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Abstract

In this paper, we have investigated that initial time difference boundedness criteria
and Lagrange stability for fractional order differential equation in Caputo’s sense are
unified with Lyapunov-like functions to establish comparison result. The qualitative
behavior of a perturbed fractional order differential equation with Caputo’s derivative
that differs in initial position and initial time with respect to the unperturbed
fractional order differential equation with Caputo’s derivative has been investigated.
We present a comparison result that again gives the null solution a central role in
the comparison fractional order differential equation when establishing initial time
difference boundedness criteria and Lagrange stability of the perturbed fractional
order differential equation with respect to the unperturbed fractional order
differential equation in Caputo’s sense.
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1 Introduction
The concept of noninteger-order derivative, popularly known as fractional derivative,

goes back to the 17th century [1,2]. It is only a few decades ago, it was realized that

the derivatives of arbitrary order provide an excellent framework for modeling the

real-world problems in a variety of disciplines from physics, chemistry, biology and

engineering such as viscoelasticity and damping, diffusion and wave propagation, elec-

tromagnetism, chaos and fractals, heat transfer, electronics, signal processing, robotics,

system identification, traffic systems, genetic algorithms, percolation, modeling and

identification, telecommunications, irreversibility, control systems as well as economy,

and finance [1,3-5].

There has been a surge in the study of the theory of fractional order differential sys-

tems, but it is still in the initial stages. We have investigated the boundedness and

Lagrange stability of perturbed solution with respect to unperturbed solution with ITD

of the nonlinear differential equations of fractional order. The differential operators are
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taken in the Caputo’s sense, we have the relations among the Caputo, Riemann-

Liouville and Grünwald-Letnikov fractional derivatives, and the initial conditions are

specified according to Caputo’s suggestion [6], thus allowing for interpretation in a

physically meaningful way [4,5,7].

The concept of a Lyapunov function has been employed with great success in a wide

variety of investigations to understand qualitative and quantitative properties of dynamic

systems for many years. Lyapunov’ s direct method is a standard technique used in the

study of the qualitative behavior of differential systems along with a comparison result

[4,8-11] that allows the prediction of behavior of a differential system when the behavior

of the null solution of a comparison system is known. The application of Lyapunov’s

direct method in boundedness theory [4,9,10,12,13] has the advantage of not requiring

knowledge of solutions. However, there has been difficulty with this approach when try-

ing to apply it to unperturbed fractional differential systems [14,15] and associated per-

turbed fractional differential systems with an ITD. The difficulty arises because there is a

significant difference between ITD boundedness and Lagrange stability [2,12-20] and the

classical notion of boundedness and Lagrange stability for fractional order differential

systems [4,7]. The classical notions of boundedness and Lagrange stability [5,7-10,21]

are with respect to the null solution, but ITD boundedness and Lagrange stability

[2,12-20] are with respect to the unperturbed fractional order differential system where

the perturbed fractional order differential system and the unperturbed fractional order

differential system differ both in initial position and in initial time [2,12-20].

In this work, we have dissipated this complexity and have a new comparison result that

again gives the null solution a central role in the comparison fractional order differential

system. This result creates many paths for continuing research by direct application and

generalization [15,19,20,22].

In Section 2, we present basic definitions, fundamental lemmas and necessary rudi-

mentary material. In Section 3, we have a comparison result in which the stability

properties of the null solution of the comparison system imply the corresponding

(ITD) boundedness and Lagrange stability properties of the perturbed fractional order

differential system with respect to the unperturbed fractional order differential system.

In Section 4, we have an example as an application how to apply the main results of

main theorems, and in Section 5, we give a conclusion.

2 Preliminaries
In this section, we give relation among the fractional order derivatives, Caputo, Reim-

ann-Liouville and Grünwald-Letnikov fractional order derivatives, necessary definition

of initial value problems of fractional order differential equations with these sense and

a comparison result for Lyapunov-like functions.

2.1 Fractional order derivatives: Caputo, Reimann-Liouville and Grünwald-Letnikov

Caputo’s and Reimann-Liouville’s definition of fractional derivatives, namely,

cDqx =
1

�(1 − q)

t∫
τ0

(t − s)−qx′(s)ds, τ0 ≤ t ≤ T (2:1:1)
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Dqx =
1

�(p)

⎛
⎝ d
dt

t∫
τ0

(t − s)p−1x(s)ds

⎞
⎠ , τ0 ≤ t ≤ T (2:1:2)

respectively order of 0 <q < 1, and p + q = 1 where Γ denotes the Gamma function.

Fractional derivatives and integrals play an important role in the development of the-

ory of fractional dynamic systems [4,7,11]. Using of half-order derivatives and integrals

leads to a formulation of certain real-world problems in different areas [1,6]. Fractional

derivatives and integrals are also useful in pure mathematics and in applications out-

side mathematics include such otherwise unrelated topics as: transmission line theory,

chemical analysis of aqueous solutions, design of heat-flux meters, rheology of soils,

growth of intergranular grooves at metal surfaces, quantum mechanical calculations

and dissemination of atmospheric pollutants.

The main advantage of Caputo’ s approach is that the initial conditions for fractional

order differential equations with Caputo derivative take on the same form as that of

ordinary differential equations with integer derivatives another difference is that the

Caputo derivative for a constant C is zero, while the Riemann-Liouville fractional deri-

vative for a constant C is not zero but equals to DqC =
C(t − τ0)

−q

�(1 − q)
. By using (2.1.1)

and therefore,

cDqx(t) = Dq[x(t) − x(τ0)] (2:1:3)

and

cDqx(t) = Dqx(t) − x(τ0)
�(1 − q)

(t − τ0)−q. (2:1:4)

In particular, if x(τ 0) = 0, then we obtain

cDqx(t) = Dqx(t). (2:1:5)

Hence, we can see that Caputo’ s derivative is defined for functions for which Rie-

mann-Liouville fractional order derivative exists.

Let us write that Grünwald-Letnikov’ s notion of fractional order derivative in a con-

venient form

Dq
0x(t) = lim

h→0
nh=t−τ0

1
hq

[x(t) − S(x, h, r, q)] (2:1:6)

where S(x, h, r, q) =
n∑
r=1

(−1)r+1
(
q
r

)
x(t − rh) If we know that x(t) is continuous and

dx(t)
dt

exist and integrable, then Riemann-Liouville and Grünwald-Letnikov fractional

order derivatives are connected by the relation

Dq
0x(t) = Dqx(t) =

x(τ0)(t − τ0)
−q

�(1 − q)
+

t∫
τ0

(t − s)−q

�(1 − q)
d
ds
x(s)ds. (2:1:7)

By using (2.1.3) implies that we have the relations among the Caputo, Riemann-Liou-

ville and Grünwald-Letnikov fractional derivatives
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cDqx(t) = Dq[x(t) − x(τ0)] = Dq
0[x(t) − x(τ0)] =

1
�(1 − q)

t∫
τ0

(t − s)−q dx(s)
ds

ds. (2:1:8)

The foregoing equivalent expressions are very useful in the study of qualitative prop-

erties of solutions of fractional order differential equations.

2.2 Fractional order differential equations with Caputo’s derivative

The main advantage of Caputo’ s approach to fractional derivative is that the initial

values and the notion of solution parallel the IVP of differential equations, where the

derivative is of order one, that is the usual derivative. Since no known physical inter-

pretation of initial conditions in Riemann-Liouville’ s sense [4,7,11] was available, it

was felt the solutions obtained are practically useless. Under natural conditions on x(t)

as q ® n, the Caputo’ s derivative becomes the conventional nth derivative of x(t) for

n - 1 <q <n.

Consider the initial value problems of the fractional order differential equations with

Caputo derivative

cDqx = f (t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+ (2:2:1)

cDqx = f (t, x), x(τ0) = y0 for t ≥ τ0, τ0 ∈ R+ (2:2:2)

and the perturbed system of initial value problem of the fractional order differential

equation with Caputo’s derivative of (2.2.2)

cDqy = F(t, y), y(τ0) = y0 for t ≥ τ0 (2:2:3)

cDqw = H(t,w),w(τ0) = y0 − x0 for t ≥ τ0 (2:2:4)

where f, F, H Î C[[t0, τ0 + T] × ℝn,ℝn]; satisfy a local Lipschitz condition on the set

ℝ+ × Sr, Sr = [x Î ℝn: ||x|| <r < ∞] and f(t, 0) = 0 for t ≥ 0. In particular, F(t, y) = f(t,

y)+ R(t, y), we have a special case of (2.2.3) and R(t, y) is said to be perturbation term.

We will only give the basic existence and uniqueness result with the Lipschitz condi-

tion by using contraction mapping theorem and a weighted norm with Mittag-Leffler

function in [4].

Theorem 2.2.1: Assume that

(i) f Î C[R,ℝn] and bounded by M on R where R = [(t, x) : t0 ≤ t ≤ t0 + T, ||x - x0|| ≤

b];

(ii) ||f(t, x) - f(t, y) || ≤ L ||x - y||, L > 0, (t, x) Î R where the inequalities are

componentwise.

Then there exist a unique solution x(t) = x(t, t0, x0) on [t0, t0 + a] for the initial

value problem of the fractional order differential equation with Caputo’s derivative of

(2.2.1) where α = min

⎡
⎢⎣T,

(
b�(q + 1)

M

)1
q

⎤
⎥⎦.

Proof of Theorem 2.3.1, please see in [4].

Corollary 2.2.1: Let 0 <q < 1, and f : (t0, t0 + T] × Sr ® ℝ be a function such that f

(t, x) Î L(t0, t0 + T) for any x Î.Sr. If x(t) Î L(t0, t0 + T), then x(t) satisfies a.e. the

initial value problems of the fractional order differential equations with Caputo’s
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derivative (2.2.5) if, and only if, x(t) satisfies a.e. the Volterra fractional order integral

equation (2.2.6).

Proof of Corollary 2.2.1, please see in [7].

We assume that we have sufficient conditions to the existence and uniqueness of

solutions through (t0, x0) and (τ0, y0). If f Î C[[t0, t0 + T] × ℝn,ℝn] and x(t) Î Cq[[t0,

T], ℝ] is the solution of

cDqx = f (t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+ (2:2:5)

where cDqx is the Caputo fractional order derivative of x as in (2.1.1), then it also

satisfies the Volterra fractional order integral equation

x(t) = x0 +
1

�(q)

t∫
t0

(t − s)q−1f (s, x(s))ds, t0 ≤ t ≤ t0 + T (2:2:6)

and that every solution of (2.2.6) is also a solution of (2.2.5), for detail please see [7].

2.3 ITD boundedness and Lagrange stability, fundamental Lemmata and Lyapunov-like

function

Before we establish our comparison theorem and boundedness criteria and Lagrange

stability for initial time difference, we need to introduce the following definitions of

ITD boundedness and Lagrange stability and Lyapunov-like functions.

Definition 2.3.1: The solution y(t, τ0, y0) of the initial value problems of fractional

order differential equation with Caputo’ s derivative of (2.2.3) through (τ0, y0) is said to

be initial time difference equi-bounded with respect to the solution

x̃(t, τ0, x0) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of the initial value pro-

blems of fractional order differential equation with Caputo’ s derivative of (2.2.1) for t

≥ τ0, τ0 Î ℝ+ and h = τ0 - t0 if and only if for any a > 0 there exist positive functions

b = b(τ0, a) and g = g(τ0, a) that is continuous in τ0 for each a such that

||y0 − x0|| ≤ α and |τ0 − t0| ≤ γ implies||y(t, τ0, y0)− x(t−η, t0, x0)|| < β for t ≥ τ0. (2:3:1)

If b and g are independent of τ0, then the solution y(t, τ0, y0) of the initial value pro-

blems of fractional order differential equation with Caputo’s derivative of (2.2.3) is

initial time difference uniformly equi-bounded with respect to the solution x(t - h, t0,
x0).

Definition 2.3.2: The solution y(t, τ0, y0) of the initial value problems of fractional

order differential equation with Caputo’ s derivative of (2.2.3) through (τ0, y0) is said to

be initial time difference quasi-equi-asymptotically stable (equi-attractive in the large)

with respect to the solution x̃(t, τ0, x0) = x(t − η, t0, x0) for t ≥ τ0, τ0 Î ℝ+ if for each �

> 0 and each a > 0 there exist a positive function g = g(τ0, a) and T = T(τ0, �, a) > 0 a

number such that

||y0−x0|| ≤ α and|τ0−τ0| ≤ γ implies||y(t, τ0, y0)−x(t−η, t0, x0)|| < ε for t ≥ τ0+T. (2:3:2)

If T and g are independent of τ0, then the solution y(t, τ0, y0) of the initial value pro-

blems of fractional order differential equation with Caputo’s derivative of (2.2.3) is

initial time difference uniformly quasi-equi-asymptotically stable with respect to the

solution x(t - h, t0, x0). If the Definition 2.3.1 and the Definition 2.3.2 hold together,

then we have initial time difference Lagrange stability.
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Definition 2.3.3: A function j(r) is said to belong to the class K if j Î C[(0,r),ℝ+],

j(0) = 0, and j(r) is strictly monotone increasing in r. It is said to belong to class K∞
if r = ∞ and j (r) ® ∞ as r ® ∞.

Definition 2.3.4: For any Lyapunov-like function V(t, x) Î C[ℝ+ × ℝn, ℝ+] we define

the fractional order Dini-derivatives in Caputo’s sense cDq
+V(t, x) and cDq

−V(t, x) as fol-
lows

cDq
+V(t, x) = lim

h→0+
sup

1
hq

[V(t, x) − V(t − h, x − hqf (t, x))] (2:3:3)

cDq
−V(t, x) = lim

h→0−
inf

1
hq

[V(t, x) − V(t − h, x − hqf (t, x))] (2:3:4)

for (t, x) Î ℝ+ × ℝn.

Definition 2.3.5: For a real-valued function V(t, x) Î C[ℝ+ × ℝn, ℝ+] we define the

generalized fractional order derivatives (Dini-like derivatives) in Caputo’s sense
c
∗D

q
+V(t, y − x̃) and c

∗D
q
−V(t, y − x̃) as follows

c
∗D

q
+V(t, y − x̃ = lim

h→0+
sup

1
hq

[V(t, y − x̃) − V(t − h, y − x̃ − hq(F(t, y) − f̃ (t, x̃)))] (2:3:5)

c
∗D

q
−V(t, y − x̃ = lim

h→0−
inf

1
hq

[V(t, y − x̃) − V(t − h, y − x̃ − hq(F(t, y) − f̃ (t, x̃)))] (2:3:6)

for (t, x) Î ℝ+ × ℝn.

Lemma 2.3.1: (see [14]) Let f, F Î C[[t0, T] × ℝn, ℝn], and let

G(t, r) = max
x̃,y∈B̄(x0;r)

||F(t, y) − f̃ (t, x̃)|| (2:3:7)

where G(t, r) Î C[ℝ+ × ℝ+, ℝ+] and B̄ is closed ball with center at x0 and radius r.

Assume that r*(t, τ0, || y0 - x0 ||) is the maximal solution of initial value problem of

fractional order differential equation with Caputo’ s derivative d cDqu = G(t, u),u(τ0)

=|| y0 - x0 || through (τ0, || y0 - x0 ||). x̃(t, τ0, x0) = x(t − η, t0, x0) and y(t, τ0, y0) is the

solution of fractional order differential equation (2.2.3) with Caputo’ s derivatives.

Then

||y(t, τ0, y0) − x(t − η, t0, x0)|| ≤ r∗(t, τ0, ||y0 − x0||) for t ≥ τ0.

Lemma 2.3.2: (see [14]) Let V(t, z) Î C[ℝ+ × ℝn, ℝ+] and V(t, z) be locally Lipschit-

zian in z. Assume that the generalized fractional order derivatives (Dini-like deriva-

tives) in Caputo’s sense

c
∗D

q
+V(t, y − x̃) = lim

h→0+
sup

1
hq

[V(t, y − x̃) − V(t − h, y − x̃ − hq(F(t, y) − f̄ (t, x̃)))] (2:3:8)

satisfies c
∗D

q
+V(t, y − x̃) ≤ G(t,V(t, y − x̃)) with (t, x̃), (t, y) ∈ R+ × Rn, where G(t, u) Î

C[ℝ+ × ℝ+, ℝ]. Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional order dif-

ferential equation cDqu = G(t, u),u(τ0) = u0 ≥ 0, for t ≥ t0. If x̃(t) = x(t − η, t0, x0) and y

(t) = y(t, τ0, y0) is any solution of (2.2.3) for t ≥ τ0 such that V(τ0, y0 - x0) ≤ u0 then

V(t, y(t) − x̃(t)) ≤ r(t) for t ≥ τ0.
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3 Initial time difference fractional comparison results
In this section, we have an other comparison result in which the boundedness and

Lagrange stability properties of the null solution of the comparison system imply the

corresponding initial time difference boundedness and Lagrange stability properties of

the perturbed fractional order differential system in Caputo’ s sense with respect to the

unperturbed fractional order differential system in Caputo’ s sense.

3.1 ITD boundedness criteria and Lagrange stability

Theorem 3.1.1: Assume that

(i) Let V(t, z) Î C[ℝ+ × ℝn, ℝ+] be locally Lipschitzian in z and the fractional order

Dini derivatives in Caputo’ s sense cDq
+V(t, y(t) − x̃(t))

cDq
+V(t, y(t)−x̃(t)) ≤ lim

h→0+
sup

1
hq

[V(t, y(t)−x̃(t))−V(t−h, (y−x̃)−hq(F(t, y)−f̃ (t, x̃)))]

satisfies c
∗D

q
+V(t, y − x̃) ≤ G(t,V(t, y − x̃)) for (t, x̃), (t, y) ∈ R+ × Rn, (t, y) Î ℝ+ × ℝn,

where G(t, u) Î C[ℝ+ × ℝ+, ℝ] and the generalized fractional order (Dini-like) deriva-

tives in Caputo’s sense c
∗D

q
+V(t, x);

(ii) Let V(t, x) be positive definite such that

b(||x||) ≤ V(t, x) with (t, x) ∈ R+ × Rn (3:1:1)

and b ∈ K, b(u) → ∞ as u ® ∞ on the interval 0 ≤ u < ∞;

(iii) Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional order differential

equation with Caputo’s derivative

cDqu = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ τ0. (3:1:2)

Then the boundedness properties of the null solution of the fractional order differen-

tial system with Caputo’s derivative (3.1.2) with G(t, 0) = 0 imply the corresponding

initial time difference boundedness properties of y(t, τ0, y0) any solution of fractional

order differential system with Caputo’s derivative (2.2.3) with respect to

x̃(t, τ0, x0) = x(t − η, t0, x0) where x(t, t0, x0) is any solution of fractional order differen-

tial system with Caputo’s derivative of (2.2.1).

Proof: Let a > 0 and τ0 Î ℝ+ be given, and let || y0 - x0 || <a and |τ0 - t0| ≤ g for g
(τ0, a) > 0. In view of the hypotheses on V(t, x), there exists a number a1 = a1(τ0, a) >
0 satisfying the inequalities

||y0 − x0|| ≤ α and |τ0 − t0| ≤ γ ,V(τ0, y0 − x0) ≤ α1

together. Assume that comparison system (3.1.2) is equi-bounded. Then, given a1 ≥

0 and τ0 Î ℝ+ there exist a b1 = b1(τ0, a) that is continues in τ0 for each a such that

r(t, τ0, u0) < β1 provided u0 ≤ α1. (3:1:3)

Moreover, b(u) ® ∞ as u ® ∞, we can choose a L = L(τ0, a) verifying the relation

b(L) ≥ β1(τ0,α). (3:1:4)

Now let u0 = V(τ0, y0 - x0). Then assumption (i) and Lemma 2.3.2 show that

V(t, y(t, τ0, y0) − x(t − η, t0, x0)) ≤ r(t, τ0, u0) for t ≥ τ0 (3:1:5)
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where r(t, τ0, u0) is the maximal solution of comparison equation (3.1.2). Suppose, if

possible, that there is a solution of system (2.2.4) w(t, τ0, w0) = y(t, τ0, y0) - x(t - h, t0,
x0) for t ≥ τ0 with || y0 - x0 || <a having the property that, for some t1 >τ0,

t1 > τ0, ||y(t, τ0, y0) − x̃(t, τ0, x0|| = L. Then because of relations (3.1.1), (3.1.3), (3.1.4)

and (3.1.5), there results oddity

b(L) ≤ V(t1, y(t1, y(t1, τ0, y0) − x(t1, τ0, x0)) ≤ r(t1, τ0, u0) < β1(τ0,α) ≤ b(L)

then

||y(t, τ0, y0) − x̃(t, τ0, x0)|| < L(τ0,α) provided ||y0 − x0|| ≤ α.

These complete the proof.

Theorem 3.1.2: Let the assumption of Theorem 3.1.1 holds. Then the quasi-equi-

asymptotically stability properties of the null solution of the fractional order differential

system with Caputo’s derivative (3.1.2) with G(t,0) = 0 imply the corresponding initial

time difference quasi-equi-asymptotically stability properties of y(t, τ0, y0) any solution

of fractional order differential system with Caputo’s derivative (2.2.3) with respect to

x̃(t, τ0, x0) = x(t − η, t0, x0) where x(t, t0, x0) is any solution of fractional order differen-

tial system with Caputo’s derivative of (2.2.1).

Proof: We want to prove the theorem by considering Definition 2.3.2.

Let � > 0, a ≥ 0 and τ0 Î ℝ+ be given and let || y0-x0 || ≤ a and |τ0 - t0| ≤ g for g(τ0,
a) > 0. As in the proof of the Theorem 3.1.1, there exists a a1 = a1(τ0, a) satisfying

||y0 − x0|| ≤ α and|τ0 − t0| ≤ γ ,V(τ0, y0 − x0) ≤ α1

simultaneously. Since for comparison system (3.1.2) is quasi-equi-asymptotically

stable. Then, given a1 ≥ 0, b(�) and τ0 Î ℝ+ there exist a T = T(τ0, a, �) such that

u0 ≤ α1 implies r(t, τ0, u0) < b(ε) for t ≥ τ0 + T. (3:1:6)

Choose u0 = V(τ0, y0 - x0). Then assumption (i) and Lemma 2.3.2 show that

V(t, y(t, τ0, y0) − x(t − η, t0, x0)) ≤ r(t, τ0, u0), t ≥ τ0 (3:1:7)

If possible, let there exist a sequence {tk},

tk ≥ τ0 + T, tk → ∞ as k → ∞
such that, for some solution of system (2.2.4) w(t, τ0, w0) = y(t, τ0, y0) - x(t - h, t0, x0)

for t ≥ τ0 with || y0 - x0 ||≤ a we have

||y(t, τ0, y0) − x̃(t, τ0, x0)|| ≥ ε

This implies, in view of the inequalities (3.1.1), (3.1.6) and (3.1.7)

b(ε) ≤ V(tk, y(tk, τ0, y0) − x(tk, τ0, x0)) ≤ r(tk, τ0, u0) < b(ε)

which proves

||y(t, τ0, y0) − x̃(t, τ0, x0)|| < ε provided||y0 − x0|| ≤ α for t ≥ τ0 + T(τ0, ε,α).

Therefore, these complete the proof.

Theorem 3.1.3: Let the assumption of Theorem 3.1.1 holds as

(i) Let V(t, z) Î C[ℝ+ × ℝn, ℝ+] be locally Lipschitzian in z and the fractional order

Dini derivatives in Caputo’ s sense cDq
+V(t, y(t) − x̃(t))
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cDq
+V(t, y(t)−x̃(t)) ≤ lim

h→0+
sup

1
hq

[V(t, y(t)−x̃(t))−V(t−h, (y−x̃)−hq(F(t, y)−f̃ (t, x̃)))]

satisfies c
∗D

q
+V(t, y − x̃) ≤ G(t,V(t, y − x̃)) for (t, x̃), (t, y) ∈ R+ × Rn, (t, y) Î ℝ+ × ℝn,

where G(t, u) Î C[ℝ+ × ℝ+, ℝ] and the generalized fractional order (Dini-like) deriva-

tives in Caputo’s sense c
∗D

q
+V(t, x);

(ii) Let V(t, x) be positive definite such that

b(||x||) ≤ V(t, x) with (t, x) ∈ R+ × Rn

and b ∈ K, b(u) → ∞ as u ® ∞ on the interval [0, ∞);

(iii) Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional order differential

equation with Caputo’s derivative

cDqu = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ τ0.

Then the boundedness and Lagrange stability properties of the null solution of the

fractional order differential system with Caputo’ s derivative (3.1.2) with G(t, 0) = 0

imply the corresponding initial time difference boundedness and Lagrange stability

properties of y(t, τ0, y0) any solution of fractional order differential system with Capu-

to’s derivative (2.2.3) with respect to x̃(t, τ0, x0) = x(t − η, t0, x0) where x(t, t0, x0) is any

solution of fractional order differential system with Caputo’s derivative of (2.2.1).

Proof: We know that equi-Lagrange stability requires the equi-boundedness and

quasi-equi-asymptotically stability. We proved in Theorem 3.1.1 and Theorem 3.1.2,

respectively. Then the proof of Theorem 3.1.3 is complete.

3.2 ITD uniformly boundedness criteria and Lagrange stability

Theorem 3.2.1: Assume that the assumptions of Theorem 3.1.1 hold. In addition to

hypotheses of Theorem 3.1.1, let V(t, x) verify the inequality

V(t, x) ≤ a(||x||) with (t, x) ∈ R+ × Rn (3:2:1)

where a ∈ K on the interval [0, ∞).

Then, if fractional order comparison system (3.1.2) is uniformly bounded, the solu-

tion y(t, τ0, y0) of (2.2.3) through (τ0, y0) is initial time difference uniformly bounded

for t ≥ τ0 Î ℝ+ with respect to the solution x(t - h, t0, x0) through (t0, x0) where x(t, t0,

x0) is the solution of (2.2.1) through (t0, x0).

Proof: Let a ≥ 0 and τ0 Î ℝ+ be given, and let || y0 - x0 || ≤ a, |τ0 - t0| ≤ g for g(a) >
0. In view of the hypotheses on V(t, x), there exists a number a1 = a(a) satisfying the

inequalities

||y0 − x0|| ≤ α, V(τ0, y0 − x0) ≤ α1 = a(α)

together. Assume that fractional order comparison system (3.1.2) is uniformly equi-

bounded. Then, given a1 ≥ 0 and τ0 Î ℝ+ there exist a b1 = b1(a) such that

r(t, τ0, u0) < β1 provided u0 ≤ α1(β1 and α1 are independent of τ0). (3:2:2)

Moreover, b(u) ® ∞ as u ® ∞, we can choose a L = L(a) verifying the relation

b(L) ≥ β1(α) (3:2:3)
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Now let u0 = V(τ0, y0 - x0). Then assumption (i) and Lemma 2.3.2 show that

V(t, y(t, τ0, y0) − x(t − η, t0, x0)) ≤ r(t, τ0, u0), t ≥ τ0

where r(t, τ0, u0) is the maximal solution of comparison equation (3.1.2). Suppose, if

possible, that there is a solution of system (2.2.4) w(t, τ0, w0) = y(t, τ0, y0) - x(t - h, t0,
x0) for t ≥ τ0 with || y0 - x0 || ≤ a having the property that, for some t1 >τ0,

||y(t1, τ0, y0) − x̃(t1, τ0, x0)|| = L

where L is independent of τ0. Then because of relations (3.1.1), (3.1.5), (3.2.2) and

(3.2.3), there results contradiction

b(L) ≤ V(t1, y(t1, τ0, y0) − x̃(t1, τ0, x0)) ≤ r(t1, τ0, u0) < β1(α) ≤ b(L).

Therefore,

||y(t, τ0, y0)−x̃(t, τ0, x0)|| < L(α) provided
∥∥y0 − x0

∥∥ ≤ α and |τ0−t0| ≤ γ for γ (α) > 0 and t ≥ τ0.

These completes the proof.

Theorem 3.2.2: Assume that the assumptions of Theorem 3.2.1 holds. Then, if frac-

tional order comparison system (3.1.2) is uniformly quasi-equi-asymptotically stable,

the solution y(t, τ0, y0) of (2.2.3) through (τ0, y0) is initial time difference uniformly

quasi-equi-asymptotically stable for t ≥ τ0 Î ℝ+ with respect to the solution x(t - h, t0,
x0) through (t0, x0) where x(t, t0, x0) is the solution of (2.2.1) through (t0, x0).

Proof: We want to prove the theorem by considering Definition 2.3.2 as independent

of τ0. Let � > 0, a ≥ 0 and τ0 Î ℝ+ be given. and let || y0 - x0 || ≤ a and |τ0 - t0| ≤ g for
g(a) > 0.

As in the preceding proof, there exists a a1 = a(a) satisfying

||y0 − x0|| ≤ α, V(τ0, y0 − x0) ≤ α1

simultaneously. Since for comparison system (3.1.2) is uniformly quasi- equi-asymp-

totically stable. Then, given a1 ≥ 0, b(�) > 0 and τ0 Î ℝ+ there exist a T = T(a, �) such
that

u0 ≤ α1 implies r(t, τ0, u0) < b(∈) for t ≥ τ0 + T. (3:2:4)

Choose u0 = V(τ0, y0 - x0). Then assumption (i) and Lemma 2.3.2 show that

V(t, y(t, τ0, y0) − x(t − η, t0, x0)) ≤ r(t, τ0, u0), t ≥ τ0

If possible, let there exist a sequence {tk},

tk ≥ τ0 + T, tk → ∞ as k → ∞
such that, for some solution of system (2.2.4) w(t, τ0, w0) = y(t, τ0, y0) - x(t - h, t0, x0)

for t ≥ τ0 with || y0 - x0 || ≤ a we have

||y(t, τ0, y0) − x̃(t, τ0, x0)|| ≥ ε

This implies, in view of the inequalities (3.1.1), (3.1.5) and (3.2.4), we obtain

b(ε) ≤ V(tk, y(tk, τ0, y0) − x(tk, τ0, x0)) ≤ r(tk, τ0, u0) < b(ε)
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which proves

||y(t, τ0, y0)−x̃(t, τ0, x0)|| < ε provided ||y0−x0|| ≤ α and |τ0−t0| ≤ γ for γ (α) > 0 and t ≥ τ0+T(ε,

Therefore, these complete the proof.

Theorem 3.2.3: Assume that

(i) Let V(t, z) Î C[ℝ+ × ℝn, ℝ+] be locally Lipschitzian in z and the fractional order

Dini derivatives in Caputo’s sense cDq
+V(t, y(t) − x̃(t))

cDq
+V(t, y(t)−x̃(t)) ≤ lim

h→0+
sup

1
hq

[V(t, y(t)−x̃(t))−V(t−h, (y−x̃)−hq(F(t, y)−f̃ (t, x̃)))]

satisfies c
∗D

q
+V(t, y − x̃) ≤ G(t,V(t, y − x̃)) for (t, x̃), (t, y) ∈ R+ × Rn, where G(t, u) Î

C[ℝ+ × ℝ+, ℝ] and the generalized fractional order (Dini-like) derivatives in Caputo’s

sense c
∗D

q
+V(t, x);

(ii) Let V(t, x) be positive definite such that

b(||x||) ≤ V(t, x) ≤ a(||x||) with (t, x) ∈ R+ × Rn (3:2:5)

and a, b ∈ K, b(u) → ∞ as u ® ∞ on the interval 0 ≤ u < ∞;

(iii) Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional order differential

equation

with Caputo’s derivative

cDqu = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ τ0.

Then the uniform-Lagrange stability properties of the null solution of the fractional

order differential system with Caputo’s derivative (3.1.2) with G(t, 0) = 0 imply the cor-

responding initial time difference uniform-Lagrange stability properties of y(t, τ0, y0)

any solution of fractional order differential system with Caputo’s derivative (2.2.3) with

respect to x̃(t, τ0, x0) = x(t − η, t0, x0) where x(t, t0, x0) is any solution of fractional

order differential system with Caputo’s derivative of (2.2.1).

Proof: By using the Theorem 3.2.1 and the Theorem 3.2.2, we have that the uniform

bounded-ness and uniformly quasi-equi-asymptotically stability properties of compari-

son system (3.1.2) imply the corresponding uniform boundedness and uniformly quasi-

equi-asymptotically stability properties of y(t, τ0, y0) of perturbed differential system of

(2.2.3) that differs in initial position and initial time with respect to the solution x(t -

h, t0, x0), where x(t, t0, x0) is any solution of the unperturbed differential system of

(2.2.1). These completes the proof.

4 An example
Example 4.1: Let us consider the unperturbed nonlinear fractional order vector differ-

ential system with the order q in Caputo’s sense for t ≥ τ0, τ0 Î ℝ as follows

cDqx̃ =
[
cDqx̃1
cDqx̃2

]
=

[−x̃1 + 2x̃2y2 + 2y1
y2 + y1y2 + x̃1x̃2

]
= f̃ (t, x̃, y), t ∈ R (4:1a)

[
x̃1(τ0)
x̃2(τ0)

]
=

[
x̃01
x̃02

]
= x̃ for t ≥ τ0, τ0 ∈ R where

[
x̃1(τ0)
x̃2(τ0)

]
=

[
x̃1(τ0, τ0, x0)
x̃2(τ0, τ0, x0)

]
(4:1b)

and its perturbed nonlinear fractional order vector differential system of (4.1 (a))

with the order q in Caputo’s sense for t ≥ τ0, τ0 Î ℝ as follows
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cDqy =
[
cDqy1
cDqy2

]
=

[
y1 + y22 + x̃22

x̃2 + y1x̃2 + x̃1y2

]
= F(t, x̃, y), t ∈ R (4:2a)

[
y1(τ0)
y2(τ0)

]
=

[
y01
y02

]
= y0 for t ≥ τ0 where

[
y1(τ0)
y2(τ0)

]
=

[
y1(τ0, τ0, x0)
y2(τ0, τ0, x0)

]
(4:2b)

where the perturbation term R(t, x̃, y) of (4.2 (a)) is

R(t, x̃, y) =
[

x̃1 − y1 + y22 + x̃22 − 2x̃2y2
x̃2 − y2 + y1x̃2 + x̃1y2 − y1y2 − x̃1x̃2

]
for t ≥ τ0.

Let us choose the Lyapunov function as V(t, y − x̃) = ||y − x̃|| = |y1 − x̃1| + |y2 − x̃2|
and y − x̃ ≥ 0 where ||y − x̃|| is the norm defined by standard metric in

componentwise.

Let a, b Î K be defined by

a(||y − x̃||) = 2||y − x̃||, b(||y − x̃||) = 1
2

||y − x̃||

so that we have

b(||y − x̃||) ≤ V(t, y − x̃) ≤ a(||y − x̃||).

Thus, V is positive definite and decrescent. The Dini-like derivative of V(t, y − x̃) by

substituting in for cDqx̃1,cDqx̃2,
cDqy1 and

cDqy2 yields

c
∗D

q
+V(t, y − x̃) = lim

h→0+
sup

1
hq

[V(t, y − x̃) − V(t − h, y − x̃ − hq(F(t, x̃, y) − f̃ (t, x̃, y))))]

=cDqy1(t)+cDqy2(t) − [cDqx̃1(t)+cDqx̃2(t)
]

= y1 + y22 + x̃22 + x̃2 + y1x̃2 + x̃1y2 + x̃1 − 2x̃2y2 − 2y1 − y2 − y1y2 − x̃1x̃2
= − [(

y2 − x̃2
) [
y1 − x̃1 + x̃2 − y2 + 1

]
+

(
y1 − x̃1

)]
≤ −α

[∣∣y1 − x̃1
∣∣ + ∣∣y2 − x̃2

∣∣] where α > 0 depends on the order q.
c
∗D

q
+V(t, y − x̃) ≤ −αV(t, y − x̃).

And we have

c
∗D

q
+V(t, y − x̃) ≤ −αV(t, y − x̃).

We apply Theorem 3.2.3 with the comparison system

cDqu = −αu, u(τ0) =
∥∥y0 − x̃0

∥∥ ≥ 0

for t ≥ τ0, τ0 Î ℝ.

Hence, the Lagrange stability properties of the comparison equation in u imply that

the corresponding initial time difference Lagrange stability properties of the y(t, τ0, y0)

of the system (4.2) with respect to the solution x̃(t, τ0, x0) of the system (4.1) for t ≥ τ0,

τ0 Î ℝ.

Remark 4.2: Let q be the integer order 1 and the systems (4.1 (a)) and (4.2 (a))

become the nonlinear vector differential systems for t ≥ τ0 ≥ 0 on ℝ

x̃′ =
[
x̃′
1
x̃′
2

]
=

[−x̃1 + 2x̃2y2 + 2y1
y2 + y1y2 + x̃1x̃2

]
, t ∈ R (4:3)
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and its perturbed system

y′ =
[
y′1
y′2

]
=

[
y1 + y22 + x̃22

x̃2 + y1x̃2 + x̃1y2

]
, t ∈ R. (4:4)

If we choose V(t, y − x̃) =
∥∥y − x̃

∥∥2 =
〈
y − x̃, y − x̃

〉
=

(
y1 − x̃1

)2
+

(
y2 − x̃2

)2, then

D+
∗V(t, y − x̃) is negative definite as in Example 4.1 we omit the details. Hence, if all

the hypotheses of the Theorem 3.2.3 for q = 1 have been satisfied, then the solution y

(t, τ0, y0) of (4.4) is initial time difference Lagrange stable with respect to the solution

x̃(t, τ0, x0) of (4.3) for t ≥ τ0, τ0 Î ℝ since we have

D+
∗V(t, y − x̃) ≤ −2V(t, y − x̃).

We apply Theorem 3.2.3 with the comparison system

u′ = −2u, u(τ0) =
∥∥y0 − x̃0

∥∥ ≥ 0

for t ≥ τ0.

Remark 4.3: Boundedness criteria and Lagrange stability of the solution y(t, τ0, y0) of

the system (2.3) are initial time differences with respect to the solution x(t -h, t0, x0)
where x(t, t0, x0) is the solution of (2.1) for t ≥ τ0 ≥ 0,.τ0 Î ℝ is inherently dependent

on the order to be chosen.

5 Conclusion
Lyapunov’ s second method is a standard technique used in the study of the qualitative

behavior of fractional order differential systems with Caputo derivatives along with a

comparison results that allows the prediction of behavior of a differential system when

the behavior of the null solution of a comparison system is known. The application of

Lyapunov’ s second method in boundedness theory has the advantage of not requiring

knowledge of solutions; however, there has been difficulty with this approach when try-

ing to apply it to unperturbed fractional order differential systems and associated per-

turbed fractional order differential systems with an initial time difference.

The difficulty arises because there is a significant difference between initial time dif-

ference boundedness and Lagrange stability and the classical notion of boundedness

and Lagrange stability for fractional order differential systems. The classical notions of

boundedness and Lagrange stability are with respect to the null solution, but initial

time difference boundedness and Lagrange stability are with respect to the unper-

turbed fractional order differential system where the perturbed fractional order differ-

ential system and the unperturbed fractional order differential system differ in initial

conditions.

Therefore, in this work, we have dispersed this intricacy and a new comparison

result that again gives the null solution a central role in the comparison fractional

order differential system. The direct application and generalization of this result in

qualitative method have created many paths for continuing research in this direction.
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