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Abstract

The main objective of this paper is to establish some new retarded nonlinear sum-
difference inequalities with two independent variables, which provide explicit
bounds on unknown functions. These inequalities given here can be used as handy
tools in the study of boundary value problems in partial difference equations.
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1 Introduction
Being important tools in the study of differential, integral, and integro-differential

equations, various generalizations of Gronwall inequality [1,2] and their applications

have attracted great interests of many mathematicians (cf. [3-16], and the references

cited therein). Recently, Agarwal et al. [3] studied the inequality

u(t) ≤ a(t) +
n∑
i=1

bi(t)∫
bi(t0)

gi(t, s)wi(u(s))ds, t0 ≤ t < t1.

Cheung [17] investigated the inequality

up(x, y) ≤ a +
p

p − q

b1(x)∫
b1(x0)

c1(y)∫
c1(y0)

g1(s, t)uq(s, t)dtds

+
p

p − q

b2(x)∫
b2(x0)

c2(y)∫
c2(y0)

g2(s, t)uq(s, t)ψ(u(s, t))dtds.

Agarwal et al. [18] obtained explicit bounds to the solutions of the following retarded

integral inequalities:
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ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫
αi(t0)

uq(s)[fi(s)ϕ
(
u(s)

)
+ gi(s)]ds,

ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫
αi(t0)

uq(s)[fi(s)ϕ1
(
u(s)

)
+ gi(s)ϕ2

(
logu(s)

)
]ds,

ϕ(u(t)) ≤ c +
n∑
i=1

αi(t)∫
αi(t0)

uq(s)[fi(s)L
(
s, u(s)

)
+ gi(s)u(s)]ds,

where c is a constant, and Chen et al. [19] did the same for the following inequal-

ities:

ψ(u(x, y)) ≤ c +

γ (x)∫
γ (x0)

δ(y)∫
δ(y0)

f (s, t)ϕ(u(s, t))dtds,

ψ(u(x, y)) ≤ c +

α(x)∫
α(x0)

β(y)∫
β(y0)

g(s, t)u(s, t)dtds

+

γ (x)∫
γ (x0)

δ(y)∫
δ(y0)

f (s, t)u(s, t)ϕ(u(s, t))dtds,

ψ(u(x, y)) ≤ c +

α(x)∫
α(x0)

β(y)∫
β(y0)

g(s, t)w(u(s, t))dtds

+

γ (x)∫
γ (x0)

δ(y)∫
δ(y0)

f (s, t)w(u(s, t))ϕ(u(s, t))dtds,

where c is a constant.

Along with the development of the theory of integral inequalities and the theory of

difference equations, more attentions are drawn to some discrete versions of Gronwall

type inequalities (e.g., [20-22] for some early works). Some recent works can be found,

e.g., in [6,23-25] and some references therein. Found in [26], the unknown function u

in the fundamental form of sum-difference inequality

u(n) ≤ a(n) +
n−1∑
s=0

f (s)u(s)

can be estimated by u(n) ≤ a(n)
∏n−1

s=0
(1 + f (s)). In [6], the inequality of two vari-

ables

u2(m,n) ≤ c2 +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)u(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)u(s, t)w
(
u(s, t)

)
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was discussed, and the result was generalized in [23] to the inequality

up(m,n) ≤ c +
m−1∑
s=m0

n−1∑
t=n0

a(s, t)uq(s, t) +
m−1∑
s=m0

n−1∑
t=n0

b(s, t)uq(s, t)w
(
u(s, t)

)
.

In this paper, motivated mainly by the works of Cheung [17,23], Agarwal et al. [3,18],

and Chen et al. [19], we shall discuss upper bounds of the function u(m, n) satisfying

one of the following general sum-difference inequalities

ψ(u(m,n)) ≤ a(m,n) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w
(
u(αi(s),βi(t))

)
[fi(s, t)ϕ

(
u(αi(s),βi(t))

)
+gi(s, t)],

(1:1)

ψ(u(m,n)) ≤ a(m,n) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w
(
u(αi(s),βi(t))

)
[fi(s, t)ϕ1

(
u(αi(s),βi(t))

)
+gi(s, t)ϕ2

(
logu(αi(s),βi(t))

)
],

(1:2)

ψ(u(m,n)) ≤ a(m,n) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w
(
u(αi(s),βi(t))

)
[fi(s, t)L

(
s, t, u(αi(s),βi(t))

)
+gi(s, t)u

(
αi(s),βi(t)

)
],

(1:3)

for (m, n) Î [m0, m1) ∩ N+ × [n0, n1) ∩ N+, where a(m, n), b(m, n) are nonnegative

and nonde-creasing functions in each variable. Inequalities (1.1), (1.2), and (1.3) are the

discrete versions of Agarwal et al. [18] and Chen et al. [19]. They not only generalized

the forms with one variable into the ones with two variables but also extended the

constant ‘c’ out of integral into a function ‘a(m, n)’. These inequalities will play an

important part in the study on difference equation. To illustrate the action of their

inequalities, we also gave an example of boundary value problem in partial difference

equation.

2 Main result
Throughout this paper, k, m0, m1, n0, n1 are fixed natural numbers. N+ := {1, 2, 3, . . .},

I := [m0, m1] ∩ N+, Im:= [m0, m] ∩ N+, J := [n0, n1] ∩ N+, Jn:= [n0, n] ∩ N+, ℝ+ := [0,

∞). For functions s(m), z(m, n), m, n Î N, their first-order (forward) differences are

defined by Δs(m) = s(m + 1) - s(m), Δ1z(m, n) = z(m + 1, n) - z(m, n) and Δ2z(m, n) =

z(m, n + 1) - z(m, n). Obviously, the linear difference equation Δx(m) = b(m) with

initial condition x(m0) = 0 has solution
∑m−1

s=m0
b(s). For convenience, in the sequel, we

define
∑m0−1

s=m0
b(s) = 0. We make the following assumptions:

(H1) ψ Î C(ℝ+, ℝ+) is strictly increasing with ψ(0) = 0 and ψ (t) ® ∞ as t ® ∞;

(H2) a, b : I × J ® (0, ∞) are nondecreasing in each variable;

(H3) w, �, �1, �2 Î C(ℝ+,ℝ+) are nondecreasing with w(0) > 0, �(r) > 0, �1(r) > 0 and

�2(r) > 0 for r > 0;

(H4) ai: I ® I and bi: J ® J are nondecreasing with ai(m) ≤ m and bi(n) ≤ n, i = 1, 2,

. . . , k;

(H5) fi, gi: I × J ® ℝ+, i = 1, 2, . . . , k.

Theorem 1. Suppose (H1- H5) hold and u(m, n) is a nonnegative function on I × J

satisfying (1.1). Then, we have
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u(m,n) ≤ ψ−1 [
W−1 (

�−1 (
A(m,n)

))]
(2:1)

for all (m,n) ∈ IM1 × JN1, where

W(r) : =

r∫
1

ds
w(ψ−1(s))

for r > 0; W(0) := lim
r→0+

W(r), (2:2)

�(r) : =

r∫
1

ds
ϕ(ψ−1(W−1(s)))

for r > 0; �(0) := lim
r→0+

�(r), (2:3)

A(m,n) : = �

(
W(a(m,n)) + b(m,n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)
+ b(m,n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t), (2:4)

and (M1, N1) Î I × J is arbitrarily chosen such that

A(M1,N1) ∈ Dom(�−1),�−1(A(M1,N1)) ∈ Dom(W−1). (2:5)

Proof. From assumption (H2) and the inequality (1.1), we have

ψ(u(m,n)) ≤ a(M, n) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w(u(αi(s),βi(t)))

· [fi(s, t)ϕ
(
u(αi(s),βi(t))

)
+ gi(s, t)]

(2:6)

for all (m, n) Î IM× J, where m0 ≤ M ≤ M1 is a natural number chosen arbitrarily.

Define a function h(m, n) by the right-hand side of (2.6). Clearly, h(m, n) is positive

and nondecreasing in each variable, with h(m0, n) = a(M, n) > 0. Hence (2.6) is equiva-

lent to

u(m,n) ≤ ψ−1(η(m,n)) (2:7)

for all (m, n) Î IM× J. By (H4) and the monotonicity of w, ψ-1 and h, we have, for all

(m, n) Î IM× J,


1η(m,n) = b(M, n)
k∑
i=1

n−1∑
t=n0

w(u(αi(m),βi(t)))[fi(m, t)ϕ(u(αi(m),βi(t))) + gi(m, t)]

≤ w(ψ−1(η(m,n)))b(M, n)
k∑
i=1

n−1∑
t=n0

[fi(m, t)ϕ(ψ−1(η(m, t))) + gi(m, t)].

(2:8)

On the other hand, by the monotonicity of w and ψ-1,

W(η(m + 1,n)) − W(η(m,n)) =

η(m+1,n)∫
η(m,n)

ds
w(ψ−1(s))

≤ 
1η(m,n)
w(ψ−1(η(m,n)))

. (2:9)

From (2.8) and (2.9), we have

W(η(m + 1,n)) − W(η(m,n))

≤ b(M, n)
k∑
i=1

n−1∑
t=n0

[
fi(m, t)ϕ

(
ψ−1(η(m, t))

)
+ gi(m, t)

] (2:10)
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for (m, n), (m + 1, n) Î IM× J. Keeping n fixed and substituting m with s in (2.10),

and then summing up both sides over s from m0 to m - 1, we get

W(η(m,n)) ≤ W(η(m0,n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t)ϕ

(
ψ−1(η(s, t))

)
+ gi(s, t)

]

= W(a(M, n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t)ϕ
(
ψ−1(η(s, t))

)
+ gi(s, t)]

≤ c(M, n) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)ϕ
(
ψ−1(η(s, t))

)
(2:11)

for (m, n) Î IM× J, where

c(M, n) = W(a(M, n)) + b(M, n)
k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

gi(s, t). (2:12)

Now, define a function Γ(m, n) by the right-hand side of (2.11). Clearly, Γ(m, n) is

positive and nondecreasing in each variable, with Γ(m0, n) = c(M, n) > 0. Hence (2.11)

is equivalent to

η(m,n) ≤ W−1(�(m,n)) (2:13)

for all (m,n) ∈ IM × JN1, where N1 is defined in (2.5). By (H4) and the monotonicity

of �, ψ-1, W-1 and Γ , we have, for all (m,n) ∈ IM × JN1,


1�(m,n) = b(M, n)
k∑
i=1

n−1∑
t=n0

fi(m, t)ϕ(ψ−1(η(m, t)))

≤ b(M, n)ϕ(ψ−1(W−1(�(m,n))))
k∑
i=1

n−1∑
t=n0

fi(m, t).

(2:14)

On the other hand, by the monotonicity of �, ψ-1, and W-1, we have

�(�(m + 1,n)) − �(�(m,n)) =

�(m+1,n)∫
�(m,n)

ds
ϕ(ψ−1(W−1(s)))

≤ 
1�(m,n)
ϕ(ψ−1(W−1(�(m,n))))

.

(2:15)

From (2.14) and (2.15), we obtain

�(�(m + 1,n)) − �(�(m,n)) ≤ b(M, n)
k∑
i=1

n−1∑
t=n0

fi(m, t) (2:16)

for (m,n), (m + 1,n) ∈ IM × JN1. Keeping n fixed and substituting m with s in (2.16),

and then summing up both sides over s from m0 to m - 1, we get

�(�(m,n)) ≤ �(�(m0,n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

= �(c(M, n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

(2:17)
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for (m,n) ∈ IM × JN1. From (2.12) and (2.17), we have

�(m,n) ≤ �−1

(
�(c(M, n)) + b(M, n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

)

= �−1

[
�(W(a(M, n)) + b(M, n)

k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)

+ b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

]
.

(2:18)

From (2.7), (2.13), and (2.18), we get

u(m,n) ≤ ψ−1(η(m,n)) ≤ ψ−1(W−1(�(m,n)))

≤ ψ−1 {
W−1 [

�−1 (� (W(a(M, n))
(2:19)

+b(M, n)
k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)

+b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

)]} (2:20)

for (m,n) ∈ IM × JN1. Let m = M, from (2.20), we observe that

u(M, n) ≤ ψ−1

{
W−1

[
�−1

(
�

(
W(a(M, n)) + b(M, n)

k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)

+b(M, n)
k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

fi(s, t)

)]} (2:21)

for all (M, n) ∈ IM1 × JN1, where M1 is defined by (2.5). Since M ∈ IM1 is arbitrary,

from (2.21), we get the required estimate

u(m,n) ≤ ψ−1

{
W−1

[
�−1

(
�

(
W(a(m,n)) + b(m,n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)

+ b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)

)]}

for all (m,n) ∈ IM1 × JN1. Theorem 1 is proved.

Theorem 2. Suppose (H1 - H5) hold and u(m, n) is a nonnegative function on I × J

satisfying (1.2). Then

(i) if �1(u) ≥ �2(log u), we have

u(m,n) ≤ ψ−1 [
W−1 (

�−1
1 (D1(m,n))

)]
(2:22)

for all (m,n) ∈ IM1 × JN2,

(ii) if �1(u) ≤ �2(log u), we have

u(m,n) ≤ ψ−1 [
W−1 (

�−1
2 (D2(m,n))

)]
(2:23)
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for all (m,n) ∈ IM3 × JN3, where

Dj(m,n) : = �j(W(a(m,n))) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)];

�j(r) : =

r∫
1

ds
ϕj(ψ−1(W−1(s)))

for r > 0; �j(0) := lim
r→0+

�j(r);

(2:24)

j = 1, 2; (M2, N2) is arbitrarily given on the boundary of the planar region

R1 := {(m,n) ∈ I × J : D1(m,n) ∈ Dom(�−1
1 ),�−1

1 (D1(m,n)) ∈ Dom(W−1)};(2:25)

and (M3, N3) is arbitrarily given on the boundary of the planar region

R2 := {(m,n) ∈ I × J : D2(m,n) ∈ Dom(�−1
2 ),�−1

2 (D2(m,n)) ∈ Dom(W−1)}.(2:26)

Proof. (i) When �1(u) ≥ �2(log u), from inequality (1.2), we have

ψ(u(m,n)) ≤ a(M, n) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w(u(αi(s),βi(t)))

· [
fi(s, t)ϕ1(u(αi(s),βi(t))) + gi(s, t)ϕ2

(
log(u(αi(s),βi(t)))

)] (2:27)

for all (m, n) Î IM× J, where m0 ≤ M ≤ M2 is chosen arbitrarily. Let Ξ(m, n) denote

the right-hand side of (2.27), which is a positive and nondecreasing function in each

variable with Ξ (m0, n) = a(M, n). Hence (2.27) is equivalent to

u(m,n) ≤ ψ−1(�(m,n)). (2:28)

By (H4) and the monotonicity of w, ψ-1, and Ξ, we have, for all (m, n) Î IM× J,


1�(m,n) = b(M, n)
k∑
i=1

n−1∑
t=n0

w(u(αi(m),βi(t)))

· [
fi(m, t)ϕ1(u(αi(m),βi(t))) + gi(m, t)ϕ2

(
log(u(αi(m),βi(t)))

)]
≤ b(M, n)w

(
ψ−1(�(m,n))

)
·

k∑
i=1

n−1∑
t=n0

[
fi(m, t)ϕ1

(
ψ−1(�(m, t))

)
+ gi(m, t)ϕ2

(
log(ψ−1(�(m, t)))

)]
(2:29)

for all (m, n) Î IM× J. Similar to the process from (2.9) to (2.11), we obtain

W(�(m,n)) ≤ W(�(m0,n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t)ϕ1(ψ−1(�(s, t)))

+ gi(s, t)ϕ2
(
log(ψ−1(�(s, t)))

)]
= W(a(M, n)) + b(M, n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t)ϕ1(ψ−1(�(s, t)))

+ gi(s, t)ϕ2
(
log(ψ−1(�(s, t)))

)]
≤ W(a(M, n))

+ b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t) + gi(s, t)

]
ϕ1(ψ−1(�(s, t)))

(2:30)
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for all (m, n) Î IM× J. Now, define a function Θ(m, n) by the right-hand side of

(2.30). Clearly, Θ(m, n) is positive and nondecreasing in each variable, with Θ(m0, n) =

W (a(M, n)) > 0. Thus, (2.30) is equivalent to

�(m,n) ≤ W−1((m,n)) ∀ (m,n) ∈ IM × JN2 , (2:31)

where N2 is defined by (2.25). Similar to the process from (2.14) to (2.18), we obtain

(m,n) ≤ �−1
1

(
�1((m0,n)) + b(M, n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)]

)

= �−1
1

(
�1(W(a(M, n))) + b(M, n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)]

)(2:32)

for all (m,n) ∈ IM × JN2. From (2.28), (2.31), and (2.32), we conclude that

u(m,n) ≤ ψ−1(�(m,n)) ≤ ψ−1 (
W−1((m,n))

)
≤ ψ−1

[
W−1

(
�−1

1 (�1(W(a(M, n))) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)])

)]
(2:33)

for all (m,n) ∈ IM × JN2. Let m = M , from (2.33), we get

u(M, n) ≤ ψ−1

[
W−1

(
�−1

1 (�1(W(a(M, n)) + b(M, n)
k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)])

)]
. (2:34)

Since M ∈ IM2 is arbitrary, from inequality (2.34), we obtain the required inequality in

(2.22).

(ii) When �1(u) ≤ �2(log u), similar to the process from (2.27) to (2.30), from

inequality (1.2), we have

W(�(m,n)) ≤ W(a(M, n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t) + gi(s, t)

]
ϕ2(ψ−1(�(s, t))) (2:35)

for all (m,n) ∈ IM × J,M ∈ IM3, where M3 is defined in (2.26). Similar to the process

from (2.30) to (2.34), we obtain

u(M, n) ≤ ψ−1

[
W−1

(
�−1

2 (�2(W(a(M, n)) + b(M, n)
k∑
i=1

M−1∑
s=m0

n−1∑
t=n0

[fi(s, t) + gi(s, t)])

)]
. (2:36)

Since M ∈ IM3 is arbitrary, from inequality (2.36), we obtain the required inequality in

(2.23).

Theorem 3. Suppose (H1 - H5) hold and that L, M ∈ C(R3
+,R+)satisfy

0 ≤ L(s, t, u) − L(s, t, v) ≤ M(s, t, v)(u − v) (2:37)

for s, t, u, v Î ℝ+with u > v ≥ 0. If u(m, n) is a nonnegative function on I × J satisfy-

ing (1.3) then we have

u(m,n) ≤ ψ−1 [
W−1(�−1

3 (E(m,n)))
]

(2:38)

for all (m,n) ∈ IM4 × JN4, where W is defined by (2.2),

�3(r) : =

r∫
1

ds
ψ−1(W−1(s))

for r > 0; �3(0) := lim
r→0+

�3(r), (2:39)
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E(m,n) : = �3(F(m,n)) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t)M(s, t, 0) + gi(s, t)],

F(m,n) : = W(a(m,n)) + b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)L(s, t, 0),

and (M4, N4) Î I × J is arbitrarily given on the boundary of the planar region

R := {(m,n) ∈ I × J : E(m,n) ∈ Dom(�−1
3 ),�−1

3 (E(m,n)) ∈ Dom(W−1)}. (2:40)

Proof. From inequality (1.3), we have

ψ(u(m,n)) ≤ a(M, n) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

w(u(αi(s),βi(t)))
[
fi(s, t)L

(
s, t, u(αi(s),βi(t))

)
+gi(s, t)u(αi(s),βi(t))

] (2:41)

for all (m, n) Î IM× J, where m0 ≤ M ≤ M4 is chosen arbitrarily. Let P (m, n) denote

the right-hand side of (2.41), which is a positive and nondecreasing function in each

variable, with P(m0, n) = a(M, n). Similar to the process in the proof of Theorem 2

from (2.27) to (2.30), we obtain

W(P(m,n)) ≤ W(a(M, n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t)L

(
s, t,ψ−1(P(s, t))

)
+gi(s, t)ψ−1(P(s, t))

] (2:42)

for all (m, n) Î IM× J. From inequality (2.37) and (2.42), we get

W(P(m,n)) ≤ W(a(M, n)) + b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)L(s, t, 0)

+ b(M, n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[
fi(s, t)M(s, t, 0) + gi(s, t)

]
ψ−1(P(s, t))

for all (m, n) Î IM× J. Similar to the process in the proof of Theorem 2 from (2.30)

to (2.34), we obtain

u(m,n) ≤ ψ−1

[
W−1

(
�−1

3

(
�3

(
W(a(M, n)) + b(M, n)

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t)L(s, t, 0)

)

+ b(m,n)
k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

[fi(s, t)M(s, t, 0) + gi(s, t)]

))]
.

(2:43)

Since M ∈ IM4 is arbitrary, where M4 is defined in (2.40), from inequality (2.43), we

obtain the required inequality in (2.38).

3 Applications to BVP
In this section, we use our result to study certain properties of the solutions of the fol-

lowing boundary value problem (BVP):
{


2
(

1(ψ(z(m,n)))

)
= F

(
m,n, z(α1(m),β1(n)), z(α2(m),β2(n)), . . . , z(αk(m),βk(n))

)
,

z(m,n0) = a1(m), z(m0,n) = a2(n), z(m0,n0) = a1(m0) = a2(n0) = 0 (3:1)
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for m Î I, n Î J, where m0, n0, m1, n1 Î ℝ+ are constants, I := [m0, m1] ∩ N+, J :=

[n0, n1] ∩ N+, F : I × J × ℝk® ℝ, ψ : ℝ ® ℝ is strictly increasing on ℝ+ with ψ(0) = 0,

|ψ(r)| = ψ(|r|), and ψ(t) ® ∞ as t ® ∞; functions ai: I ® I and bi: J ® J are nonde-

creasing such that ai(m) ≤ m and bi(n) ≤ n, i = 1, 2, . . . , k; |a1| : I ® ℝ+, |a2| : J ® ℝ

+ are both nondecreasing.

We give an upper bound estimate for solutions of BVP (3.1).

Corollary 1. Consider BVP (3.1) and suppose that F satisfies

|F(m,n, u1, u2, . . . , uk)| ≤
k∑
i=1

w(|ui|)[fi(m,n)ϕ(|ui|) + gi(m,n)], (m, n) ∈ I × J, (3:2)

where fi, gi: I × J ® ℝ+and w, � Î C0(ℝ+, ℝ+) are nondecreasing with w(u) > 0, �(u)

> 0 for u >0. Then, all solutions z(m, n) of BVP (3.1) satisfy

|z(m,n)| ≤ ψ−1 (
W−1 (

�−1 (
A(m,n)

)))
, (3:3)

for all (m,n) ∈ IM1 × JN1, where

A(m,n) := �

(
W(ψ(|a1(m)|) + ψ(|a2(n)|)) +

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

gi(s, t)

)
+

k∑
i=1

m−1∑
s=m0

n−1∑
t=n0

fi(s, t) (3:4)

for all (m,n) ∈ IM1 × JN1, with W, W-1, F, F-1and M1, N1as given in Theorem 1.

Proof. BVP (3.1) is equivalent to

ψ(z(m,n)) = ψ(a1(m)) + ψ(a2(n))

+
m−1∑
s=m0

n−1∑
t=n0

F
(
s, t, z(α1(s),β1(t)), z(α2(s),β2(t)), . . . , z(αk(s),βk(t))

) (3:5)

By (3.2) and (3.5), we get

ψ(|z(m,n)|)
≤ ψ(|a1(m)|) + ψ(|a2(n)|)

+
m−1∑
s=m0

n−1∑
t=n0

∣∣F (
s, t, z(α1(s),β1(t)), z(α2(s),β2(t)), . . . , z(αk(s),βk(t))

)∣∣
≤ ψ(|a1(m)|) + ψ(|a2(n)|)

+
m−1∑
s=m0

n−1∑
t=n0

k∑
i=1

w
(|z(αi(s),βi(t))|

) [
fi(s, t)ϕ(|z(αi(s),βi(t))|) + gi(s, t)

]
.

(3:6)

Clearly, inequality (3.6) is in the form of (1.1). Thus the estimate (3.3) of the solution

z(m, n) follows immediately from Theorem 1.
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