Existence results for a coupled system of nonlinear fractional 2 m -point boundary value problems at resonance

Gang Wang*, Wenbin Liu, Sinian Zhu and Ting Zheng

* Correspondence:
wangg0824@163.com
Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, People's Republic of China

Abstract

A 2m-point boundary value problem for a coupled system of nonlinear fractional differential equations is considered in this article. An existence result is obtained with the use of the coincidence degree theory.

MSC: 34B17; 34L09.
Keywords: coincidence degree, fractional nonlinear differential equation, 2m-point boundary conditions

1. Introduction

In this article, we will consider a 2 m -point boundary value problem (BVP) at resonance for a coupled system of nonlinear fractional differential equations given by

$$
\begin{align*}
& \left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=f\left(t, v(t), D_{0_{+}}^{\beta-1} v(t), D_{0_{+}}^{\beta-2} v(t)\right), 0<t<1, \\
D_{0+}^{\beta} v(t)=g\left(t, u(t), D_{0+}^{\alpha-1} u(t), D_{0+}^{\alpha-2} u(t)\right), 0<t<1,
\end{array}\right. \tag{1.1}\\
& \left.I_{0_{+}}^{3-\alpha} u(t)\right|_{t=0}=0, \quad D_{0_{+}}^{\alpha-2} u(1)=\sum_{i=1}^{m} a_{i} D_{0_{+}}^{\alpha-2} u\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m} b_{i} u\left(\eta_{i}\right), \tag{1.2}\\
& \left.I_{0+}^{3-\beta} v(t)\right|_{t=0}=0, \quad D_{0+}^{\beta-2} v(1)=\sum_{j=1}^{m} c_{j} D_{0+}^{\beta-2} v\left(\gamma_{j}\right), \quad v(1)=\sum_{j=1}^{m} d_{j} v\left(\delta_{j}\right), \tag{1.3}
\end{align*}
$$

where $2<\alpha, \beta \leq 3,0<\xi_{1}<\ldots<\xi_{m}<1,0<\eta_{1}<\ldots<\eta_{m}<1,0<\gamma_{1}<\ldots<\gamma_{m}<1,0<$ $\delta_{1}<\ldots<\delta_{m}<1, a_{i}, b_{i}, c_{j}, d_{j} \in R, f, g:[0,1] \times R^{3} \rightarrow R, f, g$ satisfies Carathéodory conditions, $D_{0^{+}}^{\alpha}$ and $I_{0^{+}}^{\alpha}$ are the standard Riemann-Liouville fractional derivative and fractional integral, respectively.

[^0]Setting:

$$
\begin{array}{ll}
\Lambda_{1}=\frac{1}{\alpha(\alpha-1)}\left(1-\sum_{i=1}^{m} a_{i} \xi_{i}^{\alpha+1}\right), & \Lambda_{2}=\frac{1}{\alpha(\alpha-1)}\left(1-\sum_{i=1}^{m} a_{i} \xi_{i}^{\alpha}\right) \\
\Lambda_{3}=\frac{(\Gamma(\alpha))^{2}}{\Gamma(2 \alpha)}\left[1-\sum_{i=1}^{m} b_{i} \eta_{i}^{2 \alpha-1}\right], & \Lambda_{4}=\frac{\Gamma(\alpha) \Gamma(\alpha-1)}{\Gamma(2 \alpha-1)}\left[1-\sum_{i=1}^{m} b_{i} \eta_{i}^{2 \alpha-2}\right] \\
\Delta_{1}=\frac{1}{\beta(\beta-1)}\left(1-\sum_{j=1}^{n-2} c_{j} \gamma_{j}^{\beta+1}\right), & \Delta_{2}=\frac{1}{\beta(\beta-1)}\left(1-\sum_{j=1}^{n-2} c_{j} \gamma_{j}^{\beta}\right) \\
\Delta_{3}=\frac{(\Gamma(\beta))^{2}}{\Gamma(2 \beta)}\left[1-\sum_{j=1}^{m} d_{i} \delta_{j}^{2 \beta-1}\right], & \Delta_{4}=\frac{\Gamma(\beta) \Gamma(\beta-1)}{\Gamma(2 \beta-1)}\left[1-\sum_{j=1}^{m} d_{j} \delta_{j}^{2 \beta-2}\right] .
\end{array}
$$

In this article, we will always suppose that the following conditions hold: (C1):

$$
\begin{array}{ll}
\sum_{i=1}^{m} a_{i} \xi_{i}=\sum_{i=1}^{m} a_{i}=1, & \sum_{i=1}^{m} b_{i} \eta_{i}^{\alpha-1}=\sum_{i=1}^{m} b_{i} \eta_{i}^{\alpha-2}=1 \\
\sum_{j=1}^{m} c_{j} \gamma_{j}=\sum_{j=1}^{m} c_{j}=1, & \sum_{j=1}^{m} d_{j} \delta_{j}^{\beta-1}=\sum_{j=1}^{m} d_{j} \delta_{j}^{\beta-2}=1
\end{array}
$$

(C2):

$$
\Lambda=\Lambda_{1} \Lambda_{4}-\Lambda_{2} \Lambda_{3} \neq 0, \quad \Delta=\Delta_{1} \Delta_{4}-\Delta_{2} \Delta_{3} \neq 0
$$

The subject of fractional calculus has gained considerable popularity and importance because of its frequent appearance in various fields such as physics, chemistry, and engineering. In consequence, the subject of fractional differential equations has attracted much attention. For details, refer to [1-4] and the references therein. Some basic theory for the initial value problems of fractional differential equations(FDE) involving Riemann-Liouville differential operator has been discussed by Lakshmikantham [5-7], El-Sayed et al. [8,9], Diethelm and Ford [10], Bai [11], and so on. Also, there are some articles which deal with the existence and multiplicity of solutions for nonlinear FDE BVPs using techniques of topological degree theory. For example, Su [12] considered the BVP of the coupled system

$$
\left\{\begin{array}{l}
D^{\alpha} u(t)=f\left(t, v(t), D^{\mu} v(t)\right), \\
D^{\beta} v(t)=g\left(t, u(t), D^{v} u(t)\right) .
\end{array}\right.
$$

By using the Schauder fixed point theorem, one existence result was given.
However, there are few articles which consider the BVP at resonance for nonlinear ordinary differential equations of fractional order. In [13], Zhang and Bai investigated the nonlinear nonlocal problem

$$
\begin{gathered}
D_{0+}^{\alpha} u(t)=f(t, \quad u(t)), \quad 0<t<1, \\
u(0)=0, \quad \beta u(\eta)=u(1),
\end{gathered}
$$

where $1<\alpha \leq 2$, we consider the case $\beta \eta^{\alpha-1}=1$, i.e., the resonance case.

In [14], Bai investigated the BVP at resonance

$$
\begin{gathered}
D_{0+}^{\alpha} u(t)=f\left(t, u(t), \quad D_{0+}^{\alpha-1} u(t)\right)+e(t), \quad 0<t<1, \\
\left.I_{0+}^{2-\alpha} u(t)\right|_{t=0}=0, \quad D_{0+}^{\alpha-1} u(1)=\sum_{i=0}^{m-2} \beta_{i} D_{0+}^{\alpha-1} u\left(\eta_{i}\right)
\end{gathered}
$$

is considered, where $1<\alpha \leq 2$ is a real number, $D_{0^{+}}^{\alpha}$ and $I_{0^{+}}^{\alpha}$ are the standard Rie-mann-Liouville fractional derivative and fractional integral, respectively, and $f:[0,1] \times$ $R^{2} \rightarrow R$ is continuous, and $e(t) \in L^{1}[0,1], m \geq 2,0<\xi_{i}<1, \beta_{i} \in R, i=1,2, \ldots, m-2$, are given constants such that $\sum_{i=1}^{m-2} \beta_{i}=1$.

The coupled system (1.1)-(1.3) happens to be at resonance in the sense that the associated linear homogeneous coupled system

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)=0,0<t<1, \\
D_{0+}^{\beta} v(t)=0,0<t<1,
\end{array}\right. \\
\left.I_{0+}^{3-\alpha} u(t)\right|_{t=0}=0, \quad D_{0+}^{\alpha-2} u(1)=\sum_{i=1}^{m} a_{i} D_{0+}^{\alpha-2} u\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m} b_{i} u\left(\eta_{i}\right),
\end{array}\right\} \begin{aligned}
& \left.I_{0+}^{3-\beta} v(t)\right|_{t=0}=0, \quad D_{0+}^{\beta-2} v(1)=\sum_{j=1}^{m} c_{j} D_{0+}^{\beta-2} v\left(\gamma_{j}\right), \quad v(1)=\sum_{i=1}^{m} d_{j} v\left(\delta_{j}\right)
\end{aligned}
$$

has $(u(t), v(t))=\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right), a, b, c, d \in R$ as a nontrivial solution.
The purpose of this article is to study the existence of solution for BVP (1.1)-(1.3) at resonance case, and establish an existence theorem under nonlinear growth restriction of f. Our method is based upon the coincidence degree theory of Mawhin.

Now, we will briefiy recall some notation and an abstract existence result.
Let Y, Z be real Banach spaces, $L: \operatorname{dom} L \subset Y \rightarrow Z$ be a Fredholm map of index zero and $P: Y \rightarrow Y, Q: \mathrm{Z} \rightarrow \mathrm{Z}$ be continuous projectors such that

$$
Y=\operatorname{Ker} L \oplus \operatorname{Ker} P, \quad Z=\operatorname{Im} Q \oplus \operatorname{ImL}, I m P=\operatorname{KerL}, \operatorname{Ker} Q=\operatorname{ImL} .
$$

It follows that $\left.L\right|_{\text {domLnKer } P}: \operatorname{domL} \cap \operatorname{Ker} P \rightarrow \operatorname{ImL}$ is invertible. We denote the inverse of the map by K_{p}. If Ω is an open bounded subset of Y such that $\operatorname{domL} \cap \Omega \neq$ \varnothing, the map $N: Y \rightarrow Z$ will be called L-compact on Ω if $\mathrm{QN}(\bar{\Omega})$ is bounded, and $K_{p}(I-Q) N: \bar{\Omega} \rightarrow Y$ is compact.

The theorem that we used is Theorem 2.4 of [15].
Theorem 1.1. Let L be a Fredholm operator of index zero and N be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(i) $L x \neq \lambda N x \forall(x, \lambda) \in[\operatorname{dom} L \backslash K e r L \cap \partial \Omega] \times[0,1]$;
(ii)) $N x \notin \operatorname{Im} L, \forall x \in \operatorname{KerL} \cap \partial \Omega$;
(iii) $\operatorname{deg}\left(\left.J Q N\right|_{\text {KerL }}, \operatorname{KerL} \cap \Omega, 0\right) \neq 0$;
where $Q: Z \rightarrow Z$ is a projection as above with $\operatorname{Ker} Q=\operatorname{ImL}$, and $J: \operatorname{Im} Q \rightarrow \operatorname{KerL}$ is any isomorphism. Then, the equation $L x=N x$ has at least one solution in $d o m L \cap \bar{\Omega}$.

The rest of this article is organized as follows. In Section 2, we give some notation and lemmas. In Section 3, we establish a theorem of existence of a solution for the problem (1.1)-(1.3).

2. Background materials and preliminaries

For the convenience of the reader, we present here some necessary basic knowledge and definitions about fractional calculus theory. These definitions can be found in the recent literature [1-14,16].

Definition 2.1. The fractional integral of order $\alpha>0$ of a function $y:(0, \infty) \rightarrow R$ is given by

$$
I_{0+}^{\alpha} \gamma(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \gamma(s) d s,
$$

provided the right side is pointwise defined on $(0, \infty)$, where $\Gamma(\cdot)$ is the Gamma function.

Definition 2.2. The fractional derivative of order $\alpha>0$ of a function $y:(0, \infty) \rightarrow R$ is given by

$$
D_{0+}^{\alpha} y(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{\gamma(s)}{(t-s)^{\alpha-n+1}} d s
$$

Where $n=[\alpha]+1$, provided the right side is pointwise defined on $(0, \infty)$.
Definition 2.3. We say that the map $f:[0,1] \times R^{n} \rightarrow R$ satisfies Carathéodory conditions with respect to $L^{1}[0,1]$ if the following conditions are satisfied:
(i) for each $z \in R^{n}$, the mapping $t \rightarrow f(t, z)$ is Lebesgue measurable;
(ii) for almost every $t \in[0,1]$, the mapping $t \rightarrow f(t, z)$ is continuous on R^{n};
(iii) for each $r>0$, there exists $\rho_{r} \in L^{1}([0,1], R)$ such that, for a.e. $t \in[0,1]$ and every $|z| \leq r$, we have $f(t, z) \leq \rho_{r}(t)$.

Lemma 2.1. [13] Assume that $u \in C(0,1) \cap L^{1}(0,1)$ with a fractional derivative of order $\alpha>0$ that belongs to $C(0,1) \cap L^{1}(0,1)$. Then,

$$
I_{0+}^{\alpha} D_{0+}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{1} t^{\alpha-2}+\cdots+c_{N} t^{\alpha-N}
$$

for some $c_{i} \in R, i=1,2, \ldots, N$, where N is the smallest integer grater than or equal to α.

We use the classical Banach space $C[0,1]$ with the norm

$$
\|u\|_{\infty}=\max _{t \in[0,1]}|u(t)|,
$$

$L[0,1]$ with the norm $\|u\|_{1}=\int_{0}^{1}|u(t)| d t$. For $n \in N$, we denote by $A C^{n}[0,1]$ the space of functions $u(t)$ which have continuous derivatives up to order $n-1$ on $[0,1]$ such that $u^{(n-1)}(t)$ is absolutely continuous:
$A C^{n}[0,1]=\left\{u \mid[0,1] \rightarrow R\right.$ and $D^{n-1} u(t)$ is absolutely continuous in $\left.[0,1]\right\}$.
Definition 2.4. Given $\mu>0$ and $N=[\mu]+1$ we can define a linear space

$$
C^{\mu}[0,1]=\left\{u(t) \mid u(t)=I_{0^{+}}^{\mu} x(t)+c_{1} t^{\mu-1}+c_{2} t^{\mu-2}+\cdots+c_{N} t^{\mu-(N-1)}, t \in(0,1)\right\}
$$

where $x \in C[0,1], c_{i} \in R, i=1,2, \ldots, N-1$.
Remark 2.1. By means of the linear functional analysis theory, we can prove that with the

$$
\|u\|_{C^{\mu}}=\left\|D_{0^{+}}^{\mu} u\right\|_{\infty}+\cdots+\left\|D_{0^{+}}^{\mu-(N-1)} u\right\|_{\infty}+\|u\|_{\infty}
$$

$C^{\mu}[0,1]$ is a Banach space.

Remark 2.2. If μ is a natural number, then $C^{\mu}[0,1]$ is in accordance with the classical Banach space $C^{n}[0,1]$.
Lemma 2.2. $[13] f \subset C^{\mu}[0,1]$ is a sequentially compact set if and only if f is uniformly bounded and equicontinuous. Here, uniformly bounded means there exists $M>$ 0 , such that for every $u \in f$

$$
\|u\|_{C^{\mu}}=\left\|D_{0+}^{\mu} u\right\|_{\infty}+\cdots+\left\|D_{0+}^{\mu-(N-1)} u\right\|_{\infty}+\|u\|_{\infty}<M,
$$

and equicontinuous means that $\forall \varepsilon>0, \exists \delta>0$, such that

$$
\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right|<\varepsilon \quad\left(\forall t_{1}, t_{2} \in[0,1],\left|t_{1}-t_{2}\right|<\delta, \forall u \in f\right)
$$

and

$$
\begin{gathered}
\left|D_{0_{+}}^{\alpha-i} u\left(t_{1}\right)-D_{0+}^{\alpha-i} u\left(t_{2}\right)\right|<\varepsilon \\
\left(\forall t_{1}, t_{2} \in[0,1],\left|t_{1}-t_{2}\right|<\delta, \forall u \in f, \forall i=1,2, \ldots, N-1\right)
\end{gathered}
$$

Lemma 2.3. [14] Let $\alpha>0, n=[\alpha]+1$. Assume that $u \in L^{1}(0,1)$ with a fractional integration of order $n-\alpha$ that belongs to $A C^{n}[0,1]$. Then, the equality

$$
\left(I_{0+}^{\alpha} D_{0+}^{\alpha} u\right)(t)=u(t)-\sum_{i=1}^{n} \frac{\left.\left(\left(I_{0+}^{n-\alpha} u\right)(t)\right)^{n-i}\right|_{t=0}}{\Gamma(\alpha-i+1)} t^{\alpha-i}
$$

holds almost everywhere on $[0,1]$.
Definition 2.5. [14] Let $I_{0_{+}}^{\alpha}\left(L^{1}(0,1)\right), \alpha>0$ denote the space of functions $u(t)$, represented by fractional integral of order α of a summable function: $u=I_{0+}^{\alpha} v, v \in L^{1}(0,1)$.

In the following lemma, we use the unified notation of both for fractional integrals and fractional derivatives assuming that $I_{0+}^{\alpha}=D_{0+}^{-\alpha}$ for $\alpha>0$.
Let $Z_{1}=L^{1}[0,1]$, with the norm $\|\gamma\|=\int_{0}^{1}|\gamma(s)| d s, Y_{1}=C^{\alpha-1}[0,1], Y_{2}=C^{\beta-1}[0,1]$, defined by Remark 2.1, with the norm

$$
\begin{aligned}
& \|u\|_{Y_{1}}=\left\|D_{0^{+}}^{\alpha-1} u\right\|_{\infty}+\left\|D_{0^{+}}^{\alpha-2} u\right\|_{\infty}+\|u\|_{\infty}, \\
& \|v\|_{Y_{2}}=\left\|D_{0^{+}}^{\beta-1} v\right\|_{\infty}+\left\|D_{0^{+}}^{\beta-2} v\right\|_{\infty}+\|v\|_{\infty},
\end{aligned}
$$

where $Y=Y_{1} \times Y_{2}$ is a Banach space, with the norm

$$
\|(u, v)\|_{Y}=\max \left\{\|u\|_{Y_{1}},\|v\|_{Y_{2}}\right\}
$$

and $Z=Z_{1} \times Z_{1}$ is a Banach space, with the norm

$$
\|(x, y)\|_{z}=\max \left\{\|x\|_{1},\|y\|_{1}\right\} .
$$

Define L_{1} to be the linear operator from $\operatorname{dom} L_{1} \cap Y_{1}$ to Z_{1} with

$$
\operatorname{dom} L_{1}=\left\{u \in C^{\alpha-1}[0,1] \mid D_{0+}^{\alpha} u \in L^{1}[0,1], u \text { satisfies }(1.2)\right\},
$$

and

$$
L_{1} u=D_{0^{+}}^{\alpha} u, u \in \operatorname{dom}_{1} .
$$

Define L_{2} to be the linear operator from $\operatorname{dom} L_{2} \cap Y_{2}$ to Z_{1} with

$$
\operatorname{domL}_{2}=\left\{v \in C^{\beta-1}[0,1] \mid D_{0+}^{\beta} v \in L^{1}[0,1], v \text { satisfies }(1.3)\right\}
$$

and

$$
L_{2} v=D_{0^{+}}^{\beta} v, v \in \operatorname{dom} L_{2}
$$

Define L to be the linear operator from $\operatorname{domL} \cap Y$ to Z with

$$
\operatorname{domL}=\left\{(u, v) \in Y \mid u \in \operatorname{domL}_{1}, v \in \operatorname{dom}_{2}\right\},
$$

and

$$
L(u, v)=\left(L_{1} u, L_{2} v\right),
$$

we define $N: Y \rightarrow Z$ by setting

$$
N(u, v)=\left(N_{1} v, N_{2} u\right),
$$

where $N_{1}: Y_{2} \rightarrow Z_{1}$ is defined by

$$
\left.N_{1} v(t)=f\left(t, v(t), D_{0+}^{\beta-1} v(t)\right), D_{0+}^{\beta-2} v(t)\right)
$$

and $N_{2}: Y_{1} \rightarrow Z_{2}$ is defined by

$$
\left.N_{2} u(t)=f\left(t, u(t), D_{0+}^{\alpha-1} u(t)\right), D_{0+}^{\alpha-2} u(t)\right) .
$$

Then, the coupled system of BVPs (1.1) can be written as

$$
L(u, v)=N(u, v) .
$$

3. Main results

Lemma 3.1. The mapping $L: \operatorname{dom} L \subset Y \rightarrow Z$ is a Fredholm operator of index zero.
Proof. Let $L_{1} u=D_{0^{+}}^{\alpha} u$, by Lemma 2.3, $D_{0_{+}}^{\alpha} u(t)=0$ has solution

$$
\begin{aligned}
u(t) & =\sum_{i=1}^{3} \frac{\left.\left(\left(I_{0+}^{3-\alpha} u\right)(t)\right)^{3-i}\right|_{t=0}}{\Gamma(\alpha-i+1)} t^{\alpha-i} \\
& =\frac{\left.\left(\left(I_{0+}^{3-\alpha} u\right)(t)\right)^{\prime \prime}\right|_{t=0}}{\Gamma(\alpha)} t^{\alpha-1}+\frac{\left.\left(\left(I_{0+}^{3-\alpha} u\right)(t)\right)^{\prime}\right|_{t=0}}{\Gamma(\alpha-1)} t^{\alpha-2}+\frac{\left.\left(\left(I_{0+}^{3-\alpha} u\right)(t)\right)\right|_{t=0}}{\Gamma(\alpha-2)} t^{\alpha-3} \\
& =\frac{\left.D_{0+}^{\alpha-1} u(t)\right|_{t=0}}{\Gamma(\alpha)} t^{\alpha-1}+\frac{\left.D_{0+}^{\alpha-2} u(t)\right|_{t=0}}{\Gamma(\alpha-1)} t^{\alpha-2}+\frac{\left.\left(\left(I_{0+}^{3-\alpha} u\right)(t)\right)\right|_{t=0} t^{\alpha-3}}{\Gamma(\alpha-2)} t^{2}
\end{aligned}
$$

Combine with (1.2), so

$$
\operatorname{Ker} L_{1}=\left\{a t^{\alpha-1}+b t^{\alpha-2} \mid a, b \in R\right\} \cong R^{2} .
$$

Similarly, let $L_{2} v=D_{0^{+}}^{\beta} v$, by Lemmas 2.3, 2.4, $D_{0_{+}}^{\beta} v(t)=0$, combine with (1.3),
so

$$
\operatorname{Ker} L_{2}=\left\{c t t^{\beta-1}+d t^{\beta-2} \mid c, d \in R\right\} \cong R^{2} .
$$

It is clear that

$$
\operatorname{Ker} L=\left\{\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right) \mid a, b, c, d \in R\right\} \cong R^{2} \times R^{2} .
$$

Let $(x, y) \in \operatorname{Im} L$, then there exists $(u, v) \in \operatorname{dom} L$, such that $(x, y)=L(u, v)$, that is u $\in Y_{1}, x=D_{0_{+}}^{\alpha} u$ and $v \in Y_{2}, \gamma=D_{0+}^{\beta} v$. By Lemma 2.3, we have

$$
\begin{aligned}
I_{0+}^{\alpha} x(t) & =u(t)-c_{1} t^{\alpha-1}-c_{2} t^{\alpha-2}-c_{3} t^{\alpha-3} \\
I_{0+}^{\beta} \gamma(t) & =v(t)-d_{1} t^{\beta-1}-d_{2} t^{\beta-2}-d_{3} t^{\beta-3}
\end{aligned}
$$

where

$$
\begin{array}{lll}
c_{1}=\frac{\left.D_{0+}^{\alpha-1} u(t)\right|_{t=0}}{\Gamma(\alpha)}, & c_{2}=\frac{\left.D_{0+}^{\alpha-2} u(t)\right|_{t=0}}{\Gamma(\alpha-1)}, & c_{3}=\frac{\left.I_{0+}^{3-\alpha} u(t)\right|_{t=0}}{\Gamma(\alpha-2)}, \\
d_{1}=\frac{\left.D_{0+}^{\beta-1} v(t)\right|_{t=0}}{\Gamma(\beta)}, & d_{2}=\frac{\left.D_{0+}^{\beta-2} v(t)\right|_{t=0}}{\Gamma(\beta-1)}, & d_{3}=\frac{\left.I_{0+}^{3-\beta} v(t)\right|_{t=0}}{\Gamma(\beta-2)},
\end{array}
$$

and by the boundary condition (1.2), we obtain $c_{3}=0, c_{1}, c_{2}$ can be any constant, and x satisfies

$$
\left\{\begin{array}{l}
\int_{0}^{1}(1-s) x(s) d s-\sum_{i=1}^{m} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) x(s) d s=0 \tag{3.1}\\
\int_{0}^{1}(1-s)^{\alpha-1} x(s) d s-\sum_{i=1}^{m} b_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right)^{\alpha-1} x(s) d s=0 .
\end{array}\right.
$$

Similarly, by the boundary condition (1.3), we obtain $d_{3}=0, d_{1}, d_{2}$ can be any constant, and y satisfies

$$
\left\{\begin{array}{l}
\int_{0}^{1}(1-s) \gamma(s) d s-\sum_{j=1}^{m} c_{j} \int_{0}^{\gamma_{j}}\left(\gamma_{j}-s\right) \gamma(s) d s=0 \tag{3.2}\\
\int_{0}^{1}(1-s)^{\beta-1} \gamma(s) d s-\sum_{j=1}^{m} d_{j} \int_{0}^{\delta_{j}}\left(\delta_{j}-s\right)^{\beta-1} \gamma(s) d s=0 .
\end{array}\right.
$$

On the other hand, suppose $x, y \in Z_{1}$ satisfy (3.1), (3.2), respectively, let $v(t)=I_{0+}^{\beta} y(t), v(t)=I_{0+}^{\beta} y(t)$, then $u \in \operatorname{dom} L_{1}, D_{0+}^{\alpha} u(t)=x(t)$ and $v \in \operatorname{dom}_{2}$, $D_{0+}^{\beta} v(t)=y(t)$. That is to say, $(x, y) \in \operatorname{ImL}$. From the above argument, we obtain
$\operatorname{ImL}=\{(x, y) \in Z \mid x$ satisfies (3.1), γ satisfies (3.2) $\}$.
Consider the continuous linear mapping $A_{i}, B_{i}, T_{i}, R_{i}, Q_{i}: Z_{1} \rightarrow Z_{1}, i=1,2$ and Q : $Z \rightarrow Z$ defined by

$$
\begin{aligned}
& A_{1} x=\int_{0}^{1}(1-s) x(s) d s-\sum_{i=1}^{m} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) x(s) d s \\
& A_{2} x=\int_{0}^{1}(1-s)^{\alpha-1} x(s) d s-\sum_{i=1}^{m} b_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right)^{\alpha-1} x(s) d s
\end{aligned}
$$

and

$$
\begin{align*}
& B_{1} y=\int_{0}^{1}(1-s) \gamma(s) d s-\sum_{j=1}^{m} c_{j} \int_{0}^{\gamma_{j}}\left(\gamma_{j}-s\right) \gamma(s) d s \\
& B_{2} y=\int_{0}^{1}(1-s)^{\beta-1} \gamma(s) d s-\sum_{j=1}^{m} d_{j} \int_{0}^{\delta_{j}}\left(\delta_{j}-s\right)^{\beta-1} \gamma(s) d s \tag{3.3}\\
& T_{1} x=\frac{1}{\Lambda}\left(\Lambda_{4} A_{1} x-\Lambda_{2} A_{2} x\right), \quad T_{2} x=\frac{1}{\Lambda}\left(\Lambda_{3} A_{1} x-\Lambda_{1} A_{2} x\right)
\end{align*}
$$

and

$$
\begin{equation*}
R_{1} y=\frac{1}{\Delta}\left(\Delta_{4} B_{1} y-\Delta_{2} B_{2} y\right), \quad R_{2} y=\frac{1}{\Delta}\left(\Delta_{3} B_{1} y-\Delta_{1} B_{2} y\right) . \tag{3.4}
\end{equation*}
$$

Since the conditions (C1) and (C2) hold, the mapping defined by

$$
\left\{\begin{array}{l}
Q_{1} x(t)=\left(T_{1} x(t)\right) t^{\alpha-1}+\left(T_{2} x(t)\right) t^{\alpha-2}, \tag{3.5}\\
Q_{2} y(t)=\left(R_{1} y(t)\right) t^{\beta-1}+\left(R_{2} y(t)\right) t^{\beta-2}
\end{array}\right.
$$

is well-defined. It is clear that $\operatorname{dimIm} Q_{1}=\operatorname{dimIm} Q_{2}=2$.
Recall (C1) and (C2) and note that

$$
\begin{aligned}
T_{1}\left(T_{1} x t^{\alpha-1}\right) & =\frac{1}{\Lambda}\left(\Lambda_{4} A_{1}\left(T_{1} x t^{\alpha-1}\right)-\Lambda_{2} A_{2}\left(T_{1} x t^{\alpha-1}\right)\right) \\
& =\frac{1}{\Lambda}\left[\Lambda_{4}\left(\frac{\Lambda_{4} \Lambda_{1}}{\Lambda} A_{1} x-\frac{\Lambda_{1} \Lambda_{2}}{\Lambda} A_{2} x\right)-\Lambda_{2}\left(\frac{\Lambda_{4} \Lambda_{3}}{\Lambda} A_{1} x-\frac{\Lambda_{2} \Lambda_{3}}{\Lambda} A_{2} x\right)\right] \\
& =T_{1} x,
\end{aligned}
$$

and similarly we can derive that

$$
T_{1}\left(T_{2} x t^{\alpha-2}\right)=0, \quad T_{2}\left(T_{1} x t^{\alpha-1}\right)=0, \quad T_{2}\left(T_{2} x t^{\alpha-2}\right)=T_{2} x .
$$

Hence, for $x \in Z_{1}$, it follows from the four relations above that

$$
\begin{aligned}
Q_{1}^{2} x & =Q_{1}\left(\left(T_{1} x\right) t^{\alpha-1}+\left(T_{2} x\right) t^{\alpha-2}\right) \\
& =T_{1}\left(\left(T_{1} x\right) t^{\alpha-1}+\left(T_{2} x\right) t^{\alpha-2}\right) t^{\alpha-1}+T_{2}\left(\left(T_{1} x\right) t^{\alpha-1}+\left(T_{2} x\right) t^{\alpha-2}\right) t^{\alpha-2} \\
& =\left(T_{1} x\right) t^{\alpha-1}+\left(T_{2} x\right) t^{\alpha-2} \\
& =Q_{1} x,
\end{aligned}
$$

that is, the map Q_{1} is idempotent. In fact, Q_{1} is a continuous linear projector.
Similarly, the map Q_{2} is a continuous linear projector.
Therefore,

$$
Q(x, y)=\left(Q_{1} x, Q_{2} y\right) .
$$

It is clear that Q is a continuous linear projector.
Note $(x, y) \in \operatorname{ImL}$ implies $Q(x, y)=\left(Q_{1} x, Q_{2} y\right)=(0,0)$. Conversely, if $Q(x, y)=(0,0)$, so

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Lambda_{4} A_{1} x-\Lambda_{2} A_{2} x=0, \\
\Lambda_{1} A_{2} x-\Lambda_{3} A_{1} x=0,
\end{array}\right. \\
& \left\{\begin{array}{l}
\Delta_{4} B_{1} y-\Delta_{2} B_{2} y=0, \\
\Delta_{1} B_{2} \gamma-\Delta_{3} B_{1} y=0,
\end{array}\right.
\end{aligned}
$$

but

$$
\begin{aligned}
& \left|\begin{array}{ll}
\Lambda_{4} & -\Lambda_{2} \\
-\Lambda_{3} & \Lambda_{1}
\end{array}\right|=\Lambda_{4} \Lambda_{1}-\Lambda_{2} \Lambda_{3} \neq 0, \\
& \left|\begin{array}{ll}
\Delta_{4} & -\Delta_{2} \\
-\Delta_{3} & \Delta_{1}
\end{array}\right|=\Delta_{4} \Delta_{1}-\Delta_{2} \Delta_{3} \neq 0,
\end{aligned}
$$

then we must have $A_{i} x=B_{i} y=0, i=1,2$, that is, $(x, y) \in \operatorname{ImL} . \operatorname{In}$ fact, $\operatorname{Ker} Q=\operatorname{ImL}$.
Take $(x, y) \in Z$ in the form $(x, y)=((x, y)-Q(x, y))+Q(x, y)$ so that $((x, y)-Q(x, y))$ $\in \operatorname{Ker} Q=\operatorname{ImL}, Q(x, y) \in \operatorname{Im} Q$. Thus, $Z=\operatorname{ImL}+\operatorname{Im} Q$. Let $(x, y) \in \operatorname{ImL} \cap \operatorname{Im} Q$ and assume that $(x, y)=\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right)$ is not identically zero on $[0,1]$. Then, since $(x, y) \in \operatorname{ImL}$, from (3.1) and (3.2) and the condition (C2), we have

$$
\begin{aligned}
& A_{1} x=\int_{0}^{1}(1-s)\left(a s^{\alpha-1}+b s^{\alpha-2}\right) d s-\sum_{i=1}^{m} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right)\left(a s^{\alpha-1}+b s^{\alpha-2}\right) d s=0, \\
& A_{2} x=\int_{0}^{1}(1-s)^{\alpha-1}\left(a s^{\alpha-1}+b s^{\alpha-2}\right) d s-\sum_{i=1}^{m} b_{i} \int_{0}^{\eta_{i}}\left(\eta_{i}-s\right)^{\alpha-1}\left(a s^{\alpha-1}+b s^{\alpha-2}\right) d s=0, \\
& B_{1} y=\int_{0}^{1}(1-s)\left(c s^{\beta-1}+d s^{\beta-2}\right) d s-\sum_{j=1}^{m} c_{j} \int_{0}^{\gamma j}\left(\gamma_{j}-s\right)\left(c s^{\beta-1}+d s^{\beta-2}\right) d s=0, \\
& B_{2} y=\int_{0}^{1}(1-s)^{\beta-1}\left(c s^{\beta-1}+d s^{\beta-2}\right) d s-\sum_{j=1}^{m} d_{j} \int_{0}^{\delta_{j}}\left(\delta_{j}-s\right)^{\beta-1}\left(c s^{\beta-1}+d s^{\beta-2}\right) d s=0 .
\end{aligned}
$$

So,

$$
\begin{aligned}
& \left\{\begin{array}{l}
a \Lambda_{1}+b \Lambda_{2}=0, \\
a \Lambda_{3}+b \Lambda_{4}=0,
\end{array}\right. \\
& \left\{\begin{array}{l}
c \Delta_{1}+d \Delta_{2}=0, \\
c \Delta_{3}+d \Delta_{4}=0,
\end{array}\right.
\end{aligned}
$$

but

$$
\begin{aligned}
& \left|\begin{array}{ll}
\Lambda_{1} & \Lambda_{2} \\
\Lambda_{3} & \Lambda_{4}
\end{array}\right|=\Lambda_{1} \Lambda_{4}-\Lambda_{2} \Lambda_{3} \neq 0 \\
& \left|\begin{array}{ll}
\Delta_{1} & \Delta_{2} \\
\Delta_{3} & \Delta_{4}
\end{array}\right|=\Delta_{1} \Delta_{4}-\Delta_{2} \Delta_{3} \neq 0
\end{aligned}
$$

we derive $a=b=c=d=0$, which is a contradiction. Hence, $\operatorname{Im} L \cap \operatorname{Im} Q=\{0,0\}$; thus, $Z=\operatorname{Im} L \oplus \operatorname{Im} Q$.

Now, $\operatorname{Ind} L=\operatorname{dimKer} L-\operatorname{codimIm} L=0$, and so L is a Fredholm operator of index zero.

Let $P_{1}: Y_{1} \rightarrow Y_{1}, P_{2}: Y_{2} \rightarrow Y_{2}, P: Y \rightarrow Y$ be defined by

$$
\begin{aligned}
& P_{1} u(t)=\left.\frac{1}{\Gamma(\alpha)} D_{0+}^{\alpha-1} u(t)\right|_{t=0} t^{\alpha-1}+\left.\frac{1}{\Gamma(\alpha-1)} D_{0+}^{\alpha-2} u(t)\right|_{t=0} t^{\alpha-2}, \quad t \in[0,1] \\
& P_{2} v(t)=\left.\frac{1}{\Gamma(\beta)} D_{0+}^{\beta-1} v(t)\right|_{t=0} t^{\beta-1}+\left.\frac{1}{\Gamma(\beta-1)} D_{0+}^{\beta-1} v(t)\right|_{t=0} t^{\beta-2}, \quad t \in[0,1]
\end{aligned}
$$

and

$$
P(u, v)=\left(P_{1} u, P_{2} v\right) .
$$

Note that P_{1}, P_{2}, P are continuous linear projectors and

$$
\begin{aligned}
\operatorname{KerP} & =\left(\operatorname{KerP}_{l}, \operatorname{Ker} P_{2}\right) \\
& =\left\{(u, v) \in Y \mid D_{0_{+}}^{\alpha-1} u(0)=D_{0+}^{\alpha-2} u(0)=0, D_{0+}^{\beta-1} v(0)=D_{0+}^{\beta-2} v(0)=0\right\}
\end{aligned}
$$

It is clear that $Y=\operatorname{KerL} \oplus \operatorname{Ker} P$.
Note that the projectors P and Q are exact. Define by $K_{p}: \operatorname{ImL} \rightarrow \operatorname{domL} \cap \operatorname{Ker} P$ by

$$
\begin{gathered}
K_{P}(x, y)=\left(I_{0+}^{\alpha} x, I_{0+}^{\beta} y\right) \\
K_{p} x(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} x(s) d s=I_{0+}^{\alpha} x(t), \quad x \in \operatorname{ImL} .
\end{gathered}
$$

Hence, we have

$$
D_{0+}^{\alpha-1}\left(K_{p} x\right) t=\int_{0}^{t} x(s) d s, D_{0+}^{\alpha-2}\left(K_{p} x\right) t=\int_{0}^{t}(t-s) x(s) d s .
$$

Then,

$$
\left\|K_{p} x\right\|_{\infty} \leq \frac{1}{\Gamma(\alpha)}\|x\|_{1}, \quad\left\|D_{0+}^{\alpha-1}\left(K_{p} x\right)\right\|_{\infty} \leq\|x\|_{1}, \quad\left\|D_{0+}^{\alpha-2}\left(K_{p} x\right)\right\|_{\infty} \leq\|x\|_{1},
$$

and thus

$$
\left\|K_{p} x\right\|_{Y_{1}} \leq\left(\frac{1}{\Gamma(\alpha)}+2\right)\|x\|_{1}
$$

and

$$
K_{p} \gamma(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1} \gamma(s) d s=I_{0+}^{\beta} \gamma(t), \quad y \in \operatorname{ImL} .
$$

Hence, we have

$$
D_{0+}^{\beta-1}\left(K_{p} y\right) t=\int_{0}^{t} \gamma(s) d s, \quad D_{0+}^{\beta-2}\left(K_{p} \gamma\right) t=\int_{0}^{t}(t-s) \gamma(s) d s .
$$

Then,

$$
\left\|K_{p} \gamma\right\|_{\infty} \leq \frac{1}{\Gamma(\beta)}\|y\|_{1}, \quad\left\|D_{0_{+}}^{\beta-1}\left(K_{p} \gamma\right)\right\|_{\infty} \leq\|y\|_{1}, \quad\left\|D_{0_{+}}^{\beta-2}\left(K_{p} \gamma\right)\right\|_{\infty} \leq\|y\|_{1}
$$

and thus

$$
\left\|K_{p} \gamma\right\|_{\mathrm{Y}_{2}} \leq\left(\frac{1}{\Gamma(\beta)}+2\right)\|y\|_{1}
$$

so

$$
\begin{aligned}
\left\|K_{p}(x, y)\right\|_{Y} & =\left\|\left(I_{0_{+}}^{\alpha} x, I_{0_{+}}^{\beta} y\right)\right\|_{Y} \\
& =\max \left\{\left\|I_{0_{+}}^{\alpha} x\right\|_{Y_{1}},\left\|I_{0_{+}}^{\beta} y\right\|_{Y_{2}}\right\} \\
& \leq \max \left\{\left(\frac{1}{\Gamma(\alpha)+2}\right)\|x\|_{1},\left(\frac{1}{\Gamma(\beta)+2}\right)\|y\|_{1}\right\} .
\end{aligned}
$$

For $(x, y) \in \operatorname{ImL}$, we have

$$
L K_{P}(x, y)=L\left(I_{0_{+}}^{\alpha} x, I_{0+}^{\beta} y\right)=\left(D_{0_{+}}^{\alpha} I_{0_{+}}^{\alpha} x, D_{0+}^{\beta} I_{0_{+}}^{\beta} y\right)=(x, y) .
$$

Also, if $(u, v) \in \operatorname{domL} \cap \operatorname{Ker} P$, we have $u \in \operatorname{domL} L_{1}, D_{0_{+}}^{\alpha-1} u(0)=D_{0_{+}}^{\alpha-2} u(0)=0, v \in$ $\operatorname{dom} L_{2}, D_{0+}^{\beta-1} v(0)=D_{0+}^{\beta-2} v(0)=0$, so the coefficients $c_{i}, d_{i}, i=1,2,3$ in the expressions then

$$
\left(K_{p} L_{1}\right) u(t)=I_{0+}^{\alpha} D_{0+}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+c_{3} t^{\alpha-3},
$$

where

$$
\begin{aligned}
& c_{1}=\frac{\left.D_{0+}^{\alpha-1} u(t)\right|_{t=0}}{\Gamma(\alpha)}, \quad c_{2}=\frac{\left.D_{0+}^{\alpha-2} u(t)\right|_{t=0}}{\Gamma(\alpha-1)}, \quad c_{3}=\frac{\left.I_{0+}^{3-\alpha} u(t)\right|_{t=0}}{\Gamma(\alpha-2)}, \\
& \left(K_{p} L_{2}\right) v(t)=I_{0+}^{\beta} D_{0+}^{\beta} v(t)=v(t)+d_{1} t^{\beta-1}+d_{2} t^{\beta-2}+d_{3} t^{\beta-3},
\end{aligned}
$$

where

$$
d_{1}=\frac{\left.D_{0+}^{\beta-1} v(t)\right|_{t=0}}{\Gamma(\beta)}, \quad d_{2}=\frac{\left.D_{0+}^{\beta-2} v(t)\right|_{t=0}}{\Gamma(\beta-1)}, \quad d_{3}=\frac{\left.I_{0+}^{3-\beta} v(t)\right|_{t=0}}{\Gamma(\beta-2)},
$$

and from the boundary value conditions (1.2), (1.3) and the fact that $(u, v) \in \operatorname{domL} \cap$ $\operatorname{Ker} P, P(u, v)=0$, we have $c_{i}=d_{i}=0$, thus

$$
\left(K_{p} L\right)(u, v)=K_{p}\left(L_{1} u, L_{2} v\right)=(u, v) .
$$

This shows that $K_{p}=\left[\left.L\right|_{\text {domLnKerP }}\right]^{-1}$.
Using (3.3)-(3.5), we write

$$
\begin{aligned}
K_{p}(I-Q) N(x, y)= & \left(\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1}\left[N_{1} x(s)-Q_{1} N_{1} x(s)\right] d s,\right. \\
& \left.\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-s)^{\beta-1}\left[N_{2} y(s)-Q_{2} N_{2 y 2}(s)\right] d s\right) .
\end{aligned}
$$

By Lemma 2.2 and a standard method, we obtain the following lemma.
Lemma 3.2. $[16] K_{p}(I-Q) N: Y \rightarrow Y$ is completely continuous.
In this section, we shall prove existence results for (1.1)-(1.3).
First, let us set the following notations for convenience:

$$
\begin{aligned}
m=3+\frac{1}{\Gamma(\alpha)}++\frac{1}{\Gamma(\alpha-1)}, & n=3+\frac{1}{\Gamma(\beta)}+\frac{1}{\Gamma(\beta-1)}, \\
j=2+\frac{1}{\Gamma(\alpha)}, & k=2+\frac{1}{\Gamma(\beta)}, \\
q=5+\frac{2}{\Gamma(\alpha)}++\frac{1}{\Gamma(\alpha-1)}, & w=5+\frac{2}{\Gamma(\beta)}++\frac{1}{\Gamma(\beta-1)} .
\end{aligned}
$$

Assume that the following conditions on the function $f(t, x, y, z), g(t, x, y, z)$ are satisfied:
(H1) There exist functions $a_{i}(t), b_{i}(t), c_{i}(t), d_{i}(t), r_{i}(t) \in L^{1}[0,1], i=1,2$ and a constant $\theta_{i} \in[0,1), i=1,2$ such that for all $(x, y, z) \in R^{3}, t \in[0,1]$, one of the following inequalities is satisfied:

$$
\begin{align*}
& |f(t, x, y, z)| \leq a_{1}(t)|x|+b_{1}(t)|y|+c_{1}(t)|z|+d_{1}(t)|x|^{\theta_{1}}+r_{1}(t) \tag{3.6}\\
& |g(t, x, y, z)| \leq a_{2}(t)|x|+b_{2}(t)|y|+c_{2}(t)|z|+d_{2}(t)|x|^{\theta_{2}}+r_{2}(t) . \tag{3.7}
\end{align*}
$$

(H2) There exists a constant $A>0$, such that for $(u, v) \in \operatorname{dom} L \backslash K e r L$ satisfying

$$
\min \left\{\left|D_{0+}^{\alpha-1} u(t)\right|+\left|D_{0+}^{\alpha-2} u(t)\right|,\left|D_{0+}^{\beta-1} v(t)\right|+\left|D_{0+}^{\beta-2} v(t)\right|\right\}>A
$$

or for all $t \in[0,1]$, we have

$$
A_{1} N_{1} v(t) \neq 0, \quad B_{1} N_{2} u(t) \neq 0 \quad \text { or } \quad A_{2} N_{1} v(t) \neq 0, B_{2} N_{2} u(t) \neq 0
$$

(H3) There exists a constant $B>0$ such that for every $a, b, c, d \in R$ satisfying $\min \left\{a^{2}\right.$ $\left.+b^{2}, c^{2}+d^{2}\right\}>B$ then either

$$
\begin{align*}
& a T_{1} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)+b T_{2} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)>0 \tag{3.8}\\
& c R_{1} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)+d R_{2} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)>0 \tag{3.9}
\end{align*}
$$

or

$$
\begin{align*}
& a T_{1} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)+b T_{2} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)<0 \tag{3.10}\\
& c R_{1} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)+d R_{2} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)<0 \tag{3.11}
\end{align*}
$$

Theorem 3.1 If (C1)-(C2) and (H1)-(H3) hold, then the BVP (1.1)-1.3) has at least one solution provided that

$$
\begin{aligned}
& \max \left\{q\left(\left\|a_{1}\right\|_{1}+\left\|b_{1}\right\|_{1}+\left\|c_{1}\right\|_{1}\right), w\left(\left\|a_{2}\right\|_{1}+\left\|b_{2}\right\|_{1}+\left\|c_{2}\right\|_{1}\right)\right. \\
& j\left\|a_{1}\right\|_{1}+n\left\|a_{2}\right\|_{1}+j\left\|b_{1}\right\|_{1}+n\left\|b_{2}\right\|_{1}+j\left\|c_{1}\right\|_{1}+n\left\|c_{2}\right\|_{1} \\
& \left.k\left\|a_{1}\right\|_{1}+m\left\|a_{2}\right\|_{1}+k\left\|b_{1}\right\|_{1}+m\left\|b_{2}\right\|_{1}+k\left\|c_{1}\right\|_{1}+m\left\|c_{2}\right\|_{1}\right\}<1
\end{aligned}
$$

Proof. Set

$$
\Omega_{1}=\{(u, v) \in \operatorname{dom} L \backslash \operatorname{Ker} L: L(u, v)=\lambda N(u, v), \lambda \in[0,1]\} .
$$

Then, for $(u, v) \in \Omega_{1}, L(u, v)=\lambda N(u, v)$, thus $\lambda \neq 0, N(u, v) \in \operatorname{ImL}=\operatorname{Ker} Q$, and hence $Q N(u, v)=(0,0)$ for all $t \in[0,1]$. By the definition of Q, we have $Q_{1} N_{1} v(t)=$ $Q_{2} N_{2} u(t)=0$. It follows from (H2) that there exists $t_{0}, t_{1} \in[0,1]$, such that

$$
\min \left\{\left|D_{0+}^{\alpha-1} u\left(t_{0}\right)\right|+\left|D_{0_{+}}^{\alpha-2} u\left(t_{0}\right)\right|,\left|D_{0+}^{\beta-1} v\left(t_{1}\right)\right|+\left|D_{0_{+}}^{\beta-2} v\left(t_{1}\right)\right|\right\} \leq A .
$$

Now

$$
\begin{aligned}
& D_{0+}^{\alpha-1} u(t)=D_{0+}^{\alpha-1} u\left(t_{0}\right)+\int_{t_{0}}^{t} D_{0+}^{\alpha} u(s) d s \\
& D_{0+}^{\alpha-2} u(t)=D_{0+}^{\alpha-2} u\left(t_{0}\right)+\int_{t_{0}}^{t} D_{0+}^{\alpha-1} u(s) d s \\
& D_{0+}^{\beta-1} v(t)=D_{0+}^{\beta-1} v\left(t_{1}\right)+\int_{t_{1}}^{t} D_{0+}^{\beta} v(s) d s, \\
& D_{0+}^{\beta-2} v(t)=D_{0+}^{\beta-2} v\left(t_{1}\right)+\int_{t_{1}}^{t} D_{0+}^{\beta-1} v(s) d s,
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|D_{0+}^{\alpha-1} u(0)\right| & \leq\left\|D_{0+}^{\alpha-1} u(t)\right\|_{\infty} \\
& \leq\left|D_{0+}^{\alpha-1} u\left(t_{0}\right)\right|+\left\|D_{0+}^{\alpha-1} u\right\|_{1} \\
& \leq A+\left\|L_{1} u\right\|_{1} \leq A+\left\|N_{1} v\right\|_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
\left|D_{0+}^{\alpha-2} u(0)\right| & \leq\left\|D_{0+}^{\alpha-2} u(t)\right\|_{\infty} \\
& \leq\left|D_{0+}^{\alpha-2} u\left(t_{0}\right)\right|+\left\|D_{0+}^{\alpha-1} u\right\|_{\infty} \\
& \leq\left|D_{0+}^{\alpha-2} u\left(t_{0}\right)\right|+\left|D_{0+}^{\alpha-1} u\left(t_{0}\right)\right|+\left\|D_{0+}^{\alpha} u\right\|_{1} \\
& \leq A+\left\|L_{1} u\right\|_{1} \leq A+\left\|N_{1} v\right\|_{1} .
\end{aligned}
$$

Similarly,

$$
\left|D_{0+}^{\beta-1} v(0)\right| \leq A+\left\|N_{2} u\right\|_{1},\left|D_{0+}^{\beta-2} v(0)\right| \leq A+\left\|N_{2} u\right\|_{1} .
$$

Therefore, we have noted that $(I-P)(u, v) \in \operatorname{domL} \cap \operatorname{KerP}$ for $\forall(u, v) \in \Omega_{1}$. Then,

$$
\begin{aligned}
&\|P(u, v)\|_{Y}=\left\|\left(P_{1} u, P_{2} v\right)\right\|_{Y}=\max \left\{\left\|P_{1} u\right\|_{Y_{1}},\left\|P_{2} v\right\|_{Y_{2}}\right\} \\
&= \max \left\{\left\|\frac{1}{\Gamma(\alpha)} D_{0+}^{\alpha-1} u(0) t^{\alpha-1}+\frac{1}{\Gamma(\alpha-1)} D_{0+}^{\alpha-2} u(0) t^{\alpha-2}\right\|_{Y_{1}}^{\prime}\right. \\
&\left.\left\|\frac{1}{\Gamma(\beta)} D_{0+}^{\beta-1} v(0) t^{\beta-1}+\frac{1}{\Gamma(\beta-1)} D_{0+}^{\beta-2} v(0) t^{\beta-2}\right\|_{Y_{2}}\right\} \\
&= \max \left\{\left\|\frac{1}{\Gamma(\alpha)} D_{0+}^{\alpha-1} u(0) t^{\alpha-1}+\frac{1}{\Gamma(\alpha-1)} D_{0+}^{\alpha-2} u(0) t^{\alpha-2}\right\|_{\infty}\right. \\
&+\left\|D_{0+}^{\alpha-1} u(0)\right\|_{\infty}+\left\|D_{0+}^{\alpha-1} u(0) t+D_{0_{+}}^{\alpha-2} u(0)\right\|_{\infty}, \\
&\left\|\frac{1}{\Gamma(\beta)} D_{0+}^{\beta-1} v(0) t^{\beta-1}+\frac{1}{\Gamma(\beta-1)} D_{0_{+}}^{\beta-2} v(0) t^{\beta-2}\right\|_{\infty}+\left\|D_{0_{+}}^{\beta-1} v(0)\right\|_{\infty} \\
&\left.+\left\|D_{0+}^{\beta-1} v(0) t+D_{0+}^{\beta-2} v(0)\right\|_{\infty}\right\} \\
&=\max \left\{\left(3+\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-1)}\right)\left(A+\left\|N_{1} v\right\|_{1}\right),\right. \\
&\left.\left(3+\frac{1}{\Gamma(\beta)}+\frac{1}{\Gamma(\beta-1)}\right)\left(A+\left\|N_{2} u\right\|_{1}\right)\right\} \\
&= \max \left\{m\left(A+\left\|N_{1} v\right\|_{1}\right), n\left(A+\left\|N_{2} u\right\|_{1}\right)\right\} . \\
&\|(I-P)(u, v)\|_{Y} \quad=\left\|K_{p} L(I-P)(u, v)\right\|_{Y}=\left\|K_{p}\left(L_{1} u, L_{2} v\right)\right\|_{Y} \\
& \leq \max \left\{\left(2+\frac{1}{\Gamma(\alpha)}\right)\left\|L_{1} u\right\|_{1},\left(2+\frac{1}{\Gamma(\beta)}\right)\left\|L_{2} v\right\|_{1}\right\} \\
& \leq \max \left\{j\left\|N_{1} v\right\|_{1}, k\left\|N_{2} u\right\|_{1}\right\},
\end{aligned}
$$

so, we have

$$
\begin{align*}
\|(u, v)\|_{Y} \leq & \|(I-P)(u, v)\|_{Y}+\|P(u, v)\|_{Y} \\
= & \max \left\{m\left(A+\left\|N_{1} v\right\|_{1}\right), n\left(A+\left\|N_{2} u\right\|_{1}\right)\right\} \\
& +\max \left\{j\left\|N_{1} v\right\|_{1}, k\left\|N_{2} u\right\|_{1}\right\} \tag{3.12}\\
= & \max \left\{q\left\|N_{1} v\right\|_{1}+m A, m\left(A+\left\|N_{1} v\right\|_{1}\right)+k\left\|N_{2} u\right\|_{1},\right. \\
& \left.n\left(A+\left\|N_{2} u\right\|_{1}\right)+j\left\|N_{1} v\right\|_{1}, w\left\|N_{2} u\right\|_{1}+n A\right\} .
\end{align*}
$$

If the first condition of (H1) is satisfied, then from (3.12), the proof can be divided into four cases:

Case 1. $\|(u, v)\|_{Y} \leq q\left\|N_{1} v\right\|_{1}+m A$.
From (3.6), we have
$\|(u, v)\|_{Y} \leq q\left[\left\|a_{1}\right\|_{1}\|v\|_{\infty}+\left\|b_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty}+\left\|c_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}+\left\|d_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+D\right]$,
where $D=\left\|r_{1}\right\|_{1}+\frac{m A}{q}$, and consequently, for
$\|v\|_{\infty},\left\|D_{0+}^{\beta-1} v\right\|_{\infty},\left\|D_{0+}^{\beta-2} v\right\|_{\infty} \leq\|(u, v)\|_{Y}$,
so

$$
\begin{gathered}
\|v\|_{\infty} \leq \frac{q}{1-q\left\|a_{1}\right\|_{1}}\left[\left\|b_{1}\right\|_{1}\left\|D_{0+}^{\beta-1} v\right\|_{\infty}+\left\|c_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}+\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+D\right] \\
\left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty} \leq \frac{q}{1-q\left\|a_{1}\right\|_{1}-q\left\|b_{1}\right\|_{1}}\left[\left\|c_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} x\right\|_{\infty}+\left\|d_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+D\right] \\
\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty} \leq \frac{q}{1-q\left\|a_{1}\right\|_{1}-q\left\|b_{1}\right\|_{1}-q\left\|c_{1}\right\|_{1}}\left(\left\|d_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+D\right) .
\end{gathered}
$$

But $\theta_{1} \in[0,1)$ and $\left\|a_{1}\right\|_{1}+\left\|b_{1}\right\|_{1}+\left\|c_{1}\right\|_{1} \leq \frac{1}{q}$, so there exists $A_{1}, A_{2}, A_{3}>0$ such that

$$
\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty} \leq A_{1}, \quad\left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty} \leq A_{2}, \quad\|v\|_{\infty} \leq A_{3}
$$

Therefore, for all $(u, v) \in \Omega_{1}$,

$$
\|(u, v)\|_{Y}=\max \left\{\|v\|_{\infty},\left\|D_{0+}^{\beta-1} v\right\|_{\infty},\left\|D_{0+}^{\beta-2} v\right\|_{\infty}\right\} \leq \max \left\{A_{1}, A_{2}, A_{3}\right\}
$$

we can prove that Ω_{1} is also bounded.
Case 2. $\|(u, v)\|_{Y} \leq w\left\|N_{2} u\right\|_{1}+n A$.
The proof is similar to that of case 1. Here, we omit it, where

$$
\left\|a_{2}\right\|_{1}+\left\|b_{2}\right\|_{1}+\left\|c_{2}\right\|_{1} \leq \frac{1}{w} .
$$

Case 3. $\|(u, v)\|_{Y} \leq n\left(A+\left\|N_{2} u\right\|_{1}\right)+j\left\|N_{1} v\right\|_{1}$.
From (3.6) and (3.7), we have

$$
\begin{aligned}
& \|(u, v)\|_{Y} \leq j\left[\left\|a_{1}\right\|_{1}\|v\|_{\infty}+\left\|b_{1}\right\|_{1}\left\|D_{0+}^{\beta-1} v\right\|_{\infty}+\left\|c_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}\right. \\
& \left.+\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+\left\|r_{1}\right\|_{1}\right]+n\left[\left\|a_{2}\right\|_{1}\|u\|_{\infty}\right. \\
& +\left\|b_{2}\right\|_{1}\left\|D_{0+}^{\alpha-1} u\right\|_{\infty}+\left\|c_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty} \\
& \left.+\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+A+\left\|r_{2}\right\|_{1}\right], \\
& \|v\|_{\infty} \quad \leq \frac{1}{1-j\left\|a_{1}\right\|_{1}}\left[j\left\|b_{1}\right\|_{1}\left\|D_{0+}^{\beta-1} v\right\|_{\infty}+j\left\|c_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}\right. \\
& +j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\left\|r_{1}\right\|_{1}+n\left\|a_{2}\right\|_{1}\|u\|_{\infty} \\
& +n\left\|b_{2}\right\|_{1}\left\|D_{0+}^{\alpha-1} u\right\|_{\infty}+n\left\|c_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty} \\
& \left.+n\left\|d_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\left\|r_{2}\right\|_{1}\right] \text {, } \\
& \|u\|_{\infty} \quad \leq \frac{1}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}}\left[j\left\|b_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty}+j\left\|c_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}\right. \\
& +j\left\|d_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\left\|r_{1}\right\|_{1}+n\left\|b_{2}\right\|_{1}\left\|D_{0+}^{\alpha-1} u\right\|_{\infty}+n\left\|c_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty} \\
& \left.+n\left\|d_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\left\|r_{2}\right\|_{1}\right] \text {, } \\
& \left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty} \quad \leq \frac{1}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}-j\left\|b_{1}\right\|_{1}}\left[j\left\|c_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}\right. \\
& +j\left\|d_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\|r\|_{1}+n\left\|b_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-1} u\right\|_{\infty}+n\left\|c_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty} \\
& \left.+n\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\|r\|_{2}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
\left\|D_{0+}^{\alpha-1} u\right\|_{\infty} \leq & \frac{1}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}-j\left\|b_{1}\right\|_{1}-n\left\|b_{2}\right\|_{1}}\left[j\left\|c_{1}\right\|_{1}\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}\right. \\
& +j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\left\|r_{1}\right\|_{1}+n\left\|c_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty} \\
& \left.+n\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\left\|r_{2}\right\|_{1}\right], \\
\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty} \leq & \frac{j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\left\|r_{1}\right\|_{1}+n\left\|d_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\left\|r_{2}\right\|_{1}}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}-j\left\|b_{1}\right\|_{1}-n\left\|b_{2}\right\|_{1}-j\left\|c_{1}\right\|_{1}-n\left\|c_{2}\right\|_{1} \|^{\prime}} \\
\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty} \leq & \frac{j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}+j\left\|r_{1}\right\|_{1}+n\left\|d_{2}\right\|_{1}\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}+n A+n\left\|r_{2}\right\|_{1}}}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}-j\left\|b_{1}\right\|_{1}-n\left\|b_{2}\right\|_{1}-j\left\|c_{1}\right\|_{1}-n\left\|c_{2}\right\|_{1} \|} .
\end{aligned}
$$

If $n\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}} \geq j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}$, then we have

$$
\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty} \leq \frac{j\left\|r_{1}\right\|_{1}+2 n\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}}+n A+n\left\|r_{2}\right\|_{1}}{1-j\left\|a_{1}\right\|_{1}-n\left\|a_{2}\right\|_{1}-j\left\|b_{1}\right\|_{1}-n\left\|b_{2}\right\|_{1}-j\left\|c_{1}\right\|_{1}-n\left\|c_{2}\right\|_{1} \|} .
$$

But $\theta_{2} \in[0,1)$ and $j\left\|a_{1}\right\| 1+n\left\|a_{2}\right\| 1+j\left\|b_{1}\right\| 1+n\left\|b_{2}\right\| 1+j\left\|c_{1}\right\|_{1}+n\left\|c_{2}\right\|_{1}<1$, so there exists $A_{i}>0, i=1, \ldots, 6$ such that

$$
\begin{aligned}
& \left\|D_{0+}^{\beta-2} v\right\|_{\infty} \leq A_{1},\left\|D_{0+}^{\beta-1} v\right\|_{\infty} \leq A_{2},\|v\|_{\infty} \leq A_{3} \\
& \left\|D_{0+}^{\alpha-2} u\right\|_{\infty} \leq A_{4},\left\|D_{0+}^{\alpha-1} u\right\|_{\infty} \leq A_{5},\|u\|_{\infty} \leq A_{6}
\end{aligned}
$$

Therefore, for all $(u, v) \in \Omega_{1}$,

$$
\begin{aligned}
\|(u, v)\|_{Y} & =\max \left\{\|v\|_{\infty},\left\|D_{0_{+}}^{\beta-1} v\right\|_{\infty},\left\|D_{0_{+}}^{\beta-2} v\right\|_{\infty}\|u\|_{\infty},\left\|D_{0_{+}}^{\alpha-1} u\right\|_{\infty},\left\|D_{0_{+}}^{\alpha-2} u\right\|_{\infty}\right\} \\
& \leq \max \left\{A_{i}\right\}, \quad i=1, \ldots, 6 .
\end{aligned}
$$

If $n\left\|d_{2}\right\|_{1}\left\|D_{0+}^{\alpha-2} u\right\|_{\infty}^{\theta_{2}} \leq j\left\|d_{1}\right\|_{1}\left\|D_{0+}^{\beta-2} v\right\|_{\infty}^{\theta_{1}}$, similarly to the above argument, we can also prove that Ω_{1} is bounded.

Case 4. $\|(u, v)\|_{Y} \leq m\left(A+\left\|N_{1} v\right\|_{1}\right)+k\left\|N_{2} u\right\|_{1}$.
The proof is similar to that of case 3. Here, we omit it, where

$$
k\left\|a_{1}\right\|_{1}+m\left\|a_{2}\right\|_{1}+k\left\|b_{1}\right\|_{1}+m\left\|b_{2}\right\|_{1}+k\left\|c_{1}\right\|_{1}+m\left\|c_{2}\right\|_{1}<1
$$

Let

$$
\Omega_{2}=\{(u, v) \in \operatorname{Ker} L: N(u, v) \in \operatorname{ImL}\}
$$

for $(u, v) \in \Omega_{2},(u, v) \in \operatorname{Ker} L=\left\{(u, v) \in d o m L \mid\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right), a, b, c, d \in\right.$ $R, t \in[0,1]\}$ and $Q N(u, v)=(0,0)$; thus

$$
\begin{aligned}
& T_{1} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)=T_{2} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)=0 \\
& R_{1} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)=R_{2} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)=0
\end{aligned}
$$

By (H3), $\min \left\{a^{2}+b^{2}, c^{2}+d^{2}\right\} \leq B$ that is, Ω_{2} is bounded.
We define the isomorphism $J: \operatorname{Ker} L \rightarrow \operatorname{Im} Q$ by

$$
J\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right)=\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right) .
$$

If the first part of (H3) is satisfied, and then let

$$
\Omega_{3}=\{(u, v) \in \operatorname{Ker} L:-\lambda J(u, v)+(1-\lambda) Q N(u, v)=(0,0), \lambda \in[0,1]\},
$$

For every $(u, v)=\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right) \in \Omega_{3}$,

$$
\begin{aligned}
& \lambda\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right) \\
& \quad=(1-\lambda)\left(\left(T_{1} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right) t^{\alpha-1}+T_{2} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right) t^{\alpha-1},\right.\right. \\
& \left.\quad R_{1} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right) t^{\beta-1}+T_{2} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right) t^{\beta-1}\right) .
\end{aligned}
$$

If $\lambda=1$, then $a=b=c=d=0$, and if $\min \left\{a^{2}+b^{2}, c^{2}+d^{2}\right\}>B$, then by (H3)

$$
\begin{aligned}
\lambda\left(a^{2}+b^{2}, c^{2}+d^{2}\right)= & (1-\lambda)\left(a T_{1} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)+b T_{2} N_{1}\left(a t^{\alpha-1}+b t^{\alpha-2}\right)\right. \\
& \left.c R_{1} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)+d T_{2} N_{2}\left(c t^{\beta-1}+d t^{\beta-2}\right)\right)<(0,0)
\end{aligned}
$$

which, in either case, is a contradiction. If the other part of $(\mathrm{H} 3)$ is satisfied, then we take

$$
\Omega_{3}=\{(u, v) \in \operatorname{KerL}: \lambda J(u, v)+(1-\lambda) Q N(u, v)=(\mathrm{O}, 0), \lambda \in[0,1]\},
$$

and, again, obtain a contradiction. Thus, in either case

$$
\begin{aligned}
\|(u, v)\|_{Y} & =\left\|\left(a t^{\alpha-1}+b t^{\alpha-2}, c t^{\beta-1}+d t^{\beta-2}\right)\right\|_{Y} \\
& =\max \left\{\left\|a t^{\alpha-1}+b t^{\alpha-2}\right\|_{Y_{1}},\left\|c t^{\beta-1}+d t^{\beta-2}\right\|_{Y_{2}} \|\right\} \\
& =\max \{(1+2 \Gamma(\alpha))|a|+(1+\Gamma(\alpha-1))|b| \\
& (1+2 \Gamma(\beta))|c|+(1+\Gamma(\beta-1))|d|\} \\
\leq & \max \{[(1+2 \Gamma(\alpha))+(1+\Gamma(\alpha-1))] B \\
& {[(1+2 \Gamma(\beta))+(1+\Gamma(\beta-1))] B\} } \\
\leq & (4+2 \Gamma(\alpha)+\Gamma(\alpha-1)+2 \Gamma(\beta)+\Gamma(\beta-1)) B
\end{aligned}
$$

for all $x \in \Omega_{3}$, that is, Ω_{3} is bounded.
In the following, we shall prove that all the conditions of Theorem 1.1 are satisfied. Set Ω to be a bounded open set of Y such that $\cup_{i=1}^{3} \bar{\Omega} \subset \Omega$. By Lemma 3.2, the operator $K_{p}(I-Q) N: \bar{\Omega} \rightarrow Y$ is compact N thus is L-compact on $\bar{\Omega}$.

Then by the above argument, we have
(i) $L(u, v) \neq \lambda N(u, v)$ for every $((u, v), \lambda) \in[\operatorname{domL} \backslash \operatorname{Ker} L \cap \partial \Omega] \times[0,1]$;
(ii) $N(u, v) \notin \operatorname{ImL}$, for every $(u, v) \in \operatorname{Ker} L \cap \partial \Omega$.

Finally, we will prove that (iii) of Theorem 1.1 is satisfied.
Let $H((u, v), \lambda)= \pm \lambda J(u, v)+(1-\lambda) Q N(u, v)$, where I is the identity operator in the Banach space Y. According to the above argument, we know that $H((u, v), \lambda) \neq 0$, for all $(u, v) \in \partial \Omega \cap K e r L$, and thus, by the homotopy property of degree,

$$
\begin{aligned}
g\left(\left.Q N\right|_{\text {KerL }}, \operatorname{Ker} L \cap \Omega,(0,0)\right) & =\operatorname{deg}(H(\cdot, 0), \operatorname{Ker} L \cap \Omega,(0,0)) \\
& =\operatorname{deg}(H(\cdot, 1), \operatorname{Ker} L \cap \Omega,(0,0)) \\
& =\operatorname{deg}(\pm I, \operatorname{Ker} L \cap \Omega,(0,0)) \\
& =\operatorname{sgn}\left(\left(\pm\left|\frac{\frac{\Lambda_{4}}{\Lambda} \frac{-\Lambda_{2}}{\Lambda}}{\frac{\Lambda_{1}}{\Lambda}}\right|, \pm\left|\frac{\frac{\Delta_{4}}{\Delta}}{\frac{\Delta_{3}}{\Delta} \frac{-\Delta_{2}}{\Delta}}\right|\right)\right) \\
& \neq 0,
\end{aligned}
$$

Then, by Theorem 1.1, $L(u, v)=N(u, v)$ has at least one solution in $d o m L \cap \bar{\Omega}$, and so, the BVP (1.1)-(1.3) has at least one solution in the space Y.

Acknowledgements

This study was supported by the NNSF of China (10771212) and the Fundamental Research Funds for the Central Universities (2010LKSX09).

Authors' contributions

All authors read and approved the final manuscript

Competing interests

The authors declare that they have no competing interests.

Received: 14 June 2011 Accepted: 12 October 2011 Published: 12 October 2011

References

1. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. pp. 204.Elsevier Science B.V., Amsterdam (2006)
2. Sabatier, J, Agrawal, OP, Machado, JAT, eds: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)
3. Lakshmikantham, V, Leela, S, Vasundhara Devi, J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
4. Samko, SG, Kilbas, AA, Marichev, Ol: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)
5. Lakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal Theory Methods Appl. 69, 2677-2682 (2008). doi:10.1016/j.na.2007.08.042
6. Lakshmikantham, V: Theory of fractional functional differential equations. Nonlinear Anal Theory Methods Appl. 69, 3337-3343 (2008). doi:10.1016/j.na.2007.09.025
7. Lakshmikantham, V, Vatsala, AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl Math Lett. 21, 828-834 (2008). doi:10.1016/j.aml.2007.09.006
8. El-Sayed, AMA, El-Mesiry, AEM, El-Saka, HAA: On the fractional-order logistic equation. Appl Math Lett. 20, 817-823 (2007). doi:10.1016/j.aml.2006.08.013
9. El-Sayed, AMA, El-Maghrabi, EM: Stability of a monotonic solution of a non-autonomous multidimensional delay differential equation of arbitrary (fractional) order. Electron J Qualitative Theory Differential Equations. 16, 1-9 (2008)
10. Diethelm, K, Ford, NJ: Analysis of fractional differential equations. J Math Anal Appl. 265, 229-248 (2002). doi:10.1006/ jmaa.2000.7194
11. Bai, C: Positive solutions for nonlinear fractional differential equations with coefficient that changes sign. Nonlinear Anal Theory Methods Appl. 64, 677-685 (2006). doi:10.1016/j.na.2005.04.047
12. Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl Math Lett. 22, 64-69 (2009). doi:10.1016/j.aml.2008.03.001
13. Zhang, Y, Bai, Z: Existence of positive solutions for s nonlinear fractional three-point boundary value problen at resonance. Appl Math Comput
14. Bai, Z: On solutions of some fractional m-point boundary value problems at resonance. Electron J Qualitative Theory Differential Equations. 37, 1-15 (2010)
15. Mawhin, J: Topological degree and boundary value problems for nonlinear differential equations. In: Fitzpatrick PM, Martelli M, Mawhin J, Nuss-baum R (eds.) Topological Methods for Ordinary Differential Equations. Lecture Notes in Mathematics, vol. 1537, pp. 74-142. Springer, Berlin (1991)
16. Hu, Z, Liu, W: Solvability for fractional order boundary value problem at resonance. Bound Value Problem. 20, 1-10 (2011)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at springeropen.com
```


[^0]: © 2011 Wang et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1847-2011-44
 Cite this article as: Wang et al.: Existence results for a coupled system of nonlinear fractional 2m-point boundary value problems at resonance. Advances in Difference Equations 2011 2011:44.

