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Abstract

This paper develops and exposes the strong relationships that exist between time-
domain order-distributions and the Laplace-domain logarithmic operator. The paper
presents the fundamental theory of the Laplace-domain logarithmic operator, and
related operators. It is motivated by the appearance of logarithmic operators in a
variety of fractional-order systems and order-distributions. Included is the
development of a system theory for Laplace-domain logarithmic operator systems
which includes time-domain representations, frequency domain representations,
frequency response analysis, time response analysis, and stability theory.
Approximation methods are included.
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Introduction
The area of mathematics known as fractional calculus has been studied for over 300

years [1]. Fractional-order systems, or systems described using fractional derivatives

and integrals, have been studied by many in the engineering area [2-9]. Additionally,

very readable discussions, devoted to the mathematics of the subject, are presented by

Oldham and Spanier [1], Miller and Ross [10], Oustaloup [11], and Podlubny [12]. It

should be noted that there are a growing number of physical systems whose behavior

can be compactly described using fractional-order system theory. Specific applications

are viscoelastic materials [13-16], electrochemical processes [17,18], long lines [5],

dielectric polarization [19], colored noise [20], soil mechanics [21], chaos [22], control

systems [23], and optimal control [24]. Conferences in the area are held annually, and

a particularly interesting publication containing many applications and numerical

approximations is Le Mehaute et al. [25].

The concept of an order-distribution is well documented [26-31]. Essentially, an

order-distribution is a parallel connection of fractional-order integrals and derivatives

taken to the infinitesimal limit in delta-order. Order-distributions can arise by design

and construction, or occur naturally. In Bagley [32], a thermo-rheological fluid is dis-

cussed. There it is shown that the order of the rheological fluid is roughly a linear

function of temperature. Thus a spatial temperature distribution inside the material

leads to a related spatial distribution of system orders in the rheological fluid, that is,

the position-force dynamic response will be represented by a fractional-order derivative

whose order varies with position or temperature inside the material. In Hartley and
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Lorenzo [33], it is shown that various order-distributions can lead to a variety of trans-

fer functions, many of which contain a ln(s) term, where s is the Laplace variable.

Some of these results are reproduced in the tables at the end of this paper. In Adams

et al. [34], it is shown that a conjugated-order derivative can lead directly to terms

containing ln(s). In Adams et al. [35], it is also shown that the conjugated derivative is

equivalent to the third generation CRONE control which has been applied extensively

to control a variety of systems [25].

The purpose of this paper is to provide an understanding of the ln(s) operator, the

Laplace-domain logarithmic operator, and determine what special properties are asso-

ciated with it. The motivation is the frequent occurrence of the ln(s) operator in pro-

blems whose dynamics are expressed as fractional-order systems or order-distributions.

This can be seen in Figure 1 which shows the transfer functions corresponding to sev-

eral order-distributions, taken from Hartley and Lorenzo [33]. This figure demonstrates

that the ln(s) operator appears frequently.

The next section will review the necessary results from fractional calculus and the

theory of order-distributions. It will then be shown that the Laplace-domain logarith-

mic operator arises naturally as an order distribution, thereby providing a method for

constructing a logarithmic operator either in the time or frequency domain. It is then

shown that Laplace-domain logarithmic operators can be combined to form systems of

logarithmic operators. Following this is the development of a system theory for

Laplace-domain logarithmic operator systems which includes time-domain representa-

tions, frequency domain representations, frequency response analysis, time response

analysis, and stability theory. Fractional-order approximations for logarithmic operators

are then developed using finite differences. The paper concludes with some special

order-distribution applications.
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Figure 1 High frequency continuum order-distribution realization of the Laplace-domain reciprocal
logarithmic operator.
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Order-distributions

In Hartley and Lorenzo [30,33], the theory of order-distributions has been presented. It

is based on the use of fractional-order differentiation and integration. The definition of

the uninitialized qth-order Riemann-Liouville fractional integral is

0d
−q
t x(t) ≡ 1

�(q)

t∫
0

(t − τ )q–1x(τ )dτ , q ≥ 0 (1)

The pth-order fractional derivative is defined as an integer derivative of a fractional

integral

0d
p
t x(t) ≡ 1

�(1 − p)
d
dt

t∫
0

(t − τ )−px(τ )dτ0, < p < 1 (2)

If higher derivatives are desired (p > 1), multiple integer derivatives are taken of the

appropriate fractional integral. The integer derivatives are taken as in the standard cal-

culus. In what follows, it will be important to use the Laplace transform of the frac-

tional integrals and derivatives. This Laplace transform is given in Equation 3, where it

is assumed that any initialization is zero

L0d
q
t x(t) = sqX(s)forall q (3)

By comparing the convolution operators with the Laplace transforms, a fundamen-

tally useful Laplace transform pair is

Ltq−1 =
�(q)
sq

, q > −1 (4)

Here it can be seen that an operator such as that in Equation 3, can also be written

as a Laplace-domain operator as

F(s) = sqX(s).

where for example, f(t) could be force, and x(t) could be displacement. Now if there

exists a collection of these individual fractional-order operators driven by the same

input, then their outputs can be combined

F(s) = k1sq1X(s) + k2sq2X(s) + k3sq3X(s) + k4sq4X(s) + · · · =
N∑
n=1

knsqnX(s)

where the k’s are weightings on each fractional integral. Taking the summation to a

continuum limit yields the definition of an order-distribution⎛
⎝ qmax∫

0

k(q)sqX(s)dq

⎞
⎠ =

⎛
⎝ qmax∫

0

k(q)sqdq

⎞
⎠X(s) = F(s), (5)

where qmax is an upper limit on the differential order and should be finite for the

integral to converge, and k(q) must be such that the integral is convergent. Equation 5

has the uninitialized time domain representation
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qmax∫
0

k(q)0d
q
t x(t)dq = f (t) (6)

Order-distributions can also be defined using integral operators instead of differential

operators as

X(s) =

⎛
⎝ ∞∫

0

k(q)s−qF(s)dq

⎞
⎠ =

⎛
⎝ ∞∫

0

k(q)s−qdq

⎞
⎠ F(s), (7)

The uninitialized time domain representation of Equation 7 is

∞∫
0

k(q)0d
q
t f (t)dq = x(t) (8)

As a further generalization, in Equation 5, the lower limit of integration can be

extended below zero to give⎛
⎝ qmax∫

0

k(q)sqd(s)dq

⎞
⎠X(s) = F(s) (9)

where again, k(q) must be chosen such that the integral converges. Even more gener-

ally, an order distribution can be written as⎛
⎝ b∫

a

k(q)s–qdq

⎞
⎠X(s) = −

⎛
⎝ −a∫

−b

k(−q)sqdq

⎞
⎠X(s) = F(s), a < b. (10)

The Laplace-domain logarithmic operator

The logarithmic operator can now be defined using the order-distribution concept. In

Equation 10, let k(q) be unity over the region of integration, a = 0, and b equal to infi-

nity. Then the order-distribution is

F(s) =

⎛
⎝ ∞∫

0

s−qdq

⎞
⎠X(s) = −

⎛
⎝ 0∫

−∞
sqdq

⎞
⎠X(s). (11)

Evaluating the first integral on the left gives

F(s) =
(∞∫

0
s−qdq

)
X(s) =

(∞∫
0
e−qln(s)dq

)
X(s) =

e−qln(s)

- ln(s)
X(s)

∣∣∣∣∣
∞

0

, |s| > 1,

=

[
e−∞ln(s)

- ln(s)
− e−0ln(s)

- ln(s)

]
X(s), |s| > l

.

Thus

F(s) =

⎛
⎝ ∞∫

0

s−qdq

⎞
⎠X(s) =

[
1

ln(s)

]
X(s), | s |> 1 (12)
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With the constraint that |s| > 1 for the integral to converge, it is seen that this

order-distribution is an exact representation of the Laplace domain logarithmic opera-

tor at high frequencies, ω > 1, or small time. From Equation 12, it can be seen that the

reciprocal Laplace-domain logarithmic operator can be represented by the sum of all

fractional-order integrals at high frequencies, ω > 1. This can be visualized as shown

in Figure 2.

At high frequencies, ω > 1, the time-domain operator corresponding to Equation 12

is

f (t) =

∞∫
0

t∫
0

(t − τ )q−1

�(q)
x(τ )dτdq, (13)

so that

[
1

ln(s)

]
X(s) ⇔

∞∫
0

t∫
0

(t − τ )q−1

�(q)
x(τ )dτdq.

These results are verified by the Laplace transform pair given in Roberts and Kauf-

man

1
ln(s)

⇔
∞∫
0

tq−1

�(q)
dq, (14)

which is obtained from Equation 13 by letting x(t) = δ(t), a unit impulse. It is impor-

tant to note that the time domain function on the right-hand side of Equation 14 is

known as a Volterra function, and is defined for all positive time, not just at high fre-

quencies (small time) [36].
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Figure 2 Low frequency continuum order-distribution realization of the Laplace-domain reciprocal
logarithmic operator.
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Referring back to Equation 10, again let k(q) be unity over the region of integration,

a = negative infinity, and b = 0. Then the order-distribution is

F(s) =

⎛
⎝ 0∫

−∞
s−qdq

⎞
⎠X(s) = −

⎛
⎝ +∞∫

0

sqdq

⎞
⎠X(s). (15)

Evaluating the integral on the right gives

F(s) = −
⎛
⎝ ∞∫

0

sqdq

⎞
⎠ X(s) = −

⎛
⎝ ∞∫

0

eqln(s)dq

⎞
⎠X(s) = −eqln(s)

ln(s)
X(s)

∣∣∣∣∣∣
∞

0

, |s| < 1,

= −
[
e∞ln(s)

ln(s)
− e0ln(s)

ln(s)

]
X(s), |s| < l.

Thus,

F(s) = −
⎛
⎝ ∞∫

0

sqdq

⎞
⎠X(s) =

[
1

ln(s)

]
X(s), | s |< 1. (16)

With the constraint that |s| < 1 for the integral convergence, it is seen that this

order-distribution is an exact representation of the Laplace domain logarithmic opera-

tor at low frequencies, ω < 1, or large time. From Equation 16, it can be seen that the

reciprocal Laplace-domain logarithmic operator can be represented by the sum of all

fractional-order derivatives at low frequencies (large time). This can be visualized as

shown in Figure 3.

At low frequencies, ω < 1, or large time, the integral over all the fractional deriva-

tives must be used as in Equation 16. The time-domain operator corresponding to

Equation 16 is then, with q = p - u,

f (t) =

∞∫
0

dp

dtp

t∫
0

(t − τ )u−1

�(u)
x(τ )dτdq, p = 1, 2, 3, . . . , p > q > p − 1, (17)

v

/ 2

/ 2

unstable strip corresponds to
right half s plane

upper v plane corresponds to
upper left half s plane

lower v plane corresponds to
lower left half s plane

s0s

increasing s

increasing s

Figure 3 Stable and unstable regions of the v = ln(s) plane.
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so that

[
1

ln(s)

]
X(s) ⇔

∞∫
0

dp

dtp

t∫
0

(t − τ )u−1

�(u)
x(τ )dτdq, p = 1, 2, 3, . . . , p > q > p−1, | s |< 1. (18)

Letting the input x(t) = δ(t), a unit impulse, this equation becomes

[
1

ln(s)

]
X(s) ⇔

∞∫
0

dp

dtp

(
(t)u−1

�(u)

)
dq, p = 1, 2, 3, . . . , p > q > p − 1, | s |< 1. (19)

Performing the integral yields

1
ln(s)

⇔
∞∫
0

t−q−1

�(−q)
dq. (20)

The properties of this integral require further study, although it appears to be con-

vergent for large time due to the gamma function going to infinity when q passes

through an integer and thus driving the integrand to zero there.

Higher powers of the Laplace-domain logarithmic operator

Higher powers of logarithmic operators can be generated using order distributions. In

Equation 10, rather than letting k(q) be unity over the region of integration, a = 0, and

b equal to infinity, now set k(q) = q. Then, at high frequencies, the integral becomes

F(s) =

⎛
⎝ ∞∫

0

qs−qdq

⎞
⎠X(s) =

⎛
⎝ ∞∫

0

qe−q ln(s)dq

⎞
⎠X(s).

Recognizing the rightmost term as the Laplace transform of q using ln(s) as the

Laplace variable, gives

F(s) =

⎛
⎝ ∞∫

0

qe−q ln(s)dq

⎞
⎠X(s) =

1

ln2(s)
X(s), | s |> 1,

the square of the logarithmic operator. Likewise, this process can be continued for

other polynomial terms in q, to give

F(s) =

⎛
⎝ ∞∫

0

qns−qdq

⎞
⎠X(s) =

⎛
⎝ ∞∫

0

qne−q ln(s)dq

⎞
⎠X(s) =

n!

lnn+1(s)
X(s), n = 0, 1, 2, 3, ..., | s |> 1

For non-integer values of n, this process gives

F(s) =

⎛
⎝ ∞∫

0

qns−qdq

⎞
⎠X(s) =

⎛
⎝ ∞∫

0

qne−q ln(s)dq

⎞
⎠X(s) =

�(n + 1)

lnn+1(s)
X(s), | s |> 1, (21)

Referring back to Equation 10, rather than letting k(q) be unity over the region of

integration, a = negative infinity, and b = 0, now set k(q) = q. Thus, at low frequencies,

the integral becomes
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F(s) =

⎛
⎝ 0∫

−∞
qs−qdq

⎞
⎠X(s) = −

⎛
⎝ +∞∫

0

qsqdq

⎞
⎠X(s) = −

⎛
⎝ ∞∫

0

qeqln(s)dq

⎞
⎠X(s). (22)

Recognizing the rightmost term as the Laplace transform of q using ln(s) as the

Laplace variable, gives

F(s) = −
⎛
⎝ ∞∫

0

qeqln(s)dq

⎞
⎠X(s) =

1

ln2(s)
X(s), | s |< 1,

the square of the logarithmic operator. Likewise, this process can be continued for

other polynomial terms in q, to give

F(s) = −
⎛
⎝ ∞∫

0

qnsqdq

⎞
⎠X(s) = −

⎛
⎝ ∞∫

0

qneqln(s)dq

⎞
⎠X(s) =

n!

lnn+1(s)
X(s), n = 0, 1, 2, 3, ..., | s |< 1.

For non-integer values of n, this process gives

F(s) = −
⎛
⎝ ∞∫

0

qnsqdq

⎞
⎠X(s) = −

⎛
⎝ ∞∫

0

qneqln(s)dq

⎞
⎠X(s) =

�(n + 1)

lnn+1(s)
X(s), | s |< 1, (23)

Systems of Laplace-domain logarithmic operators

Using the definitions for higher powers of logarithmic operators, it is possible to create

systems of Laplace-domain logarithmic operator equations. As an example, consider

the high frequency realization

a2

⎛
⎝ ∞∫

0

q2s–qX(s)dq

⎞
⎠ + a1

⎛
⎝ ∞∫

0

qs–qX(s)dq

⎞
⎠ + a0

⎛
⎝ ∞∫

0

s–qX(s)dq

⎞
⎠

= b2

⎛
⎝ ∞∫

0

q2s–qU(s)dq

⎞
⎠ + b1

⎛
⎝ ∞∫

0

qs–qU(s)dq

⎞
⎠ + b0

⎛
⎝ ∞∫

0

s–qU(s)dq

⎞
⎠ , | s |> 1.

Simplifying this gives

a2

(
2

ln3(s)
X(s)

)
+ a1

(
1

ln2(s)
X(s)

)
+ a0

(
1

ln(s)
X(s)

)

= b2

(
2

ln3(s)
U(s)

)
+ b1

(
1

ln2(s)
U(s)

)
+ b0

(
1

ln(s)
U(s)

)
.

or

2a2X(s) + a1 ln(s)X(s) + a0ln
2(s)X(s) = 2b2U(s) + b1 ln(s)U(s) + b0 ln

2(s)U(s).

This results in the transfer function

X(s)
U(s)

=
b0 ln

2(s) + b1 ln(s) + 2b2
a0 ln

2(s) + a1 ln(s) + 2a2
. (24)

Properties of transfer functions of this type will be the subject of the remainder of

the paper.
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Stability properties

The stability of systems composed only of Laplace-domain logarithmic operators must

be studied in the complex ln(s)-plane. Generally, to study stability of an operator in a

complex plane, which is a mapping of another complex variable, the boundary of stabi-

lity in the original complex plane must be mapped through the operator into the new

complex plane. For the ln(s) operator, let v = ln(s), thus

v = ln(s)
∣∣
s=rejθ = ln(rejθ ),

or

v = ln(r) + jθ + j2nπ ,

where n is generally all integers. Using only the primary strip, for n = 0, gives the

plot of Figure 4. The stability boundary in the s-plane is the imaginary axis, or θ = ±

π/2, and all r. Using the mapping, the positive imaginary s-axis maps into a line at v =

+jπ/2, which goes from minus infinity to plus infinity as r is varied from zero to plus

infinity. Continuing around a contour with radius infinity in the left half of the s-plane,

yields an image in the v-plane moving downward out at plus infinity. Then moving

back in the negative imaginary s-axis as r is varied from plus infinity to zero, gives a

line in the v-plane at v = -jπ/2, which goes from plus infinity to minus infinity. Closing

the contour in the s-plane by going around the origin on a semi-circle of radius zero,

gives an upward vertical line at v equal to minus infinity. As orientations are preserved

through the mapping, the stable region always lies to the left of the contour. In the v-

plane, this is the region above the top horizontal line, and below the lower horizontal
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0.8
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Figure 4 Time response associated with the example for various w.

Hartley and Lorenzo Advances in Difference Equations 2011, 2011:59
http://www.advancesindifferenceequations.com/content/2011/1/59

Page 9 of 19



line. Note that the origin of the v-plane corresponds to s = 1. Note that beyond v = ±

jπ, the image in the s-plane moves inside the branch cut on the negative real s-axis.

Time-domain responses

Equation 24 can be rewritten using v = ln(s) as

X(v)
U(v)

=
b0v2 + b1v + 2b2
a0v2 + a1v + 2a2

.

Letting b0 = 0, b1 = 1, b2 = 0, a0 = 1, a1 = 3, a2 = 1, results in

X(v)
U(v)

=
v

v2 + 3v + 2
=

v

v + 1 v + 2
.

Let u(t) be an impulse function, and write this equation as a partial fraction to give

X(v) =
−1
v + 1

+
2

v + 2
.

Now notice that the Laplace-domain logarithmic function has some interesting prop-

erties, particularly

1
ln(s) + c

=
1

ln(s) + ln(ec)
=

1
ln(s) + lna

=
1

ln(as)
=

1
ln(ecs)

.

Using the scaling law G(as) ⇔ 1
a
g
(
t
a

)
, applied to Equation 14 gives the transform

pair

1
ln(as)

⇔ 1
a

∞∫
0

(
t
a

)q−1

�(q)
dq, (25)

or letting a = ec gives

1
ln(s) + c

=
1

ln(ecs)
⇔ 1

ec

∞∫
0

(
t
ec

)q−1

�(q)
dq. (26)

Thus, the time response for this system becomes

X(s) =
−1

ln(s) + 1
+

2
ln(s) + 2

⇔ x(t) =
1
e2

∞∫
0

t/e2
q−1

�(q)
dq − 1

e

∞∫
0

t/eq–1

�(q)
dq.

For this system, the v-plane poles are at v = -1,-2, or s = ev = e-1, e-2, which implies

an unstable time response.

Now in Equation 24, letting b0 = 0, b1 = 0, b2 = 0.5, a0 = 1, a1 = 0, a2 = 2, results in

X(v)
U(v)

=
1

v2 + 4
=

1
(v + j2)(v − −j2)

.
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Let u(t) be an impulse function, and write this equation as a partial fraction to give

X(v) =
j0.25
v + j2

+
−j0.25
v − j2

or X(s) =
j0.25

ln(s) + j2
+

−j0.25
ln(s) − j2

.

Using the transform pair from Equation 26 for each term yields

x(t) = +j0.25
1
e+j2

∞∫
0

(
t

e+j2

)q−1

�(q)
dq − j0.25

1
e−j2

∞∫
0

(
t

e−j2

)q−1

�(q)
dq,

a real function of time. For this system, the v-plane poles are at v = +j2, -j2, s = ev =

ej2, e-j2, which implies a stable and damped-oscillatory time response.

This time-response can be seen in Figure 5. The time-response can also be found for

the more general transfer function

X(v) =
1

ln2(s) + w2
=

1
v2 + w2

=
1

(v + jwv + jw)
⇔

X(s) = +
j

2w
1

e+jw

∞∫
0

(
t

e+jw

)q−1

�(q)
dq − j

2w
1

e−jw

∞∫
0

(
t

e−jw

)q−1

�(q)
dq

Time-response plots for this system are also shown in Figure 5 with w = 1.6, 2.5, and

3.0 in addition to w = 2.0. Note that the initial value of these functions is infinity, and

that the response becomes unstable for w <
π

2
.
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Figure 5 Nyquist plot of the system
X(s)
U(s)

=
1

ln2(s) + 4
.
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Frequency responses of systems with Laplace-domain logarithmic operators

As shown earlier, the mapping from the s-plane to the v-plane is

v = ln(s)
∣∣
s=rejθ = ln(rejθ ) or v = ln(r) + jθ + J2nπ .

or

v = ln(r) + jθ + j2nπ .

Again staying on the primary strip, with n = 0, the frequency response can be found

to be

v = ln(s)
∣∣
s=jω=ωejπ/2 = ln(ω) + jπ/2.

For the stable and damped-oscillatory example of the last section

X(s)
U(s)

∣∣∣∣
s=jω

=
1

ln2(s) + 4

∣∣∣∣
s=jω

=
1[

ln(ω) + j
π

2

]2
+ 4

=
1

ln2(ω) − π2

4
+ jπ ln(ω) + 4

This frequency response is plotted in Figures 6 and 7, where a resonance can be seen

as expected. It is interesting to notice that the low and high frequency phase shift is

zero degrees for this system, yet there is a resonance, and a -100° phase shift through

the resonant frequency.

An approximation to the logarithm

Equation 11 provides an interesting insight to an approximation for the logarithm,

using discrete steps in q in Figure 2. Approximating the integral in Equation 11 using

a sum of rectangles gives

1
ln(s)

=

⎛
⎝ ∞∫

0

s−qdq

⎞
⎠ = lim

Q→0
Qs0+Qs−Q+Qs−2Q+Qs−3Q+··· = lim

Q→0

∞∑
n=0

Qs−nQ, —s— > 1. (27)

with Q as the step size in order. It should be noticed that the sum on the right has

the closed form representation

∞∑
n=0

Qs - nQ =
Q

1 − s - Q
, |s| > 1, (28)

This now provides a definition and an approximation, for the logarithmic operator at

high frequencies

1
ln(s)

≡ lim
Q→0

Q
1 − s−Q

= lim
Q→0

QsQ

sQ − 1
, | s |> 1, (29)

Likewise

ln(s) ≡ lim
Q→0

1 − s−Q

Q
= lim

Q→0

sQ − 1
QsQ

, | s |> 1, (30)
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Figure 7 Order-distributions for orders between 0 and 2, and their transfer functions, using(∞∫
0
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This definition can be found in Spanier and Oldham [37].

A similar discussion can be given for a low frequency approximation.

Approximating the integral in Equation 15 using a sum of rectangles gives

1
ln(s)

= −
⎛
⎝ ∞∫

0

sqdq

⎞
⎠ = − lim

Q→0
Qs0+QsQ+Qs2Q+Qs3Q+· · · = − lim

Q→0

∞∑
n=0

QsnQ, | s |< 1, (31)

with Q as the step size in order. It should be noticed that the sum on the right has

the closed form representation

−
∞∑
n=0

QsnQ = − Q
1 − sQ

=
Q

sQ − 1
, | s |< 1, (32)

This now provides a definition and an approximation, for the logarithmic operator at

low frequencies

1
ln(s)

≡ lim
Q→0

Q
sQ − 1

, | s |< 1, (33)

These approximations were found to agree at high and low frequencies as predicted

for 1/ln(s).

Laplace-domain logarithmic operator representation of ODE’s

Equation 11 can be rewritten to demonstrate that any ODE or FODE can result from

using incomplete logarithmic operators.

An incomplete Laplace-domain logarithmic operator can be defined as

F(s) =

⎛
⎝ a∫

−∞
sqdq

⎞
⎠X(s), (34)

where now the right-most integral is preferred. Evaluating the integral gives

F(s) =

⎛
⎝ a∫

−∞
sqdq

⎞
⎠X(s) =

⎛
⎝ a∫

−∞
eqln(s)dq

⎞
⎠X(s) =

eqln(s)

ln(s)
X(s)

∣∣∣∣∣
a

−∞

=

[
ealn(s)

ln(s)
− e−∞ln(s)

ln(s)

]
X(s)

=
sa

ln(s)
X(s), |s| > 1

(35)

Notice that this equation has mixed terms, containing both an s and a ln(s), a result

that is generally easy to obtain using order-distributions. A similar equation can be

found for small s by reversing the limits of integration.

A two-sided incomplete Laplace-domain logarithmic operator can also be defined as

F(s) =

⎛
⎝ a∫

b

sqdq

⎞
⎠X(s) (36)
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This expression can be evaluated as

F(s) =

⎛
⎝ a∫

b

sqdq

⎞
⎠X(s) =

⎛
⎝ a∫

b

eqln(s)dq

⎞
⎠X(s) =

eqln(s)

ln(s)
X(s)

∣∣∣∣∣
a

b

=

[
ealn(s)

ln(s)
− ebln(s)

ln(s)

]
X(s)

=
sa − sb

ln(s)
X(s).

(37)

   Transform Pairs________
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Figure 8 Transform pairs for logarithmic and related systems.
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It is interesting to observe that a rational or fractional-order transfer function can

arise from incomplete logarithmic operators. Consider

a2

⎛
⎝ q2∫

−∞
sqX(s)dq

⎞
⎠ + al

⎛
⎝ q1∫

−∞
s
q
X(s)dq

⎞
⎠ + a0

⎛
⎝ q0∫

−∞
sqX(s)dq

⎞
⎠

= b1

⎛
⎝ r1∫

−∞
sqU(s)dq

⎞
⎠ + b0

⎛
⎝ r0∫

−∞
s–qU(s)dq

⎞
⎠ , | s |> 1.

(38)

Using Equation 35, this equation reduces to

a2
sq2

ln(s)
X(s) + a1

sq1

ln(s)
X(s) + a0

sq0

ln(s)
X(s)

= b1
sr1

ln(s)
U(s) + b0

sr0

ln(s)
U(s), | s |> 1,

(39)
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t q
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s q
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Figure 9 Time-domain operations for Laplace-domain logarithmic operations.
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or equivalently

X(s)
U(s)

=
b1sr1 + b0sr0

a2sq2 + a1sq1 + a0sq0
. (40)

Thus it can be seen that in some cases, systems of order-distributions can surpris-

ingly be represented by standard fractional-order systems.

Discussion
This paper develops and exposes the strong relationships that exist between time-

domain order-distributions and the Laplace-domain logarithmic operator. This paper

has presented a theory of Laplace-domain logarithmic operators. The motivation is the

appearance of logarithmic operators in a variety of fractional-order systems and order-

distributions. A system theory for Laplace-domain logarithmic operator systems has

been developed which includes time-domain representations, frequency domain repre-

sentations, frequency response analysis, time response analysis, and stability theory.

Approximation methods are also included. Mixed systems with s and ln(s) require

further study. These considerations have provided several Laplace transform pairs that

are expected to be useful for applications in science and engineering where variations

of properties are involved. These pairs are shown in Figures 8 and 9. More research is

required to understand the behavior of systems containing both the Laplace variable, s,

and the Laplace-domain logarithmic operator, ln(s).
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