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Abstract

Some new existence theorems for homoclinic solutions are obtained for a class of
second-order discrete p-Laplacian systems by critical point theory, a homoclinic orbit
is obtained as a limit of 2kT-periodic solutions of a certain sequence of the second-
order difference systems. A completely new and effective way is provided for dealing
with the existence of solutions for discrete p-Laplacian systems, which is different
from the previous study and generalize the results.
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1. Introduction
In this article, we shall be concerned with the existence of homoclinic orbits for the

second-order discrete p-Laplacian systems:

�(ϕp(�u(n − 1))) = ∇F(n, u(n)) + f (n), n ∈ Z, u ∈ RN, (1:1)

where p > 1, �p(s) = |s|p-2s is the Laplacian operator, Δu(n) = u(n + 1) - u(n) is the

forward difference operator, F : ℤ × ℝN ® ℝ is a continuous function in the second

variable and satisfies F(n + T, u) = F(n, u) for a given positive integer T. As usual, N,

ℤ and ℝ denote the set of all natural numbers, integers and real numbers, respectively.

For a, b Î ℤ, denote ℤ(a) = {a, a + 1,...}, ℤ(a, b) = {a, a + 1,... b} when a ≤ b.

Differential equations occur widely in numerous settings and forms both in mathe-

matics itself and in its application to statistics, computing, electrical circuit analysis,

biology and other fields, so it is worthwhile to explore this topic. As is known to us,

the development of the study of periodic solution and their connecting orbits of differ-

ential equations is relatively rapid. Many excellent results were obtained by variational

methods [1-11]. It is well-known that homoclinic orbits play an important role in ana-

lyzing the chaos of dynamical systems. If a system has the transversely intersected

homoclinic orbits, then it must be chaotic. If it has the smoothly connected homoclinic

orbits, then it cannot stand the perturbation, its perturbed system probably produce

chaotic phenomenon.

On the other hand, we know that a differential equation model is often derived from

a difference equation, and numerical solutions of a differential equation have to be

obtained by discretizing the differential equation, therefore, the study of periodic solu-

tion and connecting orbits of difference equation is meaningful [12-24].
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It is clear that system (1.1) is a discretization of the following second differential sys-

tem

d
dt

(|u̇(t)|p−2u̇(t)) = ∇F(t, u(t)) + f (t), t ∈ R, u ∈ RN. (1:2)

Recently, the following second order self-adjoint difference equation

�[p(n)�u(n − 1)] + q(n)u(n) = f (n, u(n)), n ∈ Z, u ∈ R (1:3)

has been studied by using variational method. Yu and Guo established the existence

of a periodic solution for Equation (1.3) by applying the critical point theory in [15].

Ma and Guo [20] obtained homoclinic orbits as the limit of the subharmonics for

Equation (1.3) by applying the Mountain Pass theorem relying on Ekelands variational

principle and the diagonal method, their results are based on scalar equation with q(t)

≠ 0, if q(t) = 0, the traditional ways in [20] are inapplicable to our case.

Some special cases of (1.1) have been studied by many researchers via variational

methods [15-17,22,23]. However, to our best knowledge, results on homoclinic solu-

tions for system (1.1) have not been studied. Motivated by [9,10,20], the main purpose

of this article is to give some sufficient conditions for the existence of homoclinic solu-

tions to system (1.1).

Our main results are the following theorems.

Theorem 1.1 Assume that F and f satisfy the following conditions:

(H1) F(n, x) is T-periodic with respect to n,T > 0 and continuously differentiable in x;

(H2) There are constants b1 > 0 and ν > 1 such that for all (n, x) Î ℤ × ℝN,

F(n, x) ≥ F(n, 0) + b1|x|ν ;

(H3) f ≠ 0 is a bounded function such that
∑

n∈Z |f (n)|ν/(ν−1) < ∞ .

Then, system (1.1) possesses a homoclinic solution.

Theorem 1.2 Assume that F and f satisfy the following conditions:

(H4) F(n, x) = K(n, x) - W(n, x), where K, W is T-periodic with respect to n,T > 0, K

(n, x) and W (n, x) are continuously differentiable in x;

(H5) There is a constant μ >p such that for every n Î ℤ, u Î ℝN\{0},

0 < μW(n, x) ≤ (∇W(n, x), x);

(H6) ∇W(n,x) = o(|x|), as |x| ® 0 uniformly with respect to n;

(H7) There exist constants b2 > 0 and g Î (1, p] such that for all (n, u) Î ℤ × ℝN,

K(n, 0) = 0, K(n, x) ≥ b2|x|γ ;

(H8) There is a constant � ∈ [p,μ) such that

(x,∇K(n, x)) ≤ �K(n, x), ∀(n, x) ∈ [0,T] × RN;

(H9) f ≠ 0 is a bounded function such that

∑
n∈Z

|f (n)|q <

(
min

{
δp−1

p
, b2δγ−1 − M1δ

μ−1

})q

Cp
,
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where
1
p
+
1
q
= 1 and

M1 = sup{W(n, x)|n ∈ [0,T], x ∈ RN, |x| = 1},

C is given in (3.4) and δ Î (0,1] such that

b2δ
γ−1 − M1δ

μ−1 = max
x∈[0,1]

(
b2x

γ−1 − M1x
μ−1) .

Then, system (1.1) possesses a nontrivial homoclinic solution.

Remark Obviously, condition (H9) holds naturally when f = 0. Moreover, if b2(g - 1)

≤ M (μ - 1), then

δ =
[
b2(γ − 1)
M(μ − 1)

]1/(μ−γ )

,

and so condition (H9) can be rewritten as

∑
n∈Z

|f (n)|q <

(
min

{
1
p

[
b2(γ − 1)
M(μ − 1)

](p−1)/(μ−γ )

,
b2(μ − γ )

μ − 1

[
b2(γ − 1)
M(μ − 1)

](γ−1)/(μ−γ )
})q

Cp
,

if b2(g - 1) >M(μ - 1), then δ = 1 and b2δ
(g - 1) - Mδ(μ - 1) = b2 - M, and so condition

(H9) can be rewritten as∑
n∈Z

|f (n)|q < C−p(min{p−1, b2 − M})q. (1:4)

2. Preliminaries
In this section, we recall some basic facts which will be used in the proofs of our main

results. In order to apply the critical point theory, we make a variational structure.

Let S be the vector space of all real sequences of the form

u = {u(n)}n∈Z = (. . . , u(−n), u(−n + 1), . . . , u(−1), u(0), u(1), . . . , u(n), . . .),

namely

S = {u = {u(n)} : u(n) ∈ RN, n ∈ Z}.

For each k Î N, let Ek denote the Banach space of 2kT-periodic functions on ℤ with

values in ℝN under the norm

||u||Ek :=
⎡
⎣ kT−1∑

n=−kT

(|�u(n − 1)|p + |u(n)|p)
⎤
⎦

1/p

.

In order to receive a homoclinic solution of (1.1), we consider a sequence of systems:

�(ϕp(�u(n − 1))) + ∇F(n, u(n)) = fk(n), n ∈ Z, u ∈ RN, (2:1)

where fk : ℤ ® ℝN is a 2kT-periodic extension of restriction of f to the interval [-kT,

kT -1], k Î N. Similar to [20], we will prove the existence of one homoclinic solution

of (1.1) as the limit of the 2kT-periodic solutions of (2.1).

He and Chen Advances in Difference Equations 2011, 2011:57
http://www.advancesindifferenceequations.com/content/2011/1/57

Page 3 of 16



For each k Î N, let lp2kT(Z,R
N) denote the Banach space of 2kT-periodic functions

on ℤ with values in ℝN under the norm

||u||lp2kT =

⎛
⎝ ∑

n∈N[−kT, kT−1]

|u(n)|p
⎞
⎠
1
p
, u ∈ lp2kT .

Moreover, l∞2kT denote the space of all bounded real functions on the interval N[-kT,

kT - 1] endowed with the norm

||u||l∞2kT = max
n∈N[−kT, kT−1]

{|u(n)|}, u ∈ l∞2kT .

Let

Ik(u) =
kT−1∑
n=−kT

[
1
p
|�u(n − 1)|p + F(n, u(n)) + (fk(n), u(n))

]
. (2:2)

Then Ik Î C1(Ek,ℝ) and it is easy to check that

I′k(u)v =
kT−1∑
n=−kT

[(|�u(n − 1)|p−2�u(n − 1),�v(n − 1)) + (∇F(n, u(n)), v(n)) + (fk(n), vk(n))].

Furthermore, the critical points of Ik in Ek are classical 2kT-periodic solutions of

(2.1).

That is, the functional Ik is just the variational framework of (2.1).

In order to prove Theorem 1.2, we need the following preparations.

Let hk : Ek ® [0, +∞) be such that

ηk(u) =

⎛
⎝ kT−1∑

n=−kT

[|�u(n − 1)|p + pK(n, u)]

⎞
⎠
1
p
. (2:3)

Then it follows from (2.2), (2.3), (H4) and (H8) that

Ik(u) =
1
p
η
p
k(u) +

kT−1∑
n=−kT

[−W(n, u(n)) + (fk(n), u(n))], (2:4)

and

I′k(u)u ≤
kT−1∑
n=−kT

[|�u(n − 1)|p + �K(n, u(n))] −
kT−1∑
n=−kT

(∇W(n, u(n)), u(n)) +
kT−1∑
n=−kT

(fk(n), u(n)) (2:5)

We will obtain the critical points of I by using the Mountain Pass Theorem. Since

the minimax characterisation provides the critical value, it is important for what fol-

lows. Therefore, we state these theorems precisely.

Lemma 2.1 [7]Let E be a real Banach space and I Î C1(E,ℝ) satisfy (PS)-condition.

Suppose that I satisfies the following conditions:

(i) I(0) = 0;

(ii) There exist constants r, a > 0 such that I|∂Bp(0) ≥ α ;
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(iii) There exists e ∈ E\B̄ρ(0)such that I(e) < 0.

Then I possesses a critical value c ≥ a given by

c = inf
g∈�

max
s∈[0,1]

I(g(s)),

where Br(0) is an open ball in E of radius r centered at 0, and

� = {g ∈ C([0, 1],E} : g(0) = 0, g(1) = e}.

Lemma 2.2 [4]Let E be a Banach space, I : E ® ℝ a functional bounded from below

and differentiable on E. If I satisfies the (PS)-condition then I has a minimum on E.

Lemma 2.3 [3]For every n Î ℤ, the following inequalities hold:

W(n, u) ≤ W
(
n,

u
|u|

)
|u|μ, if 0 < |u| ≤ 1, (2:6)

W(n, u) ≥ W
(
n,

u
|u|

)
|u|μ, ifquad|u| ≥ 1. (2:7)

Lemma 2.4 Set m := inf{W(n, u) : n Î [0,T], |u| = 1}. Then for every ζ Î ℝ\{0}, u Î
Ek\{0}, we have

kT−1∑
n=−kT

W(n, ζu(n)) ≥ m|ζ |μ
kT−1∑
n=−kT

|u(n)|μ − 2kTm. (2:8)

Proof Fix ζ Î ℝ\{0} and u Î Ek\{0}.

Set

Ak = {n ∈ [−kT, kT − 1] : |ζu(n)| ≤ 1}, Bk = {n ∈ [−kT, kT − 1] : |ζu(n)| ≥ 1}.

From (2.7), we have

kT∑
n=−kT

W(n, ζu(n)) ≥
∑
n∈Bk

W(n, ζu(n)) ≥
∑
n∈Bk

W
(
n,

ζu(n)
|ζu(n)|

)
|ζu(n)|μ

≥ m
∑
n∈Bk

|ζu(n)|μ

≥ m
kT−1∑
n=−kT

|ζu(n)|μ − m
∑
n∈Ak

|ζu(n)|μ

≥ m|ζ |μ
kT−1∑
n=−kT

|u(n)|μ − 2kTm.

3. Existence of subharmonic solutions
In this section, we prove the existence of subharmonic solutions. In order to establish

the condition of existence of subharmonic solutions for (2.1), first, we will prove the

following lemmas, based on which we can get results of Theorem 1.1 and Theorem

1.2.

Lemma 3.1 Let a, b Î ℤ, a, b ≥ 0 and u Î Ek. Then for every n,t Î ℤ, the following

inequality holds:
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|u(n)| ≤ (a + b + 1)−1/ν

(
n+b∑

t=n−a

|u(t)|ν
)1/ν

+
max{a + 1, b}
(a + b + 1)1/p

(
n+b∑

t=n−a

|�u(t − 1)|p
)1/p

. (3:1)

Proof Fix n Î ℤ, for every τ Î ℤ,

|u(n)| ≤ |u(τ )| +
∣∣∣∣∣

n∑
t=τ+1

�u(t − 1)

∣∣∣∣∣ , (3:2)

then by (3.2) and Höder inequality, we obtain

(a + b + 1)|u(n)| ≤
n+b∑

τ=n−a

|u(τ )| +
n+b∑

τ=n−a

n∑
t=τ+1

|�u(t − 1)|

≤
n+b∑

τ=n−a

|u(τ )| +
n∑

τ=n−a

n∑
t=n=a+1

|�u(t − 1)| +
n+b∑

τ=n+1

n+b∑
t=n+1

|�u(t − 1)|

≤ (a + b + 1)(ν−1)/ν

(
n+b∑

t=n−a

|u(t)|ν
)1/ν

+ max{a + 1, b}
n+b∑

t=n−a

|�u(t − 1)|

≤ (a + b + 1)(ν−1)/ν

(
n+b∑

t=n−a

|u(t)|ν
)1/ν

+ max{a + 1, b}
n+b∑

t=n−a

(a + b + 1)(p−1)/p

(
n+b∑

t=n−a

|�u(t − 1)|p
)1/p

,

which implies that (3.1) holds. The proof is complete.

Corollary 3.1 Let u Î Ek. Then for every n Î ℤ, the following inequality holds:

||u(n)||l∞2kT ≤ T−1/ν

⎛
⎝ kT−1∑

n=−kT

|u(n)|ν
⎞
⎠

1/ν

+ T(p−1)/p

⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p
⎞
⎠

1/p

, (3:3)

Proof For n Î [-kT, kT - 1], we can choose n* Î [-kT, kT - 1] such that u(n*) =

maxnÎ[-kT, kT-1] |u(n)|. Let a Î [0,T) and b = T - a - 1 such that -kT ≤ n* - a ≤ n* ≤ n*

+ b ≤ kT - 1. Then by (3.1), we have

|u(n∗)| ≤ T−1/ν

(
n∗+b∑

n=n∗−a

|u(n)|ν
)1/ν

+ T(p−1)/p

(
n∗+b∑

n=n∗−a

|�u(n − 1)|pds
)1/p

≤ T−1/ν

⎛
⎝ kT−1∑

n=−kT

|u(n)|ν
⎞
⎠

1/ν

+ T(p−1)/p

⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p
⎞
⎠

1/p

,

which implies that (3.3) holds. The proof is complete.

Corollary 3.2 Let u Î Ek. Then for every n Î ℤ, the following inequality holds:

||u(n)||l∞2kT ≤ 2max{T(p−1)/p,T−1}||u||Ek =̇C||u||Ek . (3:4)

Proof Let ν = p in (3.3), we have

||u(n)||pl∞2kT ≤ 2p

⎛
⎝T−1

kT−1∑
n=−kT

|u(n)|p + Tp−1
kT−1∑
n=−kT

|�u(n − 1)|p
⎞
⎠

≤ 2pmax{Tp−1,T−p}
⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p + |u(n)|p
⎞
⎠

= 2pmax{Tp−1,T−p}||u||pEk ,
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which implies that (3.4) holds. The proof is complete.

For the sake of convenience, set � = min
{

δp−1

p
, b2δγ−1 − M1δ

μ−1
}
. By (H9), we have

∑
n∈Z

|f (n)|q <
�q

Cp
, (3:5)

where C is given in (3.4).

Here and subsequently,

N(k0)=̇{k : k ∈ N, k ≥ k0}.

Lemma 3.2 Assume that F and f satisfy (H1)-(H3). Then for every k Î N, system (2.1)

possesses a 2kT-periodic solution uk Î Ek such that

1
p

kT−1∑
n=−kT

|�uk(n − 1)|p + b1
kT−1∑
n=−kT

|uk|ν ≤ M

⎛
⎝ kT−1∑

n=−kT

|uk|ν
⎞
⎠

1/ν

, (3:6)

where

M =

(∑
n∈Z

|f (n)|ν/(ν−1)

)(ν−1)/ν

. (3:7)

Proof Set C0 =
∑T

n=0
F(n, 0) . By (H2), (H3), (2.2), and the Höder inequality, we have

Ik(u) =
kT−1∑
n=−kT

[
1
p
|�u(n − 1)|p + F(n, u(n)) + (fk(n), u(n))

]

≥
kT−1∑
n=−kT

[
1
p
|�u(n − 1)|p + F(n, 0) + b1|u(n)|ν + (fk(n), u(n))

]

=
1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b1
kT−1∑
n=−kT

|u(n)|ν +
kT−1∑
n=−kT

(fk(n), u(n)) + 2kC0

≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b1
kT−1∑
n=−kT

|u(n)|ν

−
⎛
⎝ kT−1∑

n=−kT

|fk(n)ν/(ν−1)

⎞
⎠

⎛
⎝ kT−1∑

n=−kT

|u(n)|ν
⎞
⎠

1/ν

+ 2kC0

≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b1
kT−1∑
n=−kT

|u(n)|ν

− M

⎛
⎝ kT−1∑

n=−kT

|u(n)|ν
⎞
⎠

1/ν

+ 2kC0.

(3:8)

For any x Î [0, +∞), we have

b1
2
xν − Mx ≥ −b1

2
(ν − 1)

(
2M
b1μ

)ν/(ν−1)

:= −D.
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It follows from (3.8) that

Ik(u) ≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b1
2

kT−1∑
n=−kT

|u(n)|ν − D + 2kC0.

Consequently, Ik is a functional bounded from below.

Set

ū =
1

2kT

kT−1∑
n=−kT

u(n), and ũ(n) = u(n) = ū.

Then by Sobolev’s inequality, we have

||ũ||l∞2kT ≤ C1||�u(n − 1)||lp2kT , and ||ũ||lp2kT ≤ C2||�u(n − 1)||lp2kT . (3:9)

In view of (3.9), it is easy to verify, for each k Î N, that the following conditions are

equivalent:

(i) ||u||Ek → ∞;

(ii) |ū|p +∑kT−1
n=−kT |�u(n − 1)|p → ∞;

(iii)
∑kT−1

n=−kT
|�u(n − 1)|p + b1

2

∑kT−1

n=−kT
|u(n)|ν → ∞.

Hence, from (3.8), we obtain

Ik(u) → +∞ as ||u||Ek → ∞.

Then, it is easy to verify that Ik satisfies (PS)-condition. Now by Lemma 2.2, we con-

clude that for every k Î N there exists uk Î Ek such that

Ik(uk) = inf
u∈Ek

Ik(u).

Since

Ik(0) =
kT−1∑
n=−kT

F(n, 0) = 2kC0,

we have Ik(uk) ≤ 2kC0. It follows from (3.8) that

1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b1
kT−1∑
n=−kT

|uk|ν ≤ M

⎛
⎝ kT−1∑

n=−kT

|uk(n)|p
⎞
⎠

1/p

.

This shows that (3.6) holds. The proof is complete.

Lemma 3.3 Assume that all conditions of Theorem 1.2 are satisfied. Then for every k

Î N (k0), the system (2.1) possesses a 2kT-periodic solution uk Î Ek.

Proof In our case it is clear that Ik(0) = 0. First, we show that Ik satisfies the (PS)

condition. Assume that {uj}jÎN in Ek is a sequence such that {Ik(uj)}jÎN is bounded and

I′k(uj) → 0, j → +∞ . Then there exists a constant Ck > 0 such that

|Ik(uj)| ≤ Ck, ||I′k(uj)||k∗ ≤ Ck (3:10)
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for every j Î N. We first prove that {uj}jÎN is bounded. By (2.3) and (H5), we have

η
p
k(uj) ≤ pIk(uj) +

p
μ

kT−1∑
t=−kT

(∇W(n, uj(n)), uj(n)) − p
kT−1∑
n=−kT

(fk(n), u(n)), (3:11)

From (2.5), (3.5), (3.10) and (3.11), we have

(
1 − �

μ

)
η
p
k(uj) ≤ pIk(uj) − p

μ
I′k(uj)uj −

(
p − p

μ

) kT−1∑
n=−kT

(fk(n), u(n))

≤ pCk +

⎡
⎢⎣ p

μ

∥∥I′k(uj)∥∥k∗ +
(
p − p

μ

)⎛
⎝ kT−1∑

n=−kT

∣∣fk(n)∣∣q
⎞
⎠

1/q
⎤
⎥⎦∥∥uj∥∥Ek

≤ pCk +
[
pCk

μ
+
p(μ − 1)�
Cp−1μ

]∥∥uj∥∥
Ek

= pCk +Dk
∥∥uj∥∥Ek , k ∈ N(k0),

(3:12)

where

Dk =
pCk

μ
+
p(μ − 1)�
Cp−1μ

.

Without loss of generality, we can assume that ||uj||Ek �= 0 . Then from (2.3), (3.3),

and (H7), we obtain for j Î N,

η
p
k(uj) =

⎛
⎝ kT−1∑

n=−kT

[|�uj(n − 1)|p + pK(n, uj)]

⎞
⎠

≥
⎛
⎝ kT−1∑

n=−kT

[|�uj(n − 1)|p + pb2|uj(n)|γ ]
⎞
⎠

≥
⎛
⎝ kT−1∑

n=−kT

⎡
⎣|�uj(n − 1)|p + pb2(C||uj(n)||Ek)γ−p

kT−1∑
n=−kT

|uj(n)|p
⎤
⎦
⎞
⎠

≥ min{1, pb2(C||uj(n)||Ek)γ−p}
⎛
⎝ kT−1∑

n=−kT

|�uj(n − 1)|p +
kT−1∑
t=−kT

|uj(n)|p
⎞
⎠

= min{1, pb2(C||uj(n)||Ek)γ−p}||uj||pEk
= min{||uj||pEk , pb2Cγ−p||uj(n)||γEk }

(3:13)

Combining (3.12) with (3.13), we have

min
{
‖ uj ‖pEk , pb2Cγ−p ‖ uj(n) ‖γ

Ek

}
≤ μ

μ − �
(pCk +Dk ‖ uj‖Ek) (3:14)

It follows from (3.14) that {uj}jÎN is bounded in Ek, it is easy to prove that {uj}jÎN has

a convergent subsequence in Ek. Hence, Ik satisfies the Palais-Smale condition.

We now show that there exist constants r, a > 0 independent of k such that Ik satis-

fies assumption (ii) of Lemma 2.1 with these constants. If ‖ u‖Ek = δ/C := |ρ , then it

follows from (3.4) that |u(n)| ≤ δ ≤ 1 for n Î [-kT, kT - 1] and k Î N(k0). By Lemma

2.3 and (H9), we have
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kT−1∑
n=−kT

W(n, u(n)) =
∑

n∈[−kT,kT−1]|u(n) �=0
W(n, u(n))

≤
∑

n∈[−kT,kT−1]|u(n) �=0
W

(
n,

u(n)∣∣u(n)∣∣
) ∣∣u(n)∣∣μ

≤ M1

kT−1∑
n=−kT

∣∣u(n)∣∣μ

≤ M1δ
μ−γ

kT−1∑
n=−kT

∣∣u(n)∣∣γ , k ∈ N(k0),

(3:15)

and

kT−1∑
n=−kT

|u(n)|p ≤ δp−γ

kT−1∑
n=−kT

|u(n)|γ , k ∈ N(k0). (3:16)

Set

α =
δ

C

[
1

Cp−1
min

{
δp−1

p
, b2δγ−1 − M1δ

μ−1
}

−
∑
n∈Z

|f (n)|q
]
. (3:17)

Hence, from (2.1), (3.4) and (3.15)-(3.17), we have

Ik(u) =
kT−1∑
n=−kT

[
1
p
|�u(n − 1)|p + K(n, u(n)) − W(n, u(n)) + (fk(n), u(n))

]

≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + b2
kT−1∑
n=−kT

|u(n)|γ −
kT−1∑
n=−kT

W(n, u(n))+
kT−1∑
n=−kT

(fk(n), u(n))

≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + (b2 − M1δ
μ−γ )

kT−1∑
n=−kT

|u(n)|γ

−
⎛
⎝ kT−1∑

n=−kT

|fk(n)|q
⎞
⎠

1/q⎛
⎝ kT−1∑

n=−kT

|u(n)|p
⎞
⎠

1/p

≥ 1
p

kT−1∑
n=−kT

|�u(n − 1)|p + (b2 − M1δ
μ−γ )

kT−1∑
n=−kT

|u(n)|γ

−
(∑
n∈Z

|fk(n)|q
)1/q

⎛
⎝ kT−1∑

n=−kT

|u(n)|p
⎞
⎠

1/p

≥ min
{
1
p
, b2δγ−p − M1δ

μ−p
}⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p+
kT−1∑
n=−kT

|u(n)|p
⎞
⎠

−
(∑
n∈Z

|fk(n)|q
)1/q

⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p+
kT−1∑
n=−kT

|u(n)|p
⎞
⎠

1/p

= min
{
1
p
, b2δγ−p − M1δ

μ−p
}

‖ u ‖pEk − ‖ u‖Ek
(∑
n∈Z

|fk(n)|q
)1/q

=
δ

C

⎡
⎣ 1
Cp−1

min
{

δp−1

p
, b2δγ−1 − M1δ

μ−1
}

−
(∑
n∈Z

|fk(n)|q
)1/q

⎤
⎦

= α, k ∈ N(k0).

(3:18)

(3.18) shows that ‖ u‖Ek = ρ implies that Ik(u) ≥ a for k Î N(k0).
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Finally, it remains to show that Ik satisfies assumption (iii) of Lemma 2.1. Set

a1 = max{K(n, x)|n ∈ [0,T], x ∈ RN, |x| = 1},

and

a2 = max{K(n, x)|n ∈ [0,T], x ∈ RN, |x| ≤ 1},

Then by (H8) and 0 <a1 ≤ a2 < ∞,

K(n, x) ≤ a1|x|� + a2, for (n, x) ∈ Z × RN. (3:19)

By (2.2), (3.19) and Lemma 2.4, we have for every ζ Î ℝ \ {0} and u Î Ek\ {0}

Ik(ζu) =
kT−1∑
n=−kT

[
1
p
|�u(n − 1)|p + K(n, ζu(n)) − W(n, ζu(n)) + ζ (fk(n), u(n))

]

≤ |ζ |p
p

kT−1∑
n=−kT

|�u(n − 1)|p + a1|ζ |�
kT−1∑
n=−kT

|u(n)|� − m|ζ |μ
kT−1∑
n=−kT

|u(n)|μ

+ |ζ |
(∑
n∈Z

|fk(n)|q
)1/q

‖ u‖Ek + 2kT(m + a2), k ∈ N(k0).

(3:20)

Take Q ∈ Ek0 such that Q(± k0T) = 0 and Q ≠ 0. Since p ≤ � < μ and m > 0, (3.20)

implies that there exists ξ > 0 such that ‖ ξQ‖Ek0 > ρ and Ik0(ξQ) < 0 . Set

ek0(n) = ξQ(n) and

ek(n) =
{
ek0(n), for |n| ≤ k0T,
0, for k0T < |n| ≥ kT.

(3:21)

Then ek ∈ Ek, ‖ek‖Ek =
∥∥ek0∥∥Ek0 > ρ and Ik(ek) = Ik0(ek0) < 0 for k Î N(k0). By

Lemma 2.1, Ik possesses a critical value ck ≥ a given by

ck = inf
g∈�k

max
s∈[0,1]

Ik(g(s)), k ∈ N(k0).

where

�k = {g ∈ C([0, 1],Ek) : g(0) = 0, g(1) = ek}, k ∈ N(k0).

Hence, for k Î N(k0), there exists uk Î Ek such that

Ik(uk) = ck, and I
′
k(uk) = 0.

Then function uk is a desired classical 2kT-periodic solution of (1.1) for k Î N(k0).

Since ck > 0, uk is a nontrivial solution even if fk(n) = 0. The proof is complete.

4. Existence of homoclinic solutions
Lemma 4.1 Let uk Î Ek be the solution of system (2.1) that satisfies (3.6) for k Î N.

Then there exists a positive constant d1 independent of k such that

‖ uk‖l∞2kT ≤ d1, k ∈ N.
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Proof By (3.6), we have

b1
kT−1∑
n=−kT

|uk(n)|ν ≤ M

⎛
⎝ kT−1∑

n=−kT

|uk(n)|ν
⎞
⎠

1/ν

,

which implies that

kT−1∑
n=−kT

|uk(n)|ν ≤
(
M
b1

)ν/(ν−1)

. (4:1)

From (3.6), we obtain

kT−1∑
n=−kT

|�uk(n − 1)|p ≤ pM
(
M
b1

)1/(ν−1)

. (4:2)

It follows from (3.3), (4.1) and (4.2) that

‖ uk‖l∞2kT ≤ T−1/ν

⎛
⎝ kT−1∑

n=−kT

|u(n)|ν
⎞
⎠

1/ν

+ T(p−1)/p

⎛
⎝ kT−1∑

n=−kT

|�u(n − 1)|p
⎞
⎠

1/p

≤ T−1/ν
(
M
b1

)1/(ν−1)

+ T(p−1)/p(pM)1/p
(
M
b1

)1/p(ν−1)

:= d1.

Lemma 4.2 Let uk Î Ek be the solution of system (1.1) which satisfies Lemma 3.3 for

k Î N(k0). Then there exists a positive constant d2 independent of k such that

‖ uk‖l∞2kT ≤ d2. (4:3)

Proof For k Î N(k0), let gk : [0,1] ® Ek be a curve given by gk(s) = sek where ek is

defined by (3.21). Then gk Î Γk and Ik(gk(s)) = Ik0(gk0(s)) for all k Î N(k0) and s Î
[0,1], Therefore,

ck ≤ max
s∈[0,1]

Ik0 (gk0(s)) ≡ d0, k ∈ N(k0).

where d0 is independent of k.

As I
′
k(uk) = 0 , we get from (2.2), (2.5) and (H5)

ck = Ik(uk) − 1
�
I

′
k(uk)uk

≥
(

μ

�
− 1

) kT−1∑
n=−kT

W(n, u(n)) +
� − 1

�

kT−1∑
n=−kT

(fk(n), uk(n)),

and hence

kT−1∑
n=−kT

W(n, uk(n)) ≤ 1
μ − �

⎡
⎣�ck − (� − 1)

kT−1∑
n=−kT

(fk(n), uk(n))

⎤
⎦ .
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Combining the above with (2.4), we have

η
p
k(uk) = pIk(uk) + p

kT−1∑
n=−kT

W(n, uk(n)) − p
kT−1∑
n=−kT

(fk(n), uk(n))

≤ pμd0
μ − �

+
p(μ − 1)
μ − �

⎛
⎝ kT−1∑

n=−kT

|fk(n)|q
⎞
⎠

1/q

‖ uk‖Ek

≤ pμd0
μ − �

+
p(μ − 1)�
Cp−1(μ − �)

‖ uk‖Ek , k ∈ N(k0).

(4:4)

Since uk ≠ 0, similar to the proof of (3.13), we have

η
p
k(uk) ≥ min{‖ uk ‖pEk , pbCγ−p ‖ uk ‖γ

Ek}, k ∈ N(k0). (4:5)

From (4.4) and (4.5), we obtain

min{‖ uk ‖pEk , pbCγ−p ‖ uk ‖γ

Ek} ≤ pμd0
μ − �

+
p(μ − 1)�
Cp−1(μ − �)

‖ uk‖Ek , k ∈ N(k0).(4:6)

Since all coefficients of (4.6) are independent of k, we see that there is d2 > 0 inde-

pendent of k such that

‖ uk‖Ek ≤ d2, k ∈ N(k0), (4:7)

which, together with (3.4), implies that (4.3) holds. The proof is complete.

5. Proofs of theorems
Proof of Theorem 1.1 The proof is similar to that of [20], but for the sake of complete-

ness, we give the details.

We will show that {uk}kÎN possesses a convergent subsequence {ukm} in Eloc(ℤ,ℝ) and

a nontrivial homoclinic orbit u∞ emanating from 0 such that ukm → u∞ as km ® ∞.

Since uk = {uk(t)} is well defined on N[- kT, kT - 1] and ||uk||k ≤ d for all k Î N, we

have the following consequences.

First, let uk = {uk(t)} be well defined on N[-T,T - 1]. It is obvious that {uk} is iso-

morphic to ℝ2T. Thus, there exists a subsequence
{
u1km

}
and u1 Î E1 of {uk}kÎN\{1}

such that

‖ u1km − u1‖1 → 0.

Second, let
{
u1km

}
be restricted to N[- 2T, 2T - 1]. Clearly,

{
u1km

}
is isomorphic to

ℝ4T. Thus there exists a further subsequence
{
u2km

}
of

{
u1km

}
satisfying u2 /∈

{
u2km

}
and u2 Î E2 such that

‖ u2km − u2‖2 → 0 km → ∞.

Repeat this procedure for all k Î N. We obtain sequence{
urkm

}
⊂

{
ur−1
km

}
, up /∈

{
urkm

}
and there exists ur Î Er such that
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‖ urkm − ur‖r → 0, km → ∞, r = 1, 2, . . .

Moreover, we have

‖ ur+1 − ur‖r ≤‖ ur+1km − ur+1‖r+ ‖ ur+1km − ur‖r → 0,

which leads to

ur+1(s) = ur(s), s ∈ N[−rT, rT − 1].

So, for the sequence {ur}, we have ur ® u∞, r ® ∞, where u∞(s) = ur(s) for s Î N

[-rT, rT - 1] and r Î N. Then take a diagonal sequence {ukm} : u1k1 , u2k2 , . . . umkm , . . . ,
since {umkm} is a sequence of {urkm} for any r ≥ 1, it follows that

‖ umkm − u∞ ‖=‖ umkm − um‖m → 0, m ∈ N.

It shows that

ukm → u∞ as km → ∞, in Eloc(Z,R),

where u∞ ∈ E∞(Z,R), E∞(Z,R) =
{
u ∈ S| ‖ u‖∞ = �+∞

m=−∞(|�u(n − 1)|p + |u(n)|p) < ∞}
.

By series convergence theorem, u∞ satisfy

u∞(n) → 0, �u∞(n − 1) → 0,

and

rT−1∑
n=−rT

{[|�umkm(n − 1)|p + |umkm(n)|p] < ∞} =‖ umkm ‖,

as |n| ® ∞.

Letting n ® ∞, ∀ r ≥ 1, we have

rT−1∑
n=−rT

[
1
p
|�umkm(n − 1)|p + F(n, umkm(n)) + (fk(n), umkm(n))

]
≤ d1,

as m ≥ r, km ≥ r, where d1 is independent of k, {km} ⊂ {k} are chosen as above, we

have

kT−1∑
n=−kT

[
1
p
|�u∞(n − 1)|p + F(n, u∞(n)) + (f (n), u∞(n))

]
≤ d1.

Letting p ® ∞, by the continuity of F(t,u) and I
′
k , which leads to

I∞(u∞) =
+∞∑

n=−∞

[
1
p
|�u∞(n − 1)|p + F(n, u∞(n)) + (f (n), u∞(n))

]
≤ d1,∀u ∈ E∞,

and

I
′
∞(u∞) = 0.

Clearly, u∞ is a solution of (1.1).
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To complete the proof of Theorem 1.2, it remains to prove that u∞ �≡ 0.. By the

above argument, we obtain

�(ϕp(�u∞(n − 1))) = ∇F(n, u∞(n)) + f (n), (5:1)

By (H5) and (H7), it is easy to see that

∇F(n, 0) = −∇K(n, 0) + ∇W(n, 0) = 0

This shows that u = 0 is not a solution of (1.1) with f ≠ 0 and so u∞ ≠ 0.

6. Examples
In this section, we give some examples to illustrate our results.

Example 6.1 Consider the second order discrete p-Laplacian systems:

�(ϕp(�u(n − 1))) = ∇F(n, u(n)) + f (n), n ∈ Z, u ∈ RN, (6:1)

where

F(n, x) = sin2π

T
n + |x| + b1|x|2, f (n) = 1√|n| , ν =

4
3
.

Then it is easy to verify that all conditions of Theorem 1.1 are satisfied. By Theorem

1.1, the system (6.1) has a nontrivial homoclinic solution.

Example 6.2 Consider the second order discrete systems:

�2u(n − 1) = ∇F(n, u(n)) + f (n), n ∈ Z, u ∈ RN, (6:2)

where

p = 2, K(n, x) = |x|2 + 3|x|
5
2 , W(n, x) =

1
6

(
1 + sin

nπ
2

)
|x|4, f (n) = a

1 + |n| .

It is easy to verify that conditions (H4)-(H8) are satisfied with

γ = 2,� =
5
2
,μ = 4,T = 4 and b2 = 1.

Noting that

M = sup
{
1
6

(
1 + sin

nπ
2

)
|x|4|n ∈ {0, 1, 2, 3}, x ∈ RN, |x| = 1

}
=
1
3
.

Therefore, b2(g - 1) = M(μ - 1) = 1. Since

∑
n∈Z

|f (n)|2 = a2
∑
n∈Z

1

(1 + |n|)2 = a2
(

π2

3
− 1

)
.

so (1.4) holds, i.e., condition (H9) holds if 0 < a2 < 3
32(π2−3) . In view of Theorem

1.2, the system (6.2) possesses a nontrivial homoclinic solution.
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