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Abstract

Mustafa and Sims [Fixed Point Theory Appl. 2009, Article ID 917175, 10, (2009)]
generalized a concept of a metric space and proved fixed point theorems for
mappings satisfying different contractive conditions. In this article, we extend and
generalize the results obtained by Mustafa and Sims and prove common fixed point
theorems for three maps in these spaces. It is worth mentioning that our results do
not rely on continuity and commutativity of any mappings involved therein. We also
introduce the notation of a generalized probabilistic metric space and obtain
common fixed point theorem in the frame work of such spaces.
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1. Introduction and Preliminaries
The study of fixed points of mappings satisfying certain contractive conditions has

been at the center of vigorous research activity. Mustafa and Sims [1] generalized the

concept of a metric space. Based on the notion of generalized metric spaces, Mustafa

et al. [2-5] obtained some fixed point theorems for mappings satisfying different con-

tractive conditions. Abbas and Rhoades [6] motivated the study of a common fixed

point theory in generalized metric spaces. Recently, Saadati et al. [7] proved some fixed

point results for contractive mappings in partially ordered G-metric spaces.

The purpose of this article is to initiate the study of common fixed point for three

mappings in complete G-metric space. It is worth mentioning that our results do not

rely on the notion of continuity, weakly commuting, or compatibility of mappings

involved therein. We generalize various results of Mustafa et al. [3,5].

Consistent with Mustafa and Sims [1], the following definitions and results will be

needed in the sequel.

Definition 1.1. Let X be a nonempty set. Suppose that a mapping G : X × X × X ® R+

satisfies:

(a) G(x, y, z) = 0 if and only if x = y = z,

(b) 0 <G(x, y, z) for all x, y Î X, with x ≠ y,

(c) G(x, x, y) ≤ G(x, y, z) for all x, y, z Î X, with z ≠ y,

(d) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables), and

(e) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a Î X.
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Then G is called a G-metric on X and (X, G) is called a G-metric space.

Definition 1.2. A G-metric is said to be symmetric if G(x, y, y) = G(y, x, x) for all x,

y Î X.

Definition 1.3. Let (X, G) be a G-metric space. We say that {xn} is

(i) a G-Cauchy sequence if, for any ε > 0, there is an n0 Î N (the set of all positive

integers) such that for all n, m, l ≥ n0, G(xn, xm, xl) <ε;

(ii) a G-Convergent sequence if, for any ε > 0, there is an x Î X and an n0 Î N,

such that for all n, m ≥ n0, G(x, xn, xm) <ε.

A G-metric space X is said to be complete if every G-Cauchy sequence in X is conver-

gent in X. It is known that {xn} converges to x Î (X, G) if and only if G(xm, xn, x) ® 0 as

n, m ® ∞.

Proposition 1.4. Every G-metric space (X, G) will define a metric space (X, dG) by

dG(x, y) = G(x, y, y) + G(y, x, x), ∀ x, y ∈ X.

Definition 1.5. Let (X, G) and (X′, G′) be G-metric spaces and let f : (X, G) ® (X′, G′) be

a function, then f is said to be G-continuous at a point a Î X if and only if, given ε > 0,

there exists δ > 0 such that x, y Î X; and G(a, x, y) <δ implies G′(f(a), f(x), f(y)) <ε. A func-

tion f is G-continuous at X if and only if it is G-continuous at all a Î X.

2. Common Fixed Point Theorems
In this section, we obtain common fixed point theorems for three mappings defined on

a generalized metric space. We begin with the following theorem which generalize [[5],

Theorem 1].

Theorem 2.1. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(fx, gy, hz) ≤ kU(x, y, z) (2:1)

where k ∈ [0,
1
2
) and

U(x, y, z) = max{G(x, y, z),G(fx, fx, x),G(y, gy, gy),G(z, hz, hz),
G(x, gy, gy),G(y, hz, hz),G(z, fx, fx)

for all x, y, z Î X. Then f, g, and h have a unique common fixed point in X. More-

over, any fixed point of f is a fixed point g and h and conversely.

Proof. Suppose x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n+1,

x3n+3 = hx3n+2 for n ≥ 0. We have

G(x3n+1, x3n+2, x3n+3) = G(f x3n, gx3n+1, hx3n+2)

≤ kU(x3n, x3n+1, x3n+2)

for n = 0, 1, 2, ..., where

U(x3n, x3n+1, x3n+2)

= max{G(x3n, x3n+1, x3n+2),G(f x3n, f x3n, x3n),G(x3n+1, gx3n+1, gx3n+1),
G(x3n+2, hx3n+2, hx3n+2),G(x3n, gx3n+1, gx3n+1),

G(x3n+1, hx3n+2, hx3n+2),G(x3n+2, f x3n, f x3n)}
= max{G(x3n, x3n+1, x3n+2),G(x3n+1, x3n+1, x3n),G(x3n+1, x3n+2, x3n+2),

G(x3n+2, x3n+3, x3n+3),G(x3n, x3n+2, x3n+2),

G(x3n+1, x3n+3, x3n+3),G(x3n+2, x3n+1, x3n+1)}
≤ max{G(x3n, x3n+1, x3n+2),G(x3n, x3n+1, x3n+2),G(x3n, x3n+1, x3n+2),

G(x3n+1, x3n+2, x3n+3),G(x3n, x3n+1, x3n+2),

G(x3n+1, x3n+2, x3n+3), (x3n, x3n+1, x3n+2)}
= max{G(x3n, x3n+1, x3n+2),G(x3n+1, x3n+2, x3n+3)}
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In case max{G(x3n, x3n+1, x3n+2), G(x3n+1, x3n+2, x3n+3)} = G(x3n, x3n+1, x3n+2), we

obtain that

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

If max{G(x3n, x3n+1, x3n+2), G(x3n+1, x3n+2, x3n+3)} = G(x3n+1, x3n+2, x3n+3), then

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n+1, x3n+2, x3n+3),

which implies that G(x3n+1, x3n+2, x3n+3) = 0, and x3n+1 = x3n+2 = x3n+3 and the result

follows immediately.

Hence,

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ kG(x3n+1, x3n+2, x3n+3)

and

G(x3n+3, x3n+4, x3n+5) ≤ kG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ kG(xn, xn+1, xn+2)

≤ · · · ≤ kn+1G(x0, x1, x2).

Now, for any l, m, n with l >m >n,

G(xn, xm, xl) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+1, xn+2)

+ · · · + G(xl−1, xl−1, xl)

≤ G(xn, xn+1, xn+2) + G(xn, xn+1, xn+2)

+ · · · + G(xl−2, xl−1, xl)

≤ [kn + kn+1 + · · · + kl]G(x0, x1, x2)

≤ kn

1 − k
G(x0, x1, x2).

The same holds if l = m >n and if l >m = n we have

G(xn, xm, xl) ≤ kn−1

1 − k
G(x0, x1, x2).

Consequently G(xn, xm, xl) ® 0 as n, m, l ® ∞. Hence {xn} is a G-Cauchy sequence.

By G-completeness of X, there exists u Î X such that {xn} converges to u as n ® ∞.

We claim that fu = u. If not, then consider

G(fu, x3n+2, x3n+3) = G(fu, gx3n+1, hx3n+2) ≤ kU(u, x3n+1, x3n+2),

where

U(u, x3n+1, x3n+2)

= max{G(u, x3n+1, x3n+2),G(fu, fu, u),G(x3n+1, gx3n+1, gx3n+1),
G(x3n+2, hx3n+2, hx3n+2),G(u, gx3n+1, gx3n+2),

G(x3n+1, hx3n+2, hx3n+2),G(x3n+2, fu, fu)}
= max{G(u, x3n+1, x3n+2),G(fu, fu, u),G(x3n+1, x3n+2, x3n+2),

G(x3n+2, x3n+3, x3n+3),G(u, x3n+2, x3n+2),

G(x3n+1, x3n+3, x3n+3),G(x3n+2, fu, fu)}.
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On taking limit n ® ∞, we obtain that

G(fu, u, u) ≤ kU(u, u, u),

where

U(u, u, u) = max{G(u, u, u),G(fu, fu, u),G(u, u, u),G(u, u, u)
G(u, u, u),G(u, u, u),G(u, fu, fu)}

= G(fu, fu, u).

Thus

G(fu, u, u) ≤ kG(fu, fu, u) ≤ 2kG(fu, u, u),

a contradiction. Hence, fu = u. Similarly it can be shown that gu = u and hu = u. To

prove the uniqueness, suppose that if v is another common fixed point of f, g, and h,

then

G(u, v, v) = G(fu, gv, hv) ≤ kU(u, v, v),

where

U(u, v, v) = max{G(u, v, v),G(fu, fu, u),G(v, gv, gv),G(v, hv, hv),
G(u, gv, gv),G(v, hv, hv),G(v, fu, fu)}

= max{G(u, v, v),G(u, u, u),G(v, v, v),G(v, v, v),
G(u, v, v),G(v, v, v),G(v, u, u)}

= max{G(u, v, v),G(v, u, u)}

If U(u, v, v) = G(u, v, v), then

G(u, v, v) ≤ kG(u, v, v),

which gives that G(u, v, v) = 0, and u = v. Also for U(u, v, v) = G(v, u, u) we obtain

G(u, v, v) ≤ kG(v, u, u) ≤ 2kG(u, v, v),

which gives that G(u, v, v) = 0 and u = v. Hence, u is a unique common fixed point

of f, g, and h.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p),

if not then in case when p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(fp, gp, hp) ≤ kU(p, p, p),

where

U(p, p, p) = max{G(p, p, p),G(fp, fp, p),G(p, gp, gp),G(p, hp, hp),
G(p, gp, gp),G(p, hp, hp),G(p, fp, fp)}

= max{G(p, gp, gp),G(p, hp, hp)}.

Now U(p, p, p) = G(p, gp, gp) gives

G(p, gp, hp) ≤ kG(p, gp, gp) ≤ kG(p, gp, hp),

a contradiction. For U(p, p, p) = G(p, hp, hp), we obtain

G(p, gp, hp) ≤ kG(p, hp, hp) ≤ kG(p, gp, hp),
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a contradiction. Similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and p = g(p),

we arrive at a contradiction following the similar arguments to those given above.

Hence, in all cases, we conclude that p = gp = hp. The same conclusion holds if p = gp

or p = hp. □
Example 2.2. Let X = {0, 1, 2, 3} be a set equipped with G-metric defined by

(x, y, z) G(x, y, z)
(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), 0

(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), 1
(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0),
(0, 0, 3), (0, 3, 0), (3, 0, 0), (0, 3, 3), (3, 0, 3), (3, 3, 0),
(1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1),
(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 3, 3), (3, 1, 3), (3, 3, 1),
(2, 2, 3), (2, 3, 2), (3, 2, 2), (2, 3, 3), (3, 2, 3), (3, 3, 2),

3

(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2),
(1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2),
(2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1),
(3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1),

3

and f, g, h : X ® X be defined by

x f (x) g(x) h(x)
0 0 0 0
1 0 2 2
2 0 0 0
3 2 0 2

It may be verified that the mappings satisfy contractive condition (2.1) with contrac-

tivity factor equal to
1
3
. Moreover, 0 is a common fixed point of mappings f, g, and h.

Corollary 2.3. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(f mx, gmy, hmz) ≤ kmax{G(x, y, z),G(f mx, f mx, x),G(y, gmy, gmy),
G(z, hmz, hmz),G(x, gmy, gmy),

G(y, hmz, hmz),G(z, f mx, f mx)}
(2:2)

for all x, y, z Î X, where k ∈ [0,
1
2
). Then f, g, and h have a unique common fixed

point in X. Moreover, any fixed point of f is a fixed point g and h and conversely.

Proof. It follows from Theorem 2.1, that fm, gm and hm have a unique common fixed

point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) = g(gm(p)) = gm+1(p) = gm(g(p))

and h(p) = h(hm(p)) = hm+1(p) = hm(h(p)) implies that f(p), g(p) and h(p) are also fixed

points for fm, gm and hm. Now we claim that p = g(p) = h(p), if not then in case when

p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(f mp, gm(gp), hm(hp))

≤ kmax{G(p, gp, hp),G(f mp, f mp, p),G(gp, gm(gp), gm(gp)),
G(hp, hm(hp), hm(hp)),G(p, gm(gp), gm(gp)),

G(gp, hm(hp), hm(hp)),G(hp, f mp, f mp)}
= kmax{G(p, gp, hp),G(p, p, p),G(gp, gp, gp),G(hp, hp, hp),

G(p, gp, gp),G(gp, hp, hp),G(hp, p, p)}
= kmax{G(p, gp, hp),G(gp, hp, hp),G(hp, p, p)}
≤ kG(p, gp, hp),
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which is a contradiction. Similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and

p = g(p), we arrive at a contradiction following the similar arguments to those given

above. Hence in all cases, we conclude that, f(p) = g(p) = h(p) = p. It is obvious that

every fixed point of f is a fixed point of g and h and conversely. □
Theorem 2.4. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(fx, gy, hz) ≤ kU(x, y, z), (2:3)

where k ∈ [0, 13 )and

U(x, y, z) = max{G(y, fx, fx) + G(x, gy, gy),G(z, gy, gy)

+ G(y, hz, hz),G(z, fx, fx) + G(x, hz, hz)}

for all x, y, z Î X. Then f, g, and h have a unique common fixed point in X. More-

over, any fixed point of f is a fixed point g and h and conversely.

Proof. Suppose x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n

+1, x3n+3 = hx3n+2. We have

G(x3n+1, x3n+2, x3n+3) = G(f x3n, gx3n+1, hx3n+2)

≤ kU(x3n, x3n+1, x3n+2)

for n = 0, 1, 2, ..., where

U(x3n, x3n+1, x3n+2)

= max{G(x3n+1, f x3n, f x3n) + G(x3n, gx3n+1, gx3n+1),

G(x3n+2, gx3n+1, gx3n+1) + G(x3n+1, hx3n+2, hx3n+2),

G(x3n+2, f x3n, f x3n) + G(x3n, hx3n+2, hx3n+2)}
= max{G(x3n+1, x3n+1, x3n+1) + G(x3n, x3n+2, x3n+2),

G(x3n+2, x3n+2, x3n+2) + G(x3n+1, x3n+3, x3n+3),

G(x3n+2, x3n+1, x3n+1) + G(x3n, x3n+3, x3n+3)}
≤ max{G(x3n, x3n+1, x3n+2),G(x3n+1, x3n+2, x3n+3),

G(x3n+2, x3n+1, x3n+1) + G(x3n, x3n+3, x3n+3)}.

Now if U(x3n, x3n+1, x3n+2) = G(x3n, x3n+1, x3n+2), then

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Also if U(x3n, x3n+1, x3n+2) = G(x3n+1, x3n+2, x3n+3), then

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n+1, x3n+2, x3n+3),

which implies that G(x3n+1, x3n+2, x3n+3) = 0, and x3n+1 = x3n+2 = x3n+3 and the result

follows immediately.

Finally U(x3n, x3n+1, x3n+2) = G(x3n+2, x3n+1, x3n+1) + G(x3n, x3n+3, x3n+3), implies

G(x3n+1, x3n+2, x3n+3)

≤ k[G(x3n+2, x3n+1, x3n+1) + G(x3n, x3n+3, x3n+3)]

≤ k[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+1) + G(x3n+1, x3n+3, x3n+3)]

≤ k[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2) + G(x3n+1, x3n+2, x3n+3)]

= 2kG(x3n, x3n+1, x3n+2) + kG(x3n+1, x3n+2, x3n+3)
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which further implies that

(1 − k)G(x3n+1, x3n+2, x3n+3) ≤ 2kG(x3n, x3n+1, x3n+2).

Thus,

G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ =
2k

1 − k
. Obviously 0 <l < 1.

Hence,

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ kG(x3n+1, x3n+2, x3n+3)

and

G(x3n+3, x3n+4, x3n+5) ≤ kG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ kG(xn, xn+1, xn+2)

≤ · · · ≤ kn+1G(x0, x1, x2).

Following similar arguments to those given in Theorem 2.1, G(xn, xm, xl) ® 0 as n,

m, l ® ∞. Hence, {xn} is a G-Cauchy sequence. By G-completeness of X, there exists u

Î X such that {xn} converges to u as n ® ∞. We claim that fu = u. If not, then

consider

G(fu, x3n+2, x3n+3) = G(fu, gx3n+1, hx3n+2) ≤ kU(u, x3n+1, x3n+2),

where

U(u, x3n+1, x3n+2)

= max{G(x3n+1, fu, fu) + G(u, gxn+1, gxn+1),G(x3n+2, gx3n+1, gx3n+1)

+ G(x3n+1, hx3n+2, hx3n+2),G(x3n+2, fu, fu) + G(u, hx3n+2, hx3n+2)}
= max{G(x3n+1, fu, fu) + G(u, xn+2, xn+2),G(x3n+2, x3n+2, x3n+2)

+ G(x3n+1, x3n+3, x3n+3),G(x3n+2, fu, fu) + G(u, x3n+3, x3n+3)}

On taking limit n ® ∞, we obtain that

G(fu, u, u) ≤ kU(u, u, u),

where

U(u, u, u) = max{G(u, fu, fu) + G(u, u, u),G(u, u, u) + G(u, u, u)

G(u, fu, fu) + G(u, u, u)} = G(fu, fu, u).

Thus

G(fu, u, u) ≤ kG(fu, fu, u) ≤ 2kG(fu, u, u),

gives a contradiction. Hence, fu = u. Similarly it can be shown that gu = u and hu = u.

To prove the uniqueness, suppose that if v is another common fixed point of f, g, and h,

then
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G(u, v, v) = G(fu, gv, hv) ≤ kU(u, v, v),

where

U(u, v, v) = max{G(v, fu, fu) + G(u, gv, gv),G(v, gv, gv) + G(v, hv, hv),

G(v, fu, fu) + G(u, hv, hv)}
= max{G(v, u, u) + G(u, v, v),G(v, v, v) + G(v, v, v),

G(v, u, u) + G(u, v, v)}
= G(v, u, u) + G(u, v, v).

Hence,

G(u, v, v) ≤ k[G(v, u, u) + G(u, v, v)] ≤ 3kG(u, v, v),

which gives that G(u, v, v) = 0, and u = v. Therefore, u is a unique common fixed

point of f, g, and h.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p),

if not then in case when p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(fp, gp, hp) ≤ kU(p, p, p),

where

U(p, p, p) = max{G(p, fp, fp) + G(p, gp, gp),G(p, gp, gp)

+ G(p, hp, hp),G(p, fp, fp) + G(p, hp, hp)}
= max{G(p, p, p) + G(p, gp, gp),G(p, gp, gp)

+ G(p, hp, hp),G(p, p, p) + G(p, hp, hp)}
= max{G(p, gp, gp),G(p, gp, gp) + G(p, hp, hp),G(p, hp, hp)}.

If U(p, p, p) = G(p, gp, gp), then

G(p, gp, hp) ≤ kG(p, gp, gp) ≤ kG(p, gp, hp),

a contradiction.

Also for U(p, p, p) = G(p, gp, gp) + G(p, hp, hp), we obtain

G(p, gp, hp) ≤ k[G(p, gp, gp) + G(p, hp, hp)]

≤ 2kG(p, gp, hp),

a contradiction. If U(p, p, p) = G(p, hp, hp), then

G(p, gp, hp) ≤ kG(p, hp, hp) ≤ kG(p, gp, hp),

a contradiction. Similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and p = g(p),

we arrive at a contradiction following the similar arguments to those given above.

Hence, in all cases, we conclude that p = gp = hp. □
Corollary 2.5. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(f mx, gmy, hmz) ≤ kU(x, y, z), (2:4)

where k ∈ [0, 13 )and

U(x, y, z) = max{G(y, f mx, f mx) + G(x, gmy, gmy),G(z, gmy, gmy)

+ G(y, hmz, hmz),G(z, f mx, f mx) + G(x, hmz, hmz)}
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for all x, y, z Î X. Then f, g, and h have a unique common fixed point in X. More-

over, any fixed point of f is a fixed point g and h and conversely.

Proof. It follows from Theorem 2.4 that fm, gm, and hm have a unique common fixed

point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) = g(gm(p)) = gm+1(p) = gm(g(p))

and h(p) = h(hm(p)) = hm+1(p) = hm(h(p)) implies that f(p), g(p) and h(p) are also fixed

points for fm, gm and hm.

We claim that p = g(p) = h(p), if not then in case when p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(f mp, gm(gp), hm(hp))

≤ kU(p, gp, hp)

= kmax{G(gp, f mp, f mp) + G(p, gm(gp), gm(gp)),

G(hp, gm(gp), gm(gp)) + G(gp, hm(hp), hm(hp)),

G(hp, f mp, f mp) + G(p, hm(hp), hm(hp)}
= kmax{G(gp, p, p) + G(p, gp, gp),G(hp, gp, gp) + G(gp, hp, hp),

G(hp, p, p) + G(p, hp, hp)}
≤ 2kG(p, gp, hp).

a contradiction. Similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and p = g(p),

we arrive at a contradiction following the similar arguments to those given above.

Hence, in all cases, we conclude that, f(p) = g(p) = h(p) = p. □
Theorem 2.6. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(fx, gy, hz) ≤ kU(x, y, z), (2:5)

where k ∈ [0, 13 )and

U(x, y, z) = max{G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx),

G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy),

G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)}
for all x, y, z Î X. Then f, g, and h have a common fixed point in X. Moreover, any

fixed point of f is a fixed point g and h and conversely.

Proof. Suppose x0 is an arbitrary point in X. Define {xn} by x3n+1 = fx3n, x3n+2 = gx3n

+1, x3n+3 = hx3n+2. We have

G(x3n+1, x3n+2, x3n+3) = G(f x3n, gx3n+1, hx3n+2)

≤ kU(x3n, x3n+1, x3n+2)

for n = 0, 1, 2, ..., where

U(x3n, x3n+1, x3n+2)

= max{G(x3n, f x3n, f x3n) + G(x3n+1, f x3n, f x3n) + G(x3n+2, f x3n, f x3n),

G(x3n, gx3n+1, gx3n+1) + G(x3n+1, gx3n+1, gx3n+1) + G(x3n+2, gx3n+1, gx3n+1),

G(x3n, hx3n+2, hx3n+2) + G(x3n+1, hx3n+2, hx3n+2) + G(x3n+2, hx3n+2, hx3n+2)}
= max{G(x3n, x3n+1, x3n+1) + G(x3n+1, x3n+1, x3n+1) + G(x3n+2, x3n+1, x3n+1),

G(x3n, x3n+2, x3n+2) + G(x3n+1, x3n+2, x3n+2) + G(x3n+2, x3n+2, x3n+2),

G(x3n, x3n+3, x3n+3) + G(x3n+1, x3n+3, x3n+3) + G(x3n+2, x3n+3, x3n+3)}
= max{G(x3n, x3n+1, x3n+1) + G(x3n+2, x3n+1, x3n+1),

G(x3n, x3n+2, x3n+2) + G(x3n+1, x3n+2, x3n+2),

G(x3n, x3n+3, x3n+3) + G(x3n+1, x3n+3, x3n+3) + G(x3n+2, x3n+3, x3n+3)}
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Now if U(x3n, x3n+1, x3n+2) = G(x3n, x3n+1, x3n+1) + G(x3n+2, x3n+1, x3n+1), then

G(x3n+1, x3n+2, x3n+3) ≤ k[G(x3n, x3n+1, x3n+1) + G(x3n+2, x3n+1, x3n+1)]

≤ k[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2)]

≤ 2kG(x3n, x3n+1, x3n+2).

Also if U(x3n, x3n+1, x3n+2) = G(x3n, x3n+2, x3n+2) + G(x3n+1, x3n+2, x3n+2), then

G(x3n+1, x3n+2, x3n+3) ≤ k[G(x3n, x3n+2, x3n+2) + G(x3n+1, x3n+2, x3n+2)]

≤ k[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2)]

≤ 2kG(x3n, x3n+1, x3n+2).

Finally for U(x3n, x3n+1, x3n+2) = G(x3n, x3n+3, x3n+3) + G(x3n+1, x3n+3, x3n+3) + G(x3n+2,

x3n+3, x3n+3), implies

G(x3n+1, x3n+2, x3n+3)

≤ k[G(x3n, x3n+3, x3n+3) + G(x3n+1, x3n+3, x3n+3) + G(x3n+2, x3n+3, x3n+3)]

≤ k[2G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+1) + G(x3n+1, x3n+3, x3n+3)]

≤ k[G(x3n, x3n+1, x3n+2) + G(x3n, x3n+1, x3n+2) + G(x3n+1, x3n+2, x3n+3)]

≤ 2kG(x3n, x3n+1, x3n+2) + kG(x3n+1, x3n+2, x3n+3)]

implies that

(1 − k)G(x3n+1, x3n+2, x3n+3) ≤ 2kG(x3n, x3n+1, x3n+2).

Thus,

G(x3n+1, x3n+2, x3n+3) ≤ λG(x3n, x3n+1, x3n+2),

where λ =
2k

1 − k
. Obviously 0 <l < 1.

Hence,

G(x3n+1, x3n+2, x3n+3) ≤ kG(x3n, x3n+1, x3n+2).

Similarly it can be shown that

G(x3n+2, x3n+3, x3n+4) ≤ kG(x3n+1, x3n+2, x3n+3)

and

G(x3n+3, x3n+4, x3n+5) ≤ kG(x3n+2, x3n+3, x3n+4).

Therefore, for all n,

G(xn+1, xn+2, xn+3) ≤ kG(xn, xn+1, xn+2)

≤ · · · ≤ kn+1G(x0, x1, x2).

Following similar arguments to those given in Theorem 2.1, G(xn, xm, xl) ® 0 as n,

m, l ® ∞. Hence, {xn} is a G-Cauchy sequence. By G-completeness of X, there exists u

Î X such that {xn} converges to u as n ® ∞. We claim that fu = gu = u. If not, then

consider

G(fu, gu, x3n+3) = G(fu, gu, hx3n+2) ≤ kU(u, u, x3n+2),
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where

U(u, x3n+1, x3n+2)

= max{G(u, fu, fu) + G(u, fu, fu) + G(x3n+2, fu, fu),

G(u, gu, gu) + G(u, gu, gu) + G(x3n+2,gu, gu),

G(u, hx3n+2, hx3n+2) +G(u, hx3n+2, hx3n+2) + G(x3n+2, hx3n+2, hx3n+2)}
= max{2G(u, fu, fu) + G(x3n+2, fu, fu), 2G(u, gu, gu) + G(x3n+2, gu, gu),

2G(u, x3n+3, x3n+3) + G(x3n+2, x3n+3, x3n+3)}.

On taking limit as n ® ∞, we obtain that

G(fu, gu, u) ≤ kU(u, u, u),

where

U(u, u, u) = max{2G(u, fu, fu) + G(u, fu, fu),

2G(u, gu, gu) + G(u, gu, gu), 2G(u, u, u) + G(u, u, u)}
= max{3G(u, fu, fu), 3G(u, gu, gu)}.

Now for U(u, u, u) = 3G(fu, fu, fu), then

G(fu, gu, u) ≤ 3kG(fu, fu, u) ≤ 3kG(fu, gu, u),

a contradiction. Hence, fu = gu = u. Also for U(u, u, u) = 3G(u, gu, gu),

G(fu, gu, u) ≤ 3kG(u, gu, gu) ≤ 3kG(fu, gu, u),

a contradiction. Hence, fu = gu = u. Similarly it can be shown that gu = u and hu = u.

Now suppose that for some p in X, we have f(p) = p. We claim that p = g(p) = h(p),

if not then in case when p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(fp, gp, hp) ≤ kU(p, p, p),

where

U(p, p, p) = max{G(p, fp, fp) + G(p, fp, fp),G(p, fp, fp),

G(p, gp, gp) + G(p, gp, gp) + G(p, gp, gp),

G(p, hp, hp) + G(p, hp, hp) + G(p, hp, hp)}
= max{3G(p, p, p), 3G(p, gp, gp), 3G(p, hp, hp)}
= max{3G(p, gp, gp), 3G(p, hp, hp)}.

If U(p, p, p) = 3G(p, gp, gp), then

G(p, gp, hp) ≤ 3kG(p, gp, gp) ≤ 3kG(p, gp, hp),

a contradiction. Also, U(p, p, p) = 3G(p, hp, hp) gives

G(p, gp, hp) ≤ 3kG(p, hp, hp) ≤ 3kG(p, gp, hp),

a contradiction. Similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and p = g(p),

we arrive at a contradiction following the similar arguments to those given above.

Hence in all cases, we conclude that p = gp = hp. □
Remark 2.7. Let f, g, and h be self maps on a complete G-metric space X satisfying

(2.5). Then f, g and h have a unique common fixed point in X provided that 0 ≤ k <
1
4
.
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Proof. Existence of common fixed points of f, g, and h follows from Theorem 2.6. To

prove the uniqueness, suppose that if v is another common fixed point of f, g, and h,

then

G(u, v, v) = G(fu, gv, hv) ≤ kU(u, v, v),

where

U(u, v, v) = max{G(u, fu, fu) + G(v, fu, fu) + G(v, fu, fu),

G(u, gv, gv),G(v, gv, gv) + G(v, gv, gv),

G(u, hv, hv) + G(v, hv, hv) + G(v, hv, hv)}
= max{G(u, u, u) + G(v, u, u) + G(v, u, u),

G(u, v, v) + G(v, v, v) + G(v, v, v),

G(u, v, v) + G(v, v, v) + G(v, v, v)}
= max{2G(v, u, u),G(u, v, v)}.

U(u, v, v) = 2G(v, u, u), implies that

G(u, v, v) ≤ 2kG(v, u, u) ≤ 4kG(u, v, v),

which gives u = v. And U(u, v, v) = G(u, v, v), gives

G(u, v, v) ≤ kG(u, v, v),

U = v. Hence, u is a unique common fixed point of f, g, and h. □
Corollary 2.8. Let f, g, and h be self maps on a complete G-metric space X satisfying

G(f mx, gmy, hmz) ≤ kU(x, y, z), (2:6)

where k ∈ [0, 14 )and

U(x, y, z) = max{G(x, f mx, f mx) + G(y, f mx, f mx) + G(z, f mx, f mx),

G(x, gmy, gmy) + G(y, gmy, gmy) + G(z, gmy, gmy),

G(x, hmz, hmz) + G(y, hmz, hmz) + G(z, hmz, hmz)}

for all x, y, z Î X. Then f, g and h have a unique common fixed point in X. Moreover,

any fixed point of f is a fixed point g and h and conversely.

Proof. It follows from Theorem 2.6, that fm, gm, and hm have a unique common fixed

point p. Now f(p) = f(fm(p)) = fm+1(p) = fm(f(p)), g(p) = g(gm(p)) = gm+1(p) = gm(g(p))

and h(p) = h(hm(p)) = hm+1(p) = hm(h(p)) implies that f(p), g(p) and h(p) are also fixed

points for fm, gm, and hm. Now we claim that p = g(p) = h(p), if not then in case when

p ≠ g(p) and p ≠ h(p), we obtain

G(p, gp, hp) = G(f mp, gm(gp), hm(hp))

≤ kU(p, gp, hp)

= kmax{G(p, f mp, f mp) + G(gp, f mp, f mp) + G(hp, f mp, f mp),

G(p, gm(gp), gm(gp)) + G(gp, gm(gp), gm(gp)) + G(hp, gm(gp), gm(gp)),

G(p, hm(hp), hm(hp)),G(gp, hm(hp), hm(hp)) + G(hp, hm(hp), hm(hp))}
= kmax{G(p, p, p) + G(gp, p, p) + G(hp, p, p),

G(p, gp, gp) + G(gp, gp, gp) + G(hp, gp, gp),

G(p, hp, hp)),G(gp, hp, hp) + G(hp, hp, hp)}
= kmax{G(gp, p, p) + G(hp, p, p),G(p, gp, gp) + G(hp, gp, gp),

G(p, hp, hp)) + G(gp, hp, hp)}.
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Now if U(p, gp, hp) = G(gp, p, p) + G(hp, p, p), then

G(p, gp, hp) ≤ k[G(gp, p, p) + G(hp, p, p)]

≤ 2kG(p, gp, hp),

a contradiction. Also if U(p, gp, hp) = G(p, gp, gp) + G(hp, gp, gp), then

G(p, gp, hp) ≤ k[G(p, gp, gp) + G(hp, gp, gp)]

≤ 2kG(p, gp, hp),

a contradiction. Finally, if U(p, gp, hp) = G(p, hp, hp) + G(gp, hp, hp), then

G(p, gp, hp) ≤ k[G(p, hp, hp) + G(gp, hp, hp)]

≤ 2kG(p, gp, hp),

a contradiction.

Also similarly when p ≠ g(p) and p = h(p) or when p ≠ h(p) and p = g(p), we arrive

at a contradiction following the similar arguments to those given above. Hence, in all

cases, we conclude that f(p) = g(p) = h(p) = p □
Example 2.9. Let X = [0, 1] and G(x, y, z) = max{|x - y|, |y - z|, |z - x|} be a G-

metric on X. Define f, g, h : X ® X by

f (x) =

⎧⎨
⎩

x
12

for x ∈ [0, 12 )
x
10

for x ∈ [ 12 , 1],

g(x) =

⎧⎨
⎩

x
8

for x ∈ [0, 12 )
x
6
for x ∈ [ 12 , 1],

and

h(x) =

⎧⎨
⎩

x
5
for x ∈ [0, 12 )

x
3
for x ∈ [ 12 , 1].

Note that f, g and h are discontinuous maps. Also fg( 12) = f ( 1
12 ) =

1
144,

gh( 12) = g( 16 ) =
1
48, gh( 12) = g( 16 ) =

1
48, hg( 12 ) = h( 1

12) =
1
60, and fh( 12) = f ( 16) =

1
72,

hf ( 12) = h( 1
20) =

1
100, which shows that f, g and h does not commute with each other.

Note that for x, y, z ∈ [0, 12 ),

[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)] =
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x

12

∣∣∣ ,
[G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy)] =

∣∣∣x − y
8

∣∣∣ + 7y
8

+
∣∣∣z − y

8

∣∣∣ ,
and

[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)] =
∣∣∣x − z

5

∣∣∣ + ∣∣∣y − z

5

∣∣∣ + 4z
5
.

Now

G(fx, gy, hz) = max
{∣∣∣ x
12

− y
8

∣∣∣ , ∣∣∣ y
8

− z
5

∣∣∣ , ∣∣∣ z
5

− x
12

∣∣∣}
=

1
8
max

{∣∣∣∣2x3 − y

∣∣∣∣ ,
∣∣∣∣y − 8z

5

∣∣∣∣ ,
∣∣∣∣8z5 − 2x

3

∣∣∣∣
}
.
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For U(x, y, z) = G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx), we obtain

G(fx, gy, hz) =
1
8
max

{∣∣∣∣2x3 − y

∣∣∣∣ ,
∣∣∣∣y − 8z

5

∣∣∣∣ ,
∣∣∣∣8z5 − 2x

3

∣∣∣∣
}

≤ 1
8

[
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x
12

∣∣∣]

=
1
8
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

In case U(x, y, z) = G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy), then

G(fx, gy, hz) =
1
8
max

{∣∣∣∣2x3 − y

∣∣∣∣ ,
∣∣∣∣y − 8z

5

∣∣∣∣ ,
∣∣∣∣8z5 − 2x

3

∣∣∣∣
}

≤ 1
4

[∣∣∣x − y
8

∣∣∣ + 7y
8

+
∣∣∣z − y

8

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

And for U(x, y, z) = G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz), we have

G(fx, gy, hz) =
1
8
max

{∣∣∣∣2x3 − y

∣∣∣∣ ,
∣∣∣∣y − 8z

5

∣∣∣∣ ,
∣∣∣∣8z5 − 2x

3

∣∣∣∣
}

≤ 1
4

[∣∣∣x − z
5

∣∣∣ + ∣∣∣y − z
5

∣∣∣ + 4z
5

]

=
1
4
[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)].

Thus, (2.5) is satisfied for k = 1
4 < 1

3.

For x, y, z ∈ [ 12 , 1]

G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx) =
9x
10

+
∣∣∣y − x

10

∣∣∣ + ∣∣∣z − x

10

∣∣∣ ,
G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy) =

∣∣∣x − y
6

∣∣∣ + 5y
6

+
∣∣∣z − y

6

∣∣∣ ,
and

G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz) =
∣∣∣x − z

3

∣∣∣ + ∣∣∣y − z

3

∣∣∣ + 2z
3
.

Now,

G(fx, gy, hz) = max
{∣∣∣ x
10

− y
6

∣∣∣ , ∣∣∣ y
6

− z
3

∣∣∣ , ∣∣∣ z
3

− x
10

∣∣∣}
=

1
6
max

{∣∣∣∣3x5 − y

∣∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣∣2z − 3x

5

∣∣∣∣
}
,

For U(x, y, z) = G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx), we obtain

G(fx, gy, hz) =
1
6
max

{∣∣∣∣3x5 − y

∣∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣∣2z − 3x

5

∣∣∣∣
}

≤ 1
4

[
9x
10

+
∣∣∣y − x

10

∣∣∣ + ∣∣∣z − x
10

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

Abbas et al. Advances in Difference Equations 2011, 2011:49
http://www.advancesindifferenceequations.com/content/2011/1/49

Page 14 of 20



In case, U(x, y, z) = G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy), then

G(fx, gy, hz) =
1
6
max

{∣∣∣∣3x5 − y

∣∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣∣2z − 3x

5

∣∣∣∣
}

≤ 1
4

[∣∣∣x − y
6

∣∣∣ + 5y
6

+
∣∣∣z − y

6

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

And U(x, y, z) = G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz) gives that

G(fx, gy, hz) =
1
6
max

{∣∣∣∣3x5 − y

∣∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣∣2z − 3x

5

∣∣∣∣
}

≤ 1
4

[∣∣∣x − z
3

∣∣∣ + ∣∣∣y − z
3

∣∣∣ + 2z
3

]

=
1
4
[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)].

Hence (2.5) is satisfied for k = 1
4 < 1

3.

Now for x ∈ [0, 12 ), y, z ∈ [ 12 , 1],

[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)] =
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x

12

∣∣∣ ,
[G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy)] =

∣∣∣x − y
6

∣∣∣ + 5y
6

+
∣∣∣z − y

6

∣∣∣ ,
and

[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)] =
∣∣∣x − z

3

∣∣∣ + ∣∣∣y − z

3

∣∣∣ + 2z
3
.

Also

G(fx, gy, hz) = max
{∣∣∣ x
12

− y
6

∣∣∣ , ∣∣∣ y
6

− z
3

∣∣∣ , ∣∣∣ z
3

− x
12

∣∣∣}
=

1
6
max

{∣∣∣y − x
2

∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣2z − x

2

∣∣∣} .

Now for U(x, y, z) = G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx), then

G(fx, gy, hz) =
1
6
max

{∣∣∣y − x
2

∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣2z − x

2

∣∣∣}
≤ 1

4

[
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x

12

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

In case U(x, y, z) = G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy), then

G(fx, gy, hz) =
1
6
max

{∣∣∣y − x
2

∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣2z − x

2

∣∣∣}
≤ 1

4

[∣∣∣x − y

6

∣∣∣ + 5y
6

+
∣∣∣z − y

6

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].
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And for U(x, y, z) = G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz), we have

G(fx, gy, hz) =
1
4
max

{∣∣∣y − x
2

∣∣∣ , ∣∣2z − y
∣∣ , ∣∣∣2z − x

2

∣∣∣}
≤ 1

4

[∣∣∣x − z

3

∣∣∣ + ∣∣∣y − z

3

∣∣∣ + 2z
3

]

=
1
4
[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)].

Thus, (2.5) is satisfied for k = 1
4 < 1

3.

For x, y ∈ [0, 12 ) and z ∈ [ 12 , 1]

G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx) =
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x

12

∣∣∣ ,
G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy) =

∣∣∣x − y
8

∣∣∣ + 7y
8

+
∣∣∣z − y

8

∣∣∣ ,
G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz) =

∣∣∣x − z
3

∣∣∣ + ∣∣∣y − z
3

∣∣∣ + 2z
3
,

and

G(fx, gy, hz) = max
{∣∣∣ x
12

− y
8

∣∣∣ , ∣∣∣ y
8

− z
3

∣∣∣ , ∣∣∣ z
3

− x
12

∣∣∣}
=

1
4
max

{∣∣∣ y
2

− x
3

∣∣∣ , ∣∣∣∣4z3 − y
2

∣∣∣∣ ,
∣∣∣∣4z3 − x

3

∣∣∣∣
}
.

Now for U(x, y, z) = G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx), we obtain

G(fx, gy, hz) =
1
4
max

{∣∣∣ y
2

− x
3

∣∣∣ , ∣∣∣∣4z3 − y
2

∣∣∣∣ ,
∣∣∣∣4z3 − x

3

∣∣∣∣
}

≤ 1
4

[
11x
12

+
∣∣∣y − x

12

∣∣∣ + ∣∣∣z − x
12

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

If U(x, y, z) = G(x, gy, gy) + G(y, gy, gy) + G(z, gy, gy), then

G(fx, gy, hz) =
1
4
max

{∣∣∣ y
2

− x
3

∣∣∣ , ∣∣∣∣4z3 − y
2

∣∣∣∣ ,
∣∣∣∣4z3 − x

3

∣∣∣∣
}

≤ 1
4

[∣∣∣x − y
8

∣∣∣ + 7y
8

+
∣∣∣z − y

8

∣∣∣]

=
1
4
[G(x, fx, fx) + G(y, fx, fx) + G(z, fx, fx)].

For U(x, y, z) = G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz), we have

G(fx, gy, hz) =
1
4
max

{∣∣∣ y
2

− x
3

∣∣∣ , ∣∣∣∣4z3 − y
2

∣∣∣∣ ,
∣∣∣∣4z3 − x

3

∣∣∣∣
}

≤ 1
4

[∣∣∣x − z
3

∣∣∣ + ∣∣∣y − z
3

∣∣∣ + 2z
3

]

=
1
4
[G(x, hz, hz) + G(y, hz, hz) + G(z, hz, hz)].

Thus, (2.5) is satisfied for k = 1
4 < 1

3. So all the conditions of Theorem 2.6 are satis-

fied for all x, y, z Î X. Moreover, 0 is the unique common fixed point of f, g, and h.
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3. Probabilistic G-Metric Spaces
K. Menger introduced the notion of a probabilistic metric space in 1942 and since then

the theory of probabilistic metric spaces has developed in many directions [8]. The

idea of Menger was to use distribution functions instead of nonnegative real numbers

as values of the metric. The notion of a probabilistic metric space corresponds to

situations when we do not know exactly the distance between two points, but we

know probabilities of possible values of this distance. A probabilistic generalization of

metric spaces appears to be interest in the investigation of physical quantities and phy-

siological thresholds. It is also of fundamental importance in probabilistic functional

analysis.

Throughout this article, the space of all probability distribution functions (d.f.’s) is

denoted by Δ+ = {F : ℝ ∪ {-∞, +∞} ® [0, 1]: F is left-continuous and nondecreasing on

ℝ, F(0) = 0 and F(+∞) = 1} and the subset D+ ⊆ Δ+ is the set D+ = {F Î Δ+ : l- F(+∞)

= 1}. Here, l- f(x) denotes the left limit of the function f at the point x,

l−f (x) = limt→x− f (t). The space Δ+ is partially ordered by the usual pointwise ordering

of functions, i.e., F ≤ G if and only if F(t) ≤ G(t) for all t in ℝ. The maximal element

for Δ+ in this order is the d.f. given by

ε0(t) =
(
0, if t ≤ 0,
1, if t > 0.

Definition 3.1. [8] A mapping T : [0, 1] × [0, 1] ® [0, 1] is a continuous t-norm if T

satisfies the following conditions

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a Î [0, 1];

(d) T(a, b) ≤ T(c, d) whenever a ≤ c and c ≤ d, and a, b, c, d Î [0, 1].

Two typical examples of continuous t-norm are TP(a, b) = ab and TM(a, b) = Min(a,

b).

Now t-norms are recursively defined by T1 = T and

Tn(x1, . . . , xn+1) = T(Tn−1(x1, . . . , xn), xn+1)

for n ≥ 2 and xi Î [0, 1], for all i Î {1, 2, ..., n + 1}.

We say that a t-norm T is of Hadžić type if the family {Tn}nÎN is equicontinuous at x

= 1, that is,

∀ε ∈ (0, 1)∃δ ∈ (0, 1); a > 1 − δ ⇒ Tn(a) > 1 − ε (n ≥ 1).

TM is a trivial example of a t-norm of Hadžić type, but TP is not of Hadžić type (see

[9-11]).

Definition 3.2. A Menger Probabilistic Metric space (briefly, Menger PM-space) is a

triple (X,F ,T), where X is a nonempty set, T is a continuous t-norm, and F is a map-

ping from X × X into D+ such that, if Fx, y denotes the value of F at the pair (x, y),

the following conditions hold: for all x, y, z in X,

(PM1) Fx, y(t) = 1 for all t > 0 if and only if x = y;
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(PM2) Fx, y(t) = Fy, x(t);

(PM3) Fx, z(t + s) ≥ T(Fx, y(t), Fy, z(s)) for all x, y, z Î X and t, s ≥ 0.

Using PM-space we define probabilistic G-metric spaces.

Definition 3.3. A Menger Probabilistic G-Metric space (briefly, Menger PGM-space)

is a triple (X,G,T), where X is a nonempty set, T is a continuous t-norm, and F is a

mapping from X × X × X into D+ such that, if Gx, y, z denotes the value of G at the tri-

ple (x, y, z), the following conditions hold: for all x, y, z in X,

(PGM1) Gx, y, z(t) = 1 for all t > 0 if and only if x = y = z;

(PGM2) Gx, y, z(t) < 1 for all t > 0 if and only if x ≠ y;

(PGM3) Gx, y, z(t) = Gy, x, z(t) = Gy, z, x(t) = ...;

(PGM4) Gx, y, z(t + s) ≥ T(Gx, a, a(t), Ga, y, z(s)) for all x, y, z, a Î X and t, s ≥ 0.

Definition 3.4. A probabilistic G-metric is said to be symmetric if Gx, y, y(t) = Gy, x, x

(t) for all x, y Î X.

Example 3.5. Let (X,F ,T) be a PM-space. Define

Gx,y,z(t) = T2
M(Fx,y(t), Fy,z(t), Fx,z(t)).

Then, (X,G,T) is a PGM-space.

Now, we generalize the definition of G- Cauchy and G- convergent (see Definition

1.3) to Menger PGM-spaces.

Definition 3.6. Let (X,G,T) be a Menger PGM-space.

(1) A sequence {xn}n in X is said to be PG-convergent to x in X if, for every ε > 0

and l > 0, there exists positive integer N such that Gx,xn,xm(ε) > 1 − λ whenever m,

n ≥ N.

(2) A sequence {xn}n in X is called PG-Cauchy sequence if, for every ε > 0 and l >

0, there exists positive integer N such that Gxn,xm,xl(ε) > 1 − λ whenever n, m, l ≥

N.

(3) A Menger PM-space (X,G,T) is said to be complete if and only if every PG-

Cauchy sequence in X is PG-convergent to a point in X.

Definition 3.7. Let (X,G,T) be a Menger PGM space. For each p in X and l > 0, the

strong l-neighborhood of p is the set

Np(λ) = {q ∈ X : Gp,q,q(λ) > 1 − λ},

and the strong neighborhood system for X is the union
⋃

p∈V Np where

Np = {Np(λ) : λ > 0}.

4. Fixed Point Theorems in PGM-Spaces
Lemma 4.1. Let (X,G,T)be a Menger PGM-space with T of Hadžić-type and {xn} be a

sequence in X such that, for some k Î (0, 1),

Gxn,xn+1,xn+1(kt) ≥ Gxn−1,xn−1,xn(t) (n ≥ 1, t > 0).

Then, {xn} is a PG-Cauchy sequence.
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Proof. Let T be Hadžić-type, then

∀ε ∈ (0, 1)∃δ ∈ (0, 1); a > 1 − δ ⇒ TN(a) > 1 − ε, (N ≥ 1).

Since (X,G,T) is a Menger PGM-space, we have limt→∞Gx0,x1,x1 (t) = 1 then there

exists a t0 > 0 such that Gx0,x1,x1 (t0) > 1 − δ, then

TN(Gx0,x1,x1(t0)) > 1 − ε, ∀N ≥ 1

Let t > 0. Since the series
∑∞

i=0 k
it0 is convergent, there exists n1 Î N such that for n

≥ n0 we have
∑∞

i=n k
it0 < t. Then, for all n ≥ n1 and m, l Î N (put m + l - 1 = N), we

have

Gxn,xn+m ,xn+m+l(t) ≥ Gxn,xn+m ,xn+m+l−1

( ∞∑
i=n

kit0

)

≥ Gxn,xn+m ,xn+m+l

(
n+m+l−1∑

i=n

kit0

)

≥ Tn+m+l−1
i=n (Gxn,xn+m ,xn+m+l(k

it0))

≥ Tn+m+l−1
i=n (Gxi,xi+1,xi+l(k

it0))

= Tm+l−1
i=0 (Gxi+n,xi+n+1,xi+n+l(k

i+nt0))

≥ Tm+l−1
i=0 (Gx0,x1,x1 (t0))

= TN(Gx0,x1,x1(t0))

> 1 − ε.

Hence, the sequence {xn} is PG-Cauchy. □
It is not difficult to see that more general fixed point results in probabilistic G-metric

spaces can be proved in this manner. For example, we also have the following generali-

zation of Theorem 2.1.

Theorem 4.2. Let f, g, and h be self maps on a complete PGM-space (X,G,TM) satis-

fying

Gfx,gy,hz(t) ≥ Ux,y,z

(
t
k

)
(4:1)

where k ∈ [0, 12 )and

Ux,y,z(t) = TM{Gx,y,z(t),Gfx,fx,x(t),Gy,gy,gy(t),Gz,hz,hz(t),

Gx,gy,gy(t),Gy,hz,hz(t),Gz,fx,fx(t)}

for all x, y, z Î X. Then f, g, and h have a unique common fixed point in X. More-

over, any fixed point of f is a fixed point g and h and conversely.
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