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Abstract

A diffusive model of pioneer and climax species interaction is considered. We
perform a detailed Hopf bifurcation analysis to the model, and derive conditions for
determining the bifurcation direction and the stability of the bifurcating periodic
solutions.
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1 Introduction
We consider the following model:{

ut = d1�u + uf (c11u + v),

vt = d2�v + vg(u + c22v),
(1:1)

where x Î Ω, t > 0, and u, v represent a measure of a pioneer and a climax species,

respectively. f(z), the growth rate of the pioneer population, is generally assumed to be

smoothly deceasing, and has a unique positive root at a value z1 so that the crowding

is particularly harmful for pioneer species. But for the climax population, it is different

from pioneer population. Climax fitness increases at low total density but decreasing at

higher densities. So that, it has an optimum value of density for growing. Hence, g(z),

the growth rate of the climax population, is assumed to be non-monotone, has a

hump, and possesses two distinct positive roots at some values z2 and z3, with z2 <z3
and g’(z2) > 0 >g’(z3). For the reason above, we set

f (c11u + v) = z1 − c11u − v,
g(u + c22v) = −(z2 − u − c22v)(z3 − u − c22v)

(1:2)

in this article.

Equation (1.1) is often used to describe forestry models. Examples can be found in

[1,2] and references therein. The dynamics of pioneer-climax models have been studied

widely. Systems described by ordinary differential equations are under the hypothesis

of homogeneous environment. The stability of positive equilibrium and bifurcation,

especial Hopf bifurcation are the subject of many investigations. More recently, the

environmental factors are introduced to the pioneer-climax systems. Models including

diffusivity (i.e. systems described by reaction-diffusion equations) have been considered.

The existence of positive steady state solutions are the subject of investigations.
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In addition, traveling wave solutions are the most interesting problem. The readers can

get some results from [3]. In bifurcation problems, Buchanan [4] has studied Turing

instability in a pioneer/climax population interaction model. He determined the values

of the diffusional coefficients for which the model undergoes a Turing bifurcation, and

he show that a Turing bifurcation occurs when an equilibrium solution becomes

unstable to perturbations which are nonhomogeneous in space but remains stable to

spatially homogeneous perturbations. Hopf bifurcation for diffusive pioneer-climax spe-

cies interaction has not been studied. Our study will be performed in Hopf bifurcation.

The rest of this article are structured in the following way: in Section 2, the condi-

tions of the existence of positive equilibrium are given. The critical values of the para-

meter for Hopf bifurcation occurring are also searched. And the stability and direction

of the bifurcating periodic solutions at l1 are studied. In Section 3, some conclusions

are stated.

2 Hopf bifurcation analysis
In this section, we consider the following model:

{
ut = d1�u + u(z1 − c11u − v),

vt = d2�v − v(z2 − u − c22v)(z3 − u − c22v).
(2:1)

Clearly, it has one trivial equilibrium (0, 0), and three semitrivial equilibria (z1/c11,0),

(0, z2/c22), and (0, z3/c22). There also has two nontrivial equilibria E1, E2:

E1 =
(
z2 − c22z1
1 − c11c22

,
z1 − c11z2
1 − c11c22

)
, E2 =

(
z3 − c22z1
1 − c11c22

,
z1 − c11z3
1 − c11c22

)
.

As in [4], in the following, we will limit our analysis to the case z3 >z2 and z1 >c11 z2,

z2 >c22 z1. Immediately, the condition c11c22 < 1 follows as a consequence, and then E1
is a constant positive equilibrium. If there has additional condition that z1 >c11z3, then

E2 is an another constant positive equilibrium. E1, E2 are also positive equilibria for

Equation (2.1) without diffusion, and when E2 exists, it is unstable. In fact, the linear

system at E2 = (u*, v*) has the form

(
ut
vt

)
= L

(
u

v

)
=

(
c11u∗f ′(c11u∗ + v∗) u∗f ′(c11u∗ + v∗)

v∗g′(z3) c22v∗g′(z3)

)
.

For f’ (c11 u* + v*) = -1 and g’(z3) = z2 - z3, then the trace and determinant of L are

tr L = −c11u∗ + c22v∗(z2 − z3) < 0,

det L = (1 − c11c22)u∗v∗(z2 − z3) < 0,

which imply that L has a positive eigenvalue, and then E2 is unstable. Hence, the

researchers are concerned more about the dynamics at E1. In the corresponding diffu-

sion system, the dynamics at E1 is richer than that at E2. Hence, we take our attention

to the equilibrium E1. In [4], Turing instability has been studied thoroughly. The effect

on the stability due to the diffusion is analyzed. In this article, we pay attention to

Hopf bifurcation bifurcated by E1. We investigate on the effect on the stability due to

the diffusion. In other words, diffusion driving Hopf bifurcation is studied.
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Denote l = z2 - c22z1. With the conditions above, we have that l <z3 - c22z1 and 0 <

l < (1 - c11c22) z1/c11. Hence, the domain of the parameter l is 0 <l < min{z3 - c22z1,

(1 - c11c22) z1/c11}. In this article, we choose l as a main bifurcation parameter and

consider the complicated dynamic behavior near the fixed point E1 with the effect of

diffusion.

For convenience, we first transform the equilibrium E1 = (u*, v*) to the origin via the

translation û = u − λ/(1 − c11c22) , v̂ = v − (z1 − c11λ/(1 − c11c22)) and drop the hats

for simplicity of notation, then system (2.1) is transformed into

{
ut = d1�u + a11u + a12v + f (u, v),

vt = d2�v + a21u + a22v + g(u, v),
(2:2)

where

a11 = −c11u
∗, a12 = −u∗, a21 = z̄v∗, a22 = c22z̄v

∗,

and

z̄ =z3 − u∗ − c22v∗,

f (u, v) = − c11u2 − uv,

g(u, v) =(z̄ − 2c22v∗)uv + (c22 z̄ − c222v
∗)v2

− v∗u2 − u2v − 2c22uv2 − c222v
3.

In the following, we consider system (2.2) on spatial domain Ω = (0, ℓπ), ℓ Î ℝ+ with

Dirichlet boundary condition

u(0, t) = u(�π , t) = 0, v(0, t) = v(�π , t) = 0, t > 0.

Define the real-valued Sobolev space

X := {(u, v) | u, v ∈ H2(0, �π), (u, v) |x=0,�π = 0},

and the complexification of X by Xℂ = X + iX = {x1 + ix2|x1, x2 Î X}.

The linearized operator of system (2.2) evaluated at (0, 0) is

L :=
(
a11 + d1∂2/∂x2 a12

a21 a22 + d2∂2/∂x2

)

and accordingly we define (denote μn, n Î N are the eigenvalues of the eigenvalue

problem -Δj = μj, j(0) = j(ℓπ) = 0)

Ln :=
(
a11 − d1μn a12

a21 a22 − d2μn

)
.

Then, the characteristic equation of Ln(l) is

β2 − βTn +Dn = 0, n = 1, 2, . . . , (2:3)

where{
Tn = a11 + a22 − (d1 + d2)μn,

Dn = a11a22 − a12a21 − (d1a22 + d2a11)μn + d1d2μ2
n.
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More immediately, let Tn, Dn be expressed by expression with parameter l:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tn(λ) = −(d1 + d2)μn +
c11c22

1 − c11c22
λ2 −

(
2c22z1 +

c11c22z3 − c22z1 + c11
1 − c11c22

)
λ

+c22z1(z3 − c22z1),

Dn(λ) = d1d2μ2
n −

[
d1

c11c22
1 − c11c22

λ2 − c22d1

(
2z1 +

c11z3 − z1
1 − c11c22

)
λ

+c22d1z1(z3 − c22z1) − d2
c11λ

1 − c11c22

]
μn +

c11
1 − c11c22

λ3

−
(
2z1 +

c11z3 − z1
1 − c11c22

)
λ2 + z1(z3 − c22z1)λ.

According to [5], we have

Lemma 2.1. Hopf bifurcation occurs at a certain critical value l0 if there exists

unique n Î N such that

Tn(λ0) = 0, Dn(λ0) > 0 and Tj(λ0) �= 0,Dj(λ0) �= 0 for j �= n; (2:4)

and for the unique pair of complex eigenvalues near the imaginary axis a(l) ± iω (l),
the transversality condition a’(l0) ≠ 0 holds.

Let us consider the sign of Dn(l) first. Denote λ̄ = min{z3 − c22z1, (1 − c11c22)z1/c11}.
Clearly, λ̄ = z3 − c22z1 if c11z3 >z1 and λ̄ = (1 − c11c22)z1/c11 if c11z3 >z1. We will

prove that there exists N1 Î N such that Dn(l) > 0 for all λ ∈ (0, λ̄) and n >N1 under

some simple conditions.

Lemma 2.2. If z1 ≤ c11z3/2 or z1 ≥ 2c11z3, then Dn(l) > 0 for all λ ∈ (0, λ̄)and n >N1,

where N1 Î N such that μn >c22z1 (z3 - c22z1)/d2 for n >N1.

Proof. First, we claim that Dn (0) > 0, Dn(λ̄) > 0 for all n >N1. Directly calculating,

we have

Dn(0) = d1d2μ2
n − c22d1z1(z3 − c22z1)μn > 0,

Dn(λ̄) =

⎧⎨
⎩ d1d2μ

2
n + d2μn

c11(z3 − c22z1)
1 − c11c22

> 0 if λ̄ = z3 − c22z1,

d1d2μ
2
n + d2μnz1 > 0 if λ̄ = (1 − c11c22)z1/c11.

Next, we prove that for all λ ∈ (0, λ̄), Dn(l) > 0 if Dn (0) > 0, Dn(λ̄) > 0 satisfied.

From the expression of Dn(l), we have Dn(l) ® +∞ when l ® +∞ and Dn(l) ® - ∞

when l ® - ∞, and Dn(l) has two inflection points for any fixed n Î N. We only need

to prove that 0 and λ̄ are in the same side of the second inflection point. Differentiat-

ing Dn(l) with respect to l for fixed n, we have

D′
n(λ) = aλ2 + bλ + c,

where

a =
3c11

1 − c11c22
,

b = −2z1 − 2c11(z3 − c22z1)
1 − c11c22

− 2d1μn
c11c22

1 − c11c22
,

c = z1(z3 − c22z1) − c22d1μn

(
2z1 +

c11z3 − z1
1 − c11c22

)
+ d2μn

c11
1 − c11c22

.
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The axis of symmetry of D′
n(λ) is

λmin =
1
3

[
(z3 − c22z1) +

1 − c11c22
c11

z1 + c22d1μn

]
> 0.

If z1 ≤ c11z3/2, then λmin ≥ λ̄ = (1 − c11c22)z1/c11. Else if z1 ≥ 2c11z3, then

λmin ≥ λ̄ = z3 − c22z1. That is, 0 < λ̄ ≤ λmin, 0 and λ̄ are in the same side of the sec-

ond inflection point and the proof is complete.

Next, we seek the critical points λ ∈ (0, λ̄) such that Tn = 0. Define

T (λ, p) := − (d1 + d2)p +
c11c22

1 − c11c22
λ2 −

(
2c22z1 +

c11c22z3 − c22z1 + c11
1 − c11c22

)
λ

+ c22z1(z3 − c22z1).

Then, Tn (l) = 0 is equivalent to T (λ, p) = 0. Solving p from T (λ, p) = 0, we have

p(λ) =
1

d1 + d2

[
c11c22

1 − c11c22
λ2 −

(
2c22z1 +

c11c22z3 − c22z1 + c11
1 − c11c22

)
λ

+c22z1(z3 − c22z1)
]
.

Immediately,

p(0) =
1

d1 + d2
c22z1(z3 − c22z1) > 0,

p(λ̄) =

⎧⎪⎨
⎪⎩

− 1
d1 + d2

· c11(z3 − c22z1)
1 − c11c22

< 0 if λ̄ = z3 − c22z1,

− z1
d1 + d2

< 0 if λ̄ = (1 − c11c22)z1/c11.

Lemma 2.3. Denote N2 ∈ �be the number such that μN2 ≤ p(0) < μN2+1 . Then,

there exists N2 points li, i = 1,2, ..., N2, satisfying λ̄ > λ1 > λ2 > · · · > λN2 ≥ 0, such

that Ti(lj) < 0 for i <j, and Ti(lj) > 0 for i <j, i = 1,2, ..., 1 ≤ j ≤ N2.

Lemma 2.4. Suppose li, 1 ≤ i ≤ N2 be defined as in Lemma 2.3. If a(li) ± iω(li)be
the unique pair of complex eigenvalues near the imaginary axis, then a’(li) < 0.

Theorem 2.5. Suppose the condition of Lemma 2.2 is satisfied and li, 1 ≤ i ≤ N2 be

defined as in Lemma 2.3. Then, Hopf bifurcation occurs at li if

μi <
d2 − d1

d1(d1 + d2)
· c11λi

1 − c11c22
, 1 ≤ i ≤ min{N1,N2}, (2:5)

where N1, N2 are defined as before.

Proof. We need to show that Dn(li) > 0, n Î N, then Lemma 2.1 could be used. First,

Ti(li) = 0 gives

(d1 + d2)μi +
c11λi

1 − c11c22

=
c11c22

1 − c11c22
λ2
i − c22

(
2z1 +

c11z3 − z1
1 − c11c22

)
λi + c22z1(z3 − c22z1).

Now, Dn(li) could be expressed as

Dn(λi) =d1d2μ2
n −

(
d21μi + d1d2μi + (d1 − d2)

c11λi

1 − c11c22

)
μn

+
c11

1 − c11c22
λ3
i −

(
2z1 +

c11z3 − z1
1 − c11c22

)
λ2
i + z1(z3 − c22z1)λi.
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Define

D(λi, p) =d1d2p2 −
(
d21μi + d1d2μi + (d1 − d2)

c11λi

1 − c11c22

)
p

+
c11

1 − c11c22
λ3
i −

(
2z1 +

c11z3 − z1
1 − c11c22

)
λ2
i + z1(z3 − c22z1)λi.

Clearly, D(λi, 0) > 0 and the axis of symmetry of D(λi, p) is

pmin =
d21μi + d1d2μi + (d1 − d2)c11λi/(1 − c11c22)

2d1d2
.

The condition in the theorem ensure pmin < 0, which lead to D(λi, p) > 0 for p > 0.

Hence, Dn(li) > 0 and li are Hopf bifurcation points.

Remark 2.6. Theorem 2.5 gives a sufficient condition for Hopf bifurcation occurring.

From the proof of Theorem 2.5, we see that the inequality (2.5) is stringent. We con-

sider that D(λi, p) is continuous with respect to p, but Dn(li) is a set of discrete values.

Hence, we need not to ensure that the inequality (2.5) is always satisfied in some sim-

ple case. For instance, N2 = 1. Example 2.8 exactly demonstrates this feature.

In the following, we take attention to the stability and direction of bifurcating peri-

odic solutions bifurcated at l1.
We give the detail of the calculation process of the direction of Hopf bifurcation at

l1 in the following. It is obvious that ±iω, with ω =
√
D1(λ1) , are the only pair of sim-

ple purely imaginary eigenvalues of L(l1). We need to calculate the Poincaré norm

form of (2.2) for l = l1:

ż = iωz + z
M∑
j=1

cj(zz̄)j,

where z is a complex variable, M ≥ 1and cj are complex-valued coefficients. The

direction of Hopf bifurcation at l1 is decided by the sign of Re(c1), which has the fol-

lowing form:

c1 =
i
2ω

(
g20g11 − 2 | g11|2 − 1

3
| g02|2

)
+
1
2
g21.

In the following, we will calculate g20, g11, g02, and g21. We recall that

f (u, v) = − c11u
2 − uv,

g(u, v) =(z̄ − 2c22v∗)uv + (c22z̄ − c222v
∗)v2

− v∗u2 − u2v − 2c22uv2 − c222v
3.

Notice that the eigenvalues μn = n2/ℓ2, n = 1,2, ..., the corresponding eigenfunction

are sin(nx/ℓ) in our problem. Hence, we set q = (a, b)T sin(x/ℓ) be such that L(l1)q =

iωq and let q* = M(a*, b*)T sin(x/ℓ) be such that L(l1)T q* = -iωq*, and moreover, 〈q*,

q〉 = 1 and 〈q∗, q̄〉 = 0 . Here

〈u, v〉 =
∫ �π

0
ūTvdx, u, v ∈ X�
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be the inner dot and

a = b∗ = 1, b =
iω + d1μ1 − a11

a12
, a∗ =

−iω + d2μ1 − a22
a12

, M =
2�πω

ia12
.

Express the partial derivatives of f(u, v) and g(u, v) at (u, v) = (0, 0) with respect to l
when l1, we have

fuu = −c11, fuv = −1, guv = z3 − 3c22z1 +
λ1(3c11c22 − 1)

1 − c11c22
,

guu = −z1 +
c11λ1

1 − c11c22
, gvv = c22(z3 − 2c22z1) +

c22λ1(2c11c22 − 1)
1 − c11c22

,

gvvv = −c222, guuv = −1, guvv = −2c22,

and the others are equal to zero. As stated in [5,6], we need to calculate Qqq,Qqq̄ ,

and Cqqq̄ , which are defined as

Qqq = sin2(x/�)
(
c
d

)
, Qqq̄ = sin2(x/�)

(
e
f

)
, Cqqq̄ = sin3(x/�)

(
g
h

)
,

where⎧⎪⎪⎨
⎪⎪⎩
c = fuua2 + 2fuvab + fvvb2, d = guua2 + 2guvab + gvvb2,
e = fuu | a|2 + fuv(ab̄ + āb) + fvv | b|2, f = guu | a|2 + guv(ab̄ + āb) + gvv | b|2,
g = fuuu | a|2a + fuuv(2 | a|2b + a2b̄) + fuvv(2 | b|2a + b2ā) + fvvv | b|2b,
h = guuu | a|2a + guuv(2 | a|2b + a2b̄) + guvv(2 | b|2a + b2ā) + gvvv | b|2b.

From direct calculation, we have

〈q∗,Qqq〉 = 4�M̄
3

(ā∗c + d), 〈q∗,Qqq̄〉 = 4�M̄
3

(ā∗e + f ),

〈q̄∗,Qqq〉 = 4�M
3

(a∗c + d), 〈q̄∗,Qqq̄〉 = 4�M
3

(a∗e + f ).
(2:6)

Then, we have (the detail meaning of the following parameters are stated in [6,5])

H20 = Qqq − 〈q∗,Qqq〉q − 〈q̄∗,Qqq〉q̄

=
1
2
(1 − cos(2x/�))

(
c
d

)
−

[
〈q∗,Qqq〉

(
a
b

)
− 〈q̄∗,Qqq〉

(
ā
b̄

)]
sin(x/�)

=
∞∑
k=1

−8
(2k − 1)(2k + 1)(2k − 3)π

(
c
d

)
sin((2k − 1)x/�)

−
[
〈q∗,Qqq〉

(
1
b

)
− 〈q̄∗,Qqq〉

(
1
b̄

)]
sin(x/�)

(2:7)

and

H11 = Qqq̄ − 〈q∗,Qqq̄〉q − 〈q̄∗,Qqq̄〉q̄

=
1
2
(1 − cos(2x/�))

(
e
f

)
−

[
〈q∗,Qqq̄〉

(
a
b

)
− 〈q̄∗,Qqq̄〉

(
ā
b̄

)]
sin(x/�)

=
∞∑
k=1

−8
(2k − 1)(2k + 1)(2k − 3)π

(
e
f

)
sin((2k − 1)x/�)

−
[
〈q∗,Qqq̄〉

(
1
b

)
− 〈q̄∗,Qqq̄〉

(
1
b̄

)]
sin(x/�).

(2:8)

Therefore, we can obtain w20, w11 as

w20 = [2iωI − L(λ1)]−1H20 and w11 = −[L(λ1)]−1H11.
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Clearly, the calculation of (2iωI - L(l1))-1 and [L(l1)]-1 are restricted to the subspaces

spanned by the eigenmodes sin(kx/ℓ), k = 1,2, .... One can compute that

(2iωI − Lk(λ1))−1

= (αk
1 + iαk

2)
−1

(
2iω − a22 + d2μk a12
a21 2iω − a11 + d1μk

)
,

L−1
k (λ1) =

1

αk
3

(
a22 − d2μk −a12
−a21 a11 − d1μk

)
,

where

αk
1 = −4ω2 + a11a22 − a12a21 − (d1a22 + d2a11)μk + d1d2μ

2
k ,

αk
2 = −2ω(a11 + a22) + 2ω(d1 + d2)μk,

αk
3 = a11a22 − a12a21 − (d2a11 + d1a22)μk + d1d2μ

2
k .

Then,

w20 =
∞∑
k=1

−8 sin((2k − 1)x/�)
(2k − 1)(2k + 1)(2k − 3)π

(2iωI − L2k−1(λ1))−1
(
c
d

)

− (2iωI − L1(λ1))−1
[
〈q∗,Qqq〉

(
a
b

)
− 〈q̄∗,Qqq〉

(
ā
b̄

)]
sin(x/�)

=
∞∑
k=1

−8 sin((2k − 1)x/�)(2k − 3)−1

(4k2 − 1)(α2k−1
1 + iα2k−1

2 )π

(
(2iω − a22 + d2μ2k−1)c + a12d
a21c + (2iω − a11 + d1μ2k−1)d

)

− 1

α1
1 + iα1

2

(
(2iω − a22 + d2μ1)ξ1 + a12ξ2
a21ξ1 + (2iω − a11 + d1μ1)ξ2

)
sin(x/�),

w11 =
∞∑
k=1

−8 sin((2k − 1)x/�)

α2k−1
3 (4k2 − 1)(2k − 3)π

−
(
(a22 − d2μ2k−1)e + a12f
a21e − (a11 − d1μ2k−1)f

)

− 1

α1
3

(−(a22 − d2μ1)ξ3 + a12ξ4
a21ξ3 − (a11 − d1μ1)ξ4

)
sin(x/�),

where

ξ1 = 〈q∗,Qqq〉a − 〈q̄∗,Qqq〉ā =
4c�
3

(ā∗M̄ − a∗M) +
4d�
3

(M̄ − M),

ξ2 = 〈q∗,Qqq〉b − 〈q̄∗,Qqq〉b̄ = 4c�
3

(bā∗M̄ − b̄a∗M) +
4d�
3

(bM̄ − b̄M),

ξ3 = 〈q∗,Qqq̄〉a − 〈q̄∗,Qqq̄〉ā =
4e�
3

(ā∗M̄ − a∗M) +
4f�
3

(M̄ − M),

ξ4 = 〈q∗,Qqq̄〉b − 〈q̄∗,Qqq̄〉b̄ = 4e�
3

(bā∗M̄ − b̄a∗M) +
4f�
3

(bM̄ − b̄M).

Then,

Qw20 q̄ =
∞∑
k=1

(
Q1k

w20q̄

Q2k
w20q̄

)
sin

x
�
sin

(2k − 1)x
�

+

(
Q10

w20q̄

Q20
w20q̄

)
sin2 x

�

=
∞∑
k=1

(
fuuw1k

20 + fuvb̄w1k
20 + fuvw2k

20
guuw1k

20 + guvb̄w1k
20 + guvw2k

20 + gvvb̄w2k
20

)
sin

x
�
sin

(2k − 1)x
�

+
(

fuuw10
20 + fuvb̄w10

20 + fuvw20
20

guuw10
20 + guvb̄w10

20 + guvw20
20 + gvvb̄w20

20

)
sin2 x

�
,

Qw11q =
∞∑
k=1

(
Q1k

w11q

Q2k
w11q

)
sin

x
�
sin

(2k − 1)x
�

+
(
Q10

w11q

Q20
w11q

)
sin2 x

�
,

=
∞∑
k=1

(
fuuw1k

11 + fuvbw1k
11 + fuvw2k

11
guuw1k

11 + guvbw1k
11 + guvw2k

11 + gvvbw2k
11

)
sin

x
�
sin

(2k − 1)x
�

+
(

fuuw10
11 + fuvbw10

11 + fuvw20
11

guuw10
11 + guvbw10

11 + guvw20
11 + gvvbw20

11

)
sin2 x

�
,
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where

w1k
20 =

∞∑
k=1

−8(2iω − a22 + d2μ2k−1)c + a12d)

(4k2 − 1)(2k − 3)(α2k−1
1 + iα2k−1

2 )π
, k = 1, 2, . . . ,

w2k
20 =

∞∑
k=1

−8(a21c + (2iω − a11 + d1μ2k−1)d)

(4k2 − 1)(2k − 3)(α2k−1
1 + iα2k−1

2 )π
, k = 1, 2, . . . ,

w1k
11 =

∞∑
k=1

−8(−(a22 − d2μ2k−1)e + a12f )

α2k−1
3 (4k2 − 1)(2k − 3)π

, k = 1, 2, . . . ,

w2k
11 =

∞∑
k=1

−8(a21e − (a11 − d1μ2k−1)f )

α2k−1
3 (4k2 − 1)(2k − 3)π

, k = 1, 2, . . . ,

and

w10
20 =

(2iω − a22 + d2μ1)ξ1 + a12ξ2
α1
1 + iα1

2

, w20
20 =

a21ξ1 + (2iω − a11 + d1μ1)ξ2
α1
1 + iα1

2

,

w10
11 =

−(a22 − d2μ1)ξ3 + a12ξ4
α1
3

, w20
11 =

a21ξ3 − (a11 − d1μ1)ξ4
α1
3

.

Notice that

∫ �π

0
sin4(x/�)dx =

3�π

8
,

∫ �π

0
sin2(x/�) sin((2k − 1)x/�)dx =

−4�

(2k − 1)(2k + 1)(2k − 3)
,

we have

〈q∗,Cqqq̄〉 = 3�M̄hπ
8

,

〈q∗,Qw20 q̄〉 =
∞∑
k=1

−4�M̄
(2k − 1)(2k + 1)(2k − 3)

(ā∗Q1k
w20 q̄

+Q2k
w20q̄

)

+
4�M
3

(ā∗Q10
w20q̄

+Q20
w20 q̄

),

〈q∗,Qw11q〉 =
∞∑
k=1

−4�M̄
(2k − 1)(2k + 1)(2k − 3)

(ā∗Q1k
w11q +Q2k

w11q)

+
4�M
3

(ā∗Q10
w11q̄

+Q20
w11q̄

).

Hence, we have

g20 = 〈q∗,Qqq〉 = 4�M̄
3

(ā∗c + d),

g11 = 〈q∗,Qqq̄〉 = 4�M̄
3

(ā∗e + f ),

g02 = 〈q∗,Qq̄q〉 = 4�M̄
3

(ā∗c̄ + d̄),
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and

g21 = 2〈q∗,Qw11q〉 + 〈q∗,Qw20q̄〉 + 〈q∗,Cqqq̄〉

=
∞∑
k=1

−4�M̄((2Q1k
w11q +Q1k

w20 q̄
)ā∗

n + (2Q2k
w11q +Q2k

w20q̄
))

(2k − 1)(2k + 1)(2k − 3)

+
4�M̄((2Q10

w11q +Q10
w20q̄

)ā∗ + (2Q20
w11q +Q20

w20q̄
))

3
+
3�M̄hπ

8
.

Then, it follows that

c1 =
i
2ω

(g20g11 − 2|g11|2 − 1
3

|g02|2) + 1
2
g21

=
8�2i
9ω

[M̄2(ā∗c + d)(ā∗e + f ) − 2|M|2|ā∗e + f |2 − 1
3

|M|2|ā∗c + d|2]

+
∞∑
k=1

−2�M̄((2Q1k
w11q +Q1k

w20 q̄
)ā∗

n + (2Q2k
w11q +Q2k

w20q̄
))

(2k − 1)(2k + 1)(2k − 3)

+
2�M̄((2Q10

w11q +Q10
w20q̄

)ā∗ + (2Q20
w11q +Q20

w20q̄
))

3
+
3�M̄hπ

16
.

Theorem 2.7. Suppose the conditions in Theorem 2.7 are satisfied. Then, the positive

constant equilibrium E1 is asymptotically stable when λ ∈ (λ1, λ̄) . Hopf bifurcation

occurs at l1, and the bifurcating periodic solutions are in the left(right) neighborhood of

l1 and stable(unstable) if Re(c1) < 0(> 0).

Example 2.8. Suppose ℓ = 1(i. e. Ω = (0, π)). d1 = 1/10, d2 = 3/10, z1 = z2 = 1, z3 =

3/2 and c11 = 1/3. Let c22 be the bifurcation parameter. We found that there has only

one Hopf bifurcation point l = 0.0833. E1 is stable for 0.0833 <l < 1.1667. For l <

0.0833, Hopf bifurcation occurs and the bifurcating periodic solutions are stable. In

other words, c22 = 0.9167 is the critical value for Hopf bifurcation. We give the simula-

tion for c22 0.9167 ± 0.02 in the follows. If c22 = 0.9167 - 0.02, E1 is stable (Figure 1). If

c22 = 0.9167 + 0.02, there exists periodic solution, which is stable (Figure 2).

3 Conclusion
In this article, we take l as a main bifurcation parameter, study stability of the con-

stant positive equilibrium E1, which exists for λ ∈ (0, λ̄). The critical values for Hopf
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Figure 1 E1 is asymptotically stable for c22 = 0.9167 - 0.02. The initial value is (u0, v0) = (0.1, 0.2) * sin x.
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bifurcation occurring are found out, and the stability and direction of bifurcating peri-

odic solutions bifurcated at l1 are studied. By the method of the reference [5] and our

early work [6], we give the detail of the calculation of the norm form for system (2.2).

In addition, we claim that the bifurcating periodic solutions are all spatially nonhomo-

geneous, since the problem is subject to Dirichlet fixed boundary conditions.
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Liu and Wei Advances in Difference Equations 2011, 2011:52
http://www.advancesindifferenceequations.com/content/2011/1/52

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/15836862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15836862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15854676?dopt=Abstract

	Abstract
	1 Introduction
	2 Hopf bifurcation analysis
	3 Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

