 3.3, we may assume Q** ⊂ S.

Lemma 3.4 Let us assume that (V1), (V2) and (f2), (f3) hold. Then, the functional J

satisfies the (w*-PS) condition.

Proof. As the sequence {un} such that {G(un)} is bounded and G’(un) ® 0, if {un} is

bounded, then by Proposition 2.1 and the compact imbedding E ≲ Lq(ℝN), q Î [2, 2*[,

we have {un} possesses a convergent subsequence.

Next to prove another case. If not, there exist c Î ℝ and {un} ⊂ E satisfying, as n ®
∞

J(un) → c, ||un|| → ∞, ||J′(un)|| ||un|| → 0 (3:2)

then we have

lim
n→∞ ∫

RN
(
1
2
f (x, un)un − F(x, un))dx

= lim
n→∞(J(un) − 1

2
< J′(un), un >) = c.

(3:3)

Denote vn =
un

||un||, then ||vn|| = 1, that is {vn} is bounded in E. Thus, up to a subse-

quence, for some v Î E, we get

vn ⇀ v in E,

vn → v in Lp(RN), for2 ≤ p < 2∗,

vn(x) → v(x)a.e. x ∈ RN.

(3:4)

If v ≢ 0, because ||J’(un)|| ||un|| ® 0, as the similar proof in Lemma 6.22 of [2] or

Lemma 2.2 of [4], we get a contradiction.

If v = 0, by condition (f3), as the similar proof in Lemma 6.22 of [2] or Lemma 2.2 of

[4], we also have∫
RN

(
1
2
f (x, un)un − F(x, un))dx → ∞, (3:5)

which contradicts (3.3).

This proves that J satisfies the (w*-PS) condition.

Remark 3.1 Our condition (f3) here is different from (P3) of [1, Theorem 6.14 ],

which is used to prove the (w*-PS) condition; furthermore, it is more weaker.

Proof of Theorem 1.1. By Theorem 2.1,

K[r − ε,β + ε] ∩ (E\P ∪ (−P)) �= ∅

for all ε >0 small. That is there exists a uk Î E \ (- P ∪ P) (sign-changing critical

point) such that

J′(uk) = 0, J(uk) ∈ [r − 1,β + 1].

Next, we estimate the γ = inf
Q∗∗

J. Because of Proposition 2.1, we can adopt the similar

method as in [1, p. 67]. Similar to Lemma 2.23 of [1], by choosing the constants D*

and r, for all u Î Q*(r), we may get
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||u|| ≥ 
∗
s min{λ(1−α)(s−2)/2

k ,λ(1−α)/2
k }min{ρ,ρ1/(s−2)}.

By Lemma 2.26 of [1], for any u Î Q*(r), we have that

J(u) ≥ 1
8
(
∗

s )
2T1T2,

where 
∗
s , T1, T2 are defined in (2.49)-(2.51) in [1] with p replaced by s Î (2, 2*), a Î

(0, 1) is a constant, and 
∗
s , T2 are independent of k. In particular, since lk ® ∞, we

get

T1 := min{λ(1−α)(s−2)/2
k ,λ(1−α)/2

k } → ∞, as k → ∞.

Therefore, g ® ∞ as k ® ∞; hence the proof of Theorem 1.1 is finished.
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