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Abstract

In this article, we discuss the existence of periodic solutions for the higher-order
difference equation

x(n + k) = g(x(n)) − f (n, x(n − τ (n)).

We show the existence of periodic solutions by using Schauder’s fixed point
theorem, and illustrate three examples.
MSC 2010: 39A10; 39A12.
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1 Introduction and main results
Let ℝ denote the set of the real numbers, ℤ the integers and N the positive integers. In

this article, we investigate the existence of periodic solutions of the following high-

order functional difference equation

x(n + k) = g(x(n)) − f (n, x(n − τ (n)), n ∈ �, (1:1)

where k Î N, τ : ℤ ® ℤ and τ (n + ω) = τ (n), f (n + ω, u) = f (n, u) for any (n, u) Î
ℤ × ℝ, ω Î N.

Difference equations have attracted the interest of many researchers in the last 20

years since they provided a natural description of several discrete models, in which the

periodic solution problem is always a important topic, and the reader can consult [1-7]

and the references therein. There are many good results about existence of periodic

solutions for first-order functional difference equations [8-12]. Only a few article have

been published on the same problem for higher-order functional difference equations.

Recently, using coincidence degree theory, Liu [13] studied the second-order nonlinear

functional difference equation

�2x(n − 1) = f (n, x(n − τ1(n)), x(n − τ2(n)), . . . , x(n − τm(n))), (1:2)

and obtain sufficient conditions for the existence of at least one periodic solution of

equation (1.2). By using fixed point theorem in a cone, Wang and Chen [14] discussed

the following higher-order functional difference equation

x(n +m + k) − ax(n +m) − bx(n + k) + abx(n) = f (n, x(n − τ (n))), (1:3)
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where a ≠ 1, b ≠ 1 are positive constants, τ : ℤ ® ℤ and τ(n+ω) = τ(n), ω, m, k Î N,

and obtained existence theorem for single and multiple positive periodic solutions of

(1.3).

Our aim of this article is to study the existence of periodic solutions for the higher-

order difference equations (1.1) using the well-known Schauder’s fixed point theorem.

Our results extend the known results in the literature.

The main results of this article are following sufficient conditions which guarantee

the existence of a periodic solution for (1.1).

Theorem 1.1. Assume that there exist constants m <M, r > 0 such that g Î C1[m, M]

with r ≤ g’(u) ≤ 1 for any u Î [m, M] and f (n, u): ℤ × [m, M] ® ℝ is continuous in u,

g(M) − M ≤ f (n, u) ≤ g(m) − m (1:4)

for any (n, u) Î ℤ × [m, M], then (1.1) has at least one ω-periodic solution x with m

≤ x ≤ M.

Theorem 1.2. Assume that there exist constants m < M such that g Î C1[m, M] with

g’(u) ≥ 1 for any u Î [m, M] and f (n, u): ℤ × [m, M] ® ℝ is continuous in u,

g(m) − m ≤ f (n, u) ≤ g(M) − M (1:5)

for any (n, u) Î ℤ × [m, M], then (1.1) has at least one ω-periodic solution x with m

≤ x ≤ M.

2 Some examples
In this section, we present three examples to illustrate our conclusions.

Example 2.1. Consider the difference equation

x(n + k) = ax(n) + q(n) 3
√
x(n − τ (n)), (2:1)

x(n + k) = bx(n) − q(n) 3
√
x(n − τ (n)), (2:2)

where k Î N, 0 < a <1, b >1, q is one ω-periodic function with q(n) >0 for all n Î
[1, ω] and τ : ℤ ® ℤ and τ (n + ω) = τ (n).

Let m >0 be sufficiently small and M >0 sufficiently large. It is easy to check that

(a − 1)M ≤ −q(n) 3
√
u ≤ (a − 1)m,

(b − 1)m ≤ q(n) 3
√
u ≤ (b − 1)M

for n Î ℤ and u Î [m.M]. By Theorem 1.1 (Theorem 1.2), Equation (2.1) (or (2.2))

has at least one positive ω-periodic solution x with m ≤ x ≤ M. When k = 1, this con-

clusion about (2.1) and (2.2) can been obtained from the results in [15]. Our result

holds for all k Î N.

Remark 1 Consider the difference equations

x(n + k) = ax(n) + q(n)f (x(n − τ (n))), (2:3)

x(n + k) = bx(n) − q(n)f (x(n − τ (n))), (2:4)

where k Î N, 0 < a <1, b >1, q is one ω-periodic function with q(n) >0 for all n Î
[1, ω], τ : ℤ ® ℤ and τ(n + ω) = τ (n) and f : (0, + ∞) ® (0, + ∞) is continuous.

The following result generalizes the conclusion of Example 2.1.
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Proposition 2.1 Assume that f0 = + ∞ and f∞, = 0, here

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

,

then (2.3) or (2.4) has at least one positive ω-periodic solution.

Proof Here, we only consider (2.3). From f0 = + ∞ and f∞ = 0, we obtain that there

exist 0 < r1 < r2 such that

f (u) ≥ 1 − a
min q(n)

u, 0 < u ≤ ρ1, f (u) ≤ 1 − a
max q(n)

u, u ≥ ρ2.

Let A = min q(n) min {f (u): r1 ≤ u ≤ r2} and B = max q(n) max{f (u): r1 ≤ u ≤ r2}.
Choosing θ Î (0, 1) such that

A
1 − a

≥ θρ1,
B

1 − a
≤ θ−1ρ2,

we obtain that

f (u) ≥ 1 − a

min q(n)
u ≥ θ(1 − a)ρ1

min q(n)
, θρ1 ≤ u ≤ ρ1,

f (u) ≤ θ−1(1 − a)ρ2

max q(n)
, ρ2 ≤ u ≤ θ−1ρ2,

A ≤ q(n)f (u) ≤ B, ∀n ∈ �,ρ1 ≤ u ≤ ρ2.

Using the above three inequalities, we have

(1 − a)θρ1 ≤ q(n)f (u) ≤ (1 − a)θ−1ρ2, ∀n ∈ �, θρ1 ≤ u ≤ θ−1ρ2.

By Theorem 1.1, Equation (2.3) has at least one positive ω-periodic solution x with θ

r1 ≤ x ≤ θ-1r2. □
Example 2.2. Consider the difference equation

x(n + k) = − 1
xα(n)

+ q(n), (2:5)

where k Î N, a >0, q is one ω-periodic function.

We claim that there is a l >0 such that (2.5) has at least two positive ω-periodic

solutions for min q(n) > l.
In fact, g(x) = - x-a. Let 0 < a < α+1

√
α be sufficiently small and b > α+1

√
α be suffi-

ciently large, then

α

bα+1
≤ g′(x) =

α

xα+1
≤ 1, for x ∈ [ α+1

√
α, b],

g′(x) =
α

xα+1
≥ 1, for x ∈ [a, α+1

√
α].

If the following conditions are fulfilled

− 1
bα

− b ≤ −q(n) ≤ − 1
α+1
√

αα
− α+1

√
α,∀n ∈ Z, (2:6)

− 1
aα

− a ≤ −q(n) ≤ − 1
α+1
√

αα
− α+1

√
α,∀n ∈ Z, (2:7)
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then (2.5) has at least one periodic solution [a, α+1
√

α] and [ α+1
√

α, b] respectively.

When min q(n) is sufficiently large, the conditions (2.6) and (2.7) are satisfied.

Example 2.3. Consider the difference equation

x(n + k) = x3(n) − 2x(n) − q(n)x2(n − τ (n)), (2:8)

where k Î N, q is one ω-periodic function with q(n) >0 for all n Î [1, ω], τ : ℤ ® ℤ

and τ (n + ω) = τ (n).

Let m = 1, M >3 + max q(n) and g(u) = u3 - 2u, f (n, u) = q(n)u2. It is easy to check

that g’(u) ≥ 1 for u Î [m, M], and

g(m) − m = −2 < f (n, u) ≤ g(M) − M = M3 − 3M, ∀n ∈ �, u ∈ [m,M].

By Theorem 1.2, Equation (2.8) has at least one positive ω-periodic solution x with

m ≤ x ≤ M.

Remark 2 Consider the difference equation

x(n + k) = g(x(n)) − q(n)f (x(n − τ (n))), (2:9)

where k Î N, q is one ω-periodic function with q(n) > 0 for all n Î [1, ω], τ : ‘ ® ‘

and τ(n + ω) = τ(n) and f : (0, +∞) ® (0, +∞) is continuous.

Proposition 2.2 Assume that there exists a > 0 such that g Î C1([a, +∞), R) with

g’(u) ≥ 1 for u >a, f(u) ≥ (g(a) - a)/min q(n) for u ≥ a. Further suppose that

lim
u→+∞

g(u) − u

f (u)
> max q(n), lim

u→+∞(g(u) − u) = +∞.

Then (2.9) has at least one positive ω-periodic solution.

Proof There exist r > 0 such that

g(u) − u ≥ f (u)max q(n), u ≥ ρ.

Let A = min q(n) min{f(u): a ≤ u ≤ r} and B = max q(n) max{f(u): a ≤ u ≤ r}. Since
limu®+∞(g(u) - u) = +∞ and g’(u) ≥ 1 for u >a, there is M >r such that g(M) - M >B and

f (u)max q(n) ≤ g(u) − u ≤ g(M) − M, ρ ≤ u ≤ M.

Thus, (2.9) has at least one ω-periodic solution x with a ≤ x ≤ M. □
3 Proof

Let X be the set of all real ω-periodic sequences. When endowed with the maximum

norm ||x|| = maxnÎ[0, ω-1] |x(n)|, X is a Banach space.

Let k Î N and 0 <c ≠ 1, and consider the equation

x(n + k) = cx(n) + γ (n), (3:1)

where g Î X. Set (k, ω) is the greatest common divisor of k and ω, h = ω/(k, ω). We

obtain that if x Î X satisfies (3.1), then

c−1x(n + k) − x(n) = c−1γ (n),

c−2x(n + 2k) − c−1x(n + k) = c−2γ (n + k),

· · · · · · · · · · · ·
c−px(n + hk) − c1−px(n + (h − 1)k) = c−pγ (n + (h − 1)k).
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By summing the above equations and using periodicity of x, we obtain the following

result.

Lemma 3.1. Assume that 0 <c ≠ 1, then (3.1) has a unique periodic solution

x(n) = (c−h − 1)−1
h∑

i=1

c−iγ (n + (i − 1)k).

The following well-known Schauder’s fixed point theorem is crucial in our

arguments.

Lemma 3.2. [16]Let X be a Banach space with D ⊂ X closed and convex. Assume

that T : D ® D is a completely continuous map, then T has a fixed point in D.

Now, we rewrite (1.1) as

x(n + k) = px(n) + [g(x(n)) − f (n, x(n − τ (n)) − px(n)], (3:2)

where p > 0 is a constant which is determined later. By Lemma 3.1, if x is a periodic

solution of (1.1), x satisfies

x(n) = (p−h − 1)−1
h∑

i=1

p−i(Hpx)(n + (i − 1)k),

where h = ω/(k, ω), the mapping Hp is defined as

(Hpx)(n) = g(x(n)) − px(n) − f (n, x(n − τ (n)), x ∈ X.

Define a mapping Tp in X by

(Tpx)(n) = (p−h − 1)−1
h∑

i=1

p−i(Hpx)(n + (i − 1)k), x ∈ X.

Clearly, the fixed point of Tp in X is a periodic solution of (1.1).

Proof of Theorem 1.1 Let p = r and Ω = {x Î X : m ≤ x(n) ≤ M for n Î ‘}, then Ω

is a closed and convex set. If r = 1, then g(u) = u on [m, M]. It is easy to check that

any constant c Î [m, M] is a periodic solution of (1.1). Set r < 1. Now we show that Tr

satisfies all conditions of Lemma 3.2. Noting that the function g(u) - ru is nondecreas-

ing in [m, M], we have for any x Î Ω,

g(m) − rm ≤ g(x(n)) − rx(n) ≤ g(M) − rM, ∀n ∈ �.

Let (1.4) be fulfilled. For any x Î Ω and n Î ℤ,

(Hrx)(n) = g(x(n)) − px(n) − f (n, x(n − τ (n)

≤ g(M) − rM − (g(M) − M)

= (1 − r)M,

(Hrx)(n) = g(x(n)) − px(n) − f (n, x(n − τ (n)

≥ g(m) − rm − (g(m) − m)

= (1 − r)m.
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Hence, for any x Î Ω and n Î ℤ,

(Trx)(n) = (r−h − 1)−1
h∑

i=1

r−i(Hpx)(n + (i − 1)k)

≤ (r−h − 1)−1
h∑

i=1

r−i(1 − r)M = M,

(Trx)(n) = (r−h − 1)−1
h∑

i=1

r−i(Hpx)(n + (i − 1)k)

≥ (r−h − 1)−1
h∑

i=1

r−i(1 − r)m = m.

Hence, Tr(Ω) ⊆ Ω.

Since X is finite-dimensional and g(u), f(n, u) are continuous in u, one easily show

that Tr is completely continuous in Ω. Therefore, Tr has a fixed point x Î Ω by

Lemma 3.2, which is a ω = periodic solution of (1.1). The proof is complete. □
Proof of Theorem 1.2 Since g Î C1[m, M], max{g’(u): m ≤ u ≤ M} exists and max

{g’(u): m ≤ u ≤ M} ≥ 1. Let p = max{g’(u): m ≤ u ≤ M}. If p = 1, then g(u) ≡ u on [m,

M]. It is easy to check that any constant c Î [m, M] is a periodic solution of (1.1).

Next, we assume that p > 1. Set Ω = {x Î X : m ≤ x(n) ≤ M for n Î ℤ}. Noting that

the function g(u) - pu is nonincreasing in [m, M], we have for any x Î Ω,

g(M) − pM ≤ g(x(n)) − px(n) ≤ g(m) − pm, ∀n ∈ �.

For any x Î Ω and n Î ℤ,

(Hpx)(n) = g(x(n)) − px(n) − f (n, x(n − τ (n)

≤ g(m) − pm − (g(m) − m)

= (1 − p)m,

(Hpx)(n) = g(x(n)) − px(n) − f (n, x(n − τ (n)

≥ g(M) − pM − (g(M) − M)

= (1 − p)M.

Hence, for any x Î Ω and n Î ℤ,

(Tpx)(n) = (p−h − 1)−1
h∑

i=1

p−i(Hpx)(n + (i − 1)k)

≥ (p−h − 1)−1
h∑

i=1

p−i(1 − p)m = m,

(Tpx)(n) = (p−h − 1)−1
h∑

i=1

p−i(Hpx)(n + (i − 1)k)

≤ (p−h − 1)−1
h∑

i=1

p−i(1 − p)M = M.

Hence, Tp(Ω) ⊆ Ω. Tp has a fixed point x Î Ω. The proof is complete. □

Zhu and Wang Advances in Difference Equations 2011, 2011:66
http://www.advancesindifferenceequations.com/content/2011/1/66

Page 6 of 7



Acknowledgements
The authors would like to thank the referee for the comments which help to improve the article. The study was
supported by the NNSF of China (10871063) and Scientific Research Fund of Hunan Provincial Education Department
(10B017).

Author details
1Hunan College of Information, Changsha, Hunan 410200, P.R. China 2Department of Mathematics, Hunan University
of Science and Technology, Xiangtan, Hunan 411201, P.R. China

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 16 September 2011 Accepted: 23 December 2011 Published: 23 December 2011

References
1. Agarwal, RP: Difference Equations and Inequalities, 2nd edn.Marcel Dekker, New York (2000)
2. Antonyuk, PN, Stanyukovic, KP: Periodic solutions of the logistic difference equation. Rep Acad Sci USSR. 313,

1033–1036 (1990)
3. Berg, L: Inclusion theorems for non-linear difference equations with applications. J Differ Equ Appl. 10, 399–408 (2004).

doi:10.1080/10236190310001625280
4. Cheng, S, Zhang, G: Positive periodic solutions of a discrete population model. Funct Differ Equ. 7, 223–230 (2000)
5. Zheng, B: Multiple periodic solutions to nonlinear discrete Hamiltonian systems. Adv Differ Equ (2007). doi: 10.1155/

2007/41830
6. Zhu, B, Yu, J: Multiple positive solutions for resonant difference equations. Math Comput Model. 49, 1928–1936 (2009).

doi:10.1016/j.mcm.2008.09.009
7. Zhang, X, Wang, D: Multiple periodic solutions for difference equations with double resonance at infinity. Adv Differ

Equ (2011). doi:10.1155/2011/806458
8. Chen, S: A note on the existence of three positive periodic solutions of functional difference equation. Georg Math J.

18, 39–52 (2011)
9. Gil’, MI, Kang, S, Zhang, G: Positive periodic solutions of abstract difference equations. Appl Math E-Notes. 4, 54–58

(2004)
10. Jiang, D, Regan, DO, Agarwal, RP: Optimal existence theory for single and multiple positive periodic solutions to

functional difference equations. Appl Math Comput. 161, 441–462 (2005). doi:10.1016/j.amc.2003.12.097
11. Padhi, S, Pati, S, Srivastava, S: Multiple positive periodic solutions for nonlinear first order functional difference

equations. Int J Dyn Syst Differ Equ. 2, 98–114 (2009)
12. Raffoul, YN, Tisdell, CC: Positive periodic solutions of functional discrete systems and population model. Adv Differ Equ.

2005, 369–380 (2005)
13. Liu, Y: Periodic solutions of second order nonlinear functional difference equations. Archivum Math. 43, 67–74 (2007)
14. Wang, W, Chen, X: Positive periodic solutions for higher order functional difference equations. Appl Math Lett. 23,

1468–1472 (2010). doi:10.1016/j.aml.2010.08.013
15. Raffoul, YN: Positive periodic solutions of nonlinear functional difference equations. Electron J Differ Equ. 2002, 1–8

(2002)
16. Guo, D, Lakshmikantham, V: Nonlinear Problem in Abstract Cones. Academic Press, New York (1988)

doi:10.1186/1687-1847-2011-66
Cite this article as: Zhu and Wang: Periodic solutions for a class of higher-order difference equations. Advances in
Difference Equations 2011 2011:66.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Zhu and Wang Advances in Difference Equations 2011, 2011:66
http://www.advancesindifferenceequations.com/content/2011/1/66

Page 7 of 7

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction and main results
	2 Some examples
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

