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Abstract

A discrete semi-ratio-dependent predator-prey system with Holling type IV functional
response and time delay is investigated. It is proved the general nonautonomous
system is permanent and globally attractive under some appropriate conditions.
Furthermore, if the system is periodic one, some sufficient conditions are established,
which guarantee the existence and global attractivity of positive periodic solutions.
We show that the conditions for the permanence of the system and the global
attractivity of positive periodic solutions depend on the delay, so, we call it profitless.
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Introduction
Recently, many authors have explored the dynamics of a class of the nonautonomous

semi-ratio-dependent predator-prey systems with functional responses

ẋ1(t) = (r1(t) − a11(t)x1(t))x1(t) − f (t, x1(t))x2(t),

ẋ2(t) =
(
r2(t) − a21(t)

x2(t)
x1(t)

)
x2(t),

(1:1)

where x1(t), x2(t) stand for the population density of the prey and the predator at

time t, respectively. In (1.1), it has been assumed that the prey grows logistically with

growth rate r1 (t) and carrying capacity r1(t)/a11(t) in the absence of predation. The

predator consumes the prey according to the functional response f (t, x1(t)) and grows

logistically with growth rate r2 (t) and carrying capacity x1(t)/a21(t) proportional to the

population size of the prey (or prey abundance). a21 (t) is a measure of the food quality

that the prey provides, which is converted to predator birth. For more background and

biological adjustments of system (1.1), we can see [1-7] and the references cited

therein.

In 1965, Holling [8] proposed three types of functional response functions according

to different kinds of species on the foundation of experiments. Recently, many authors

have explored the dynamics of predator-prey systems with Holling type functional

responses [1,3,4,7,9-14]. Furthermore, some authors [15,16] have also described a type

IV functional response that is humped and that declines at high prey densities. This
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decline may occur due to prey group defense or prey toxicity. Ding et al. [5] proposed

the following semi-ratio-dependent predator-prey system with nonmonotonic func-

tional response and time delay

ẋ1(t) = x1(t)
(
r1(t) − a11(t)x1(t − τ (t)) − a12(t)x2(t)

m2 + x21(t)

)
,

ẋ2(t) = x2(t)
(
r2(t) − a21(t)

x2(t)
x1(t)

)
.

(1:2)

Using Gaines and Mawhins continuation theorem of coincidence degree theory and

by constructing an appropriate Lyapunov functional, they obtained a set of sufficient

conditions which guarantee the existence and global attractivity of positive periodic

solutions of the system (1.2).

Already, many authors [13,14,17-23] have argued that the discrete time models gov-

erned by difference equations are more appropriate than the continuous ones when

the populations have non-overlapping generations. Based on the above discussion, in

this article, we consider the following discrete semi-ratio-dependent predator-prey sys-

tem with Holling type IV functional response and time delay

x1(k + 1) = x1(k)exp
[
r1(k) − a11(k)x1(k − τ ) − a12(k)x2(k)

m2 + x21(k)

]
,

x2(k + 1) = x2(k)exp
[
r2(k) − a21(k)

x2(k)
x1(k)

]
,

(1:3)

where x1(k), x2(k) stand for the density of the prey and the predator at kth genera-

tion, respectively. m ≠ 0 is a constant. τ denotes the time delay due to negative feed-

back of the prey population.

For convenience, throughout this article, we let Z, Z+, R+, and R2 denote the sets of

all integers, nonnegative integers, nonnegative real numbers, and two-dimensional

Euclidian vector space, respectively, and use the notations: f u = supkÎZ+ {f(k)}, fl =

infkÎZ+ {f(k)}, for any bounded sequence {f(k)}.

In this article, we always assume that for all i, j = 1, 2, (H1) ri(k), aij(k) are all positive

bounded sequences such that 0 < rli ≤ rui , 0 < alij ≤ auij; τ is a nonnegative integer.

By a solution of system (1.3), we mean a sequence {x1(k), x2(k)} which defines for Z+

and which satisfies system (1.3) for Z+. Motivated by application of system (1.3) in

population dynamics, we assume that solutions of system (1.3) satisfy the following

initial conditions

xi(θ) = φi(θ), θ ∈ [−τ , 0] ∩ Z, φi(0) > 0, i = 1, 2. (1:4)

The exponential forms of system (1.3) assure that the solution of system (1.3) with

initial conditions (1.4) remains positive.

The principle aim of this article is to study the dynamic behaviors of system (1.3),

such as permanence, global attractivity, existence, and global attractivity of positive

periodic solutions. To the best of our knowledge, no work has been done for the dis-

crete non-autonomous difference system (1.3). The organization of this article is as fol-

lows. In the next section, we explore the permanent property of the system (1.3). We

study globally attractive property of the system (1.3) and the periodic property of sys-

tem (1.3). At last, the conclusion ends with brief remarks.
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Permanence
First, we introduce a definition and some lemmas which are useful in the proof of the

main results of this section.

Definition 2.1. System (1.3) is said to be permanent, if there are positive constants

mi and Mi, such that for each positive solution (x1(k), x2(k))
T of system (1.3) satisfies

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤ Mi, i = 1, 2.

Lemmas 2.1 and 2.2 are Theorem 2.1 in [19] and Lemma 2.2 in [14].

Lemma 2.1. Let k ∈ N+
k0 = {k0, k0 + 1, . . . , k0 + l, . . .}, r ≥ 0. For any fixed k, g(k, r)

is a non-decreasing function, and for k ≥ k0, the following inequalities hold:

y(k + 1) ≤ g(k, y(k)), u(k + 1) ≥ g(k, u(k)).

If y(k0) ≤ u(k0), then y(k) ≤ u(k) for all k ≥ k0.

Now let us consider the following discrete single species model:

N(k + 1) = N(k) exp[a(k) − b(k)N(k)], (2:1)

where {a(k)} and {b(k)} are strictly positive sequences of real numbers defined for k Î
Z+ and 0 < al ≤ au, 0 < bl ≤ bu.

Lemma 2.2. Any solution of system (2.1) with initial condition N(0) > 0

satisfies

m ≤ lim inf
k→+∞

N(k) ≤ lim sup
k→+∞

N(k) ≤ M,

where

M =
1
bl
exp[au − 1], m =

al

bu
exp[al − buM].

Set

M1 =
1

al11
exp[ru1(τ + 1) − 1], M2 =

M1

al21
exp[ru2 − 1].

Theorem 2.1. Assume that (H1) holds, assume further that

(H2) rl1 >
au12M2

m2

holds. Then system (1.3) is permanent.

Proof. Let x(k) = (x1(k), x2(k))
T be any positive solution of system (1.3) with initial

conditions (1.4), from the first equation of the system (1.3), it follows that

x1(k + 1) ≤ x1(k) exp[r1(k)] ≤ x1(k) exp[ru1], (2:2)

and

x1(k + 1) ≤ x1(k) exp[r1(k) − a11(k)x1(k − τ )]. (2:3)

It follows from (2.2) that

�k−1
j=k−τ

x1(j + 1)
x1(j)

≤ �k−1
j=k−τ

exp[ru1] ≤ exp[ru1τ ], (2:4)

which implies that

x1(k − τ ) ≥ x1(k) exp[−ru1τ ], (2:5)
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which, together with (2.3), produces,

x1(k + 1) ≤ x1(k) exp[r1(k) − a11(k) exp[−ru1τ ]x1(k)]. (2:6)

By applying Lemmas 2.1 and 2.2 to (2.6), we have

lim sup
k→+∞

x1(k) ≤ 1

al11
exp[ru1(τ + 1) − 1] =: M1. (2:7)

For any ε >0 small enough, it follows from (2.7) that there exists enough large K1

such that for k ≥ K1,

x1(k) ≤ M1 + ε. (2:8)

Substituting (2.8) into the second equation of system (1.3), it follows that

x2(k + 1) ≤ x2(k) exp
[
r2(k) − a21(k)

M1 + ε
x2(k)

]
. (2:9)

By applying Lemmas 2.1 and 2.2 to (2.9), we obtain

lim sup
k→+∞

x2(k) ≤ M1 + ε

al21
exp[ru2 − 1]. (2:10)

Setting ε ® 0 in above inequality, we have

lim sup
k→+∞

x2(k) ≤ M1

al21
exp[ru2 − 1] =: M2. (2:11)

Condition (H2) implies that we could choose ε >0 small enough such that

rl1 − au12(M2 + ε)
m2

> 0. (2:12)

From (2.7) and (2.10) that there exists enough large K2 > K1 such that for i = 1, 2

and k ≥ K2,

xi(k) ≤ Mi + ε. (2:13)

Thus, for k > K2 + τ, by (2.13) and the first equation of system (1.3), we have

x1(k + 1) ≥ x1(k) exp
[
r1(k) − a11(k)(M1 + ε) − a12(k)

m2
(M2 + ε)

]
≥ x1(k) exp[D1ε],

(2:14)

where

D1ε = rl1 − au11(M1 + ε) − au12
m2

(M2 + ε). (2:15)

And

x1(k + 1) ≥ x1(k) exp
[
r1(k) − a12(k)

m2
(M2 + ε) − a11(k)x1(k − τ )

]
. (2:16)

It follows from (2.14) that

�k−1
j=k−τ

x1(j + 1)
x1(j)

≥ �k−1
j=k−τ

exp[D1ε] ≥ exp[D1ετ ], (2:17)

Lu and Wang Advances in Difference Equations 2011, 2011:7
http://www.advancesindifferenceequations.com/content/2011/1/7

Page 4 of 19



which implies that

x1(k − τ ) ≤ x1(k) exp[−D1ετ ], (2:18)

this combined with (2.16)

x1(k + 1) ≥ x1(k) exp
[
r1(k) − a12(k)

m2
(M2 + ε) − a11(k) exp[−D1ετ ]x1(k)

]
. (2:19)

By applying Lemmas 2.1 and 2.2 to (2.19), it follows that

lim inf
k→+∞

x1(k) ≥
rl1 − au12

m2
(M2 + ε)

au11
exp[D1ετ ] exp[D2ε],

(2:20)

where

D2ε = rl1 − au12
m2

(M2 + ε) − au11
al11

exp[ru1 − al12
m2

(M2 + ε) − 1]. (2:21)

Setting ε ® 0 in above inequality, we have

lim inf
k→+∞

x1(k) ≥
rl1 − au12

m2
M2

au11
exp[D1τ ]exp[D2] =: m1,

(2:22)

where

D1 = rl1 − au11M1 − au12
m2

M2, (2:23)

and

D2 = rl1 − au12
m2

M2 − au11
al11

exp

[
ru1 − al12

m2
M2 − 1

]
. (2:24)

From (2.22) we know that there exists enough large K3 > K2 such that for k ≥ K3,

x1(k) ≥ m1 − ε. (2:25)

(2.25) combining with the second equation of the system (1.3) leads to,

x2(k + 1) ≥ x2(k)exp
[
r2(k) − a21(k)

m1 − ε
x2(k)

]
. (2:26)

By applying Lemmas 2.1 and 2.2 to (2.26), we have

lim inf
k→+∞

x2(k) ≥ rl2(m1 − ε)
au21

exp

[
rl2 − au21

al21
exp[ru2 − 1]

]
. (2:27)

Setting ε ® 0 in above inequality, one has

lim inf
k→+∞

x2(k) ≥ rl2m1

au21
exp

[
rl2 − au21

al21
exp[ru2 − 1]

]
=: m2. (2:28)

Consequently, combining (2.7), (2.11), (2.22) with (2.28), system (1.3) is permanent.

This completes the proof of Theorem 2.1.
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Global attractivity
Now, we study the global attractivity of the positive solution of system (1.3). To do so,

we first introduce a definition and prove a lemma which will be useful to our main

result.

Definition 3.1. A positive solution (x1(k), x2(k))
T of system (1.3) is said to be globally

attractive if each other solution (x∗
1(k), x

∗
2(k))

T of system (1.3) satisfies

lim
k→+∞

[|xi(k) − x∗
i (k)|] = 0, i = 1, 2.

Lemma 3.1. For any two positive solutions (x1(k), x2(k))
T and (x∗

1(k), x
∗
2(k))

Tof system

(1.3), we have

ln
x1(k + 1)
x∗
1(k + 1)

= ln
x1(k)
x∗
1(k)

− a11(k)[x1(k) − x∗
1(k)]

− F(k)[x2(k) − x∗
2(k)] + G(k)[x1(k) − x∗

1(k)]

+ a11(k)
k−1∑
s=k−τ

{
P(s)

[
r1(s) − a11(s)x∗

1(s − τ )

− a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]
[x1(s) − x∗

1(s)]

+Q(s)x1(s)[−a11(s)[x1(s − τ ) − x∗
1(s − τ )]

− F(s)[x2(s) − x∗
2(s)] + G(s)[x1(s) − x∗

1(s)]]},

(3:1)

where

F(s) = {a12(s)}/{m2 + x∗
1(s)

2},
G(s) = {a12(s)x2(s)[x∗

1(s) + x1(s)]}/{[m2 + x1(s)2][m2 + x∗
1(s)

2]},

P(s) = exp

{
θ(s)

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]}
,

Q(s) = exp
{
ϕ(s)

[
r1(s) − a11(s)x1(s − τ ) − a12(s)x2(s)

m2 + x1(s)
2

]

+(1 − ϕ(s))[r1(s) − a11(s)x∗
1(s − τ ) − a12(s)x∗

2(s)

m2 + x∗
1(s)

2

]}
,

θ(s), ϕ(s) ∈ (0, 1).

Proof. It follows from the first equation of system (1.3) that

ln
x1(k + 1)
x∗
1(k + 1)

− ln
x1(k)
x∗
1(k)

= ln
x1(k + 1)
x1(k)

− ln
x∗
1(k + 1)
x∗
1(k)

=
[
r1(k) − a11(k)x1(k − τ ) − a12(k)x2(k)

m2 + x1(k)
2

]

−
[
r1(k) − a11(k)x∗

1(k − τ ) − a12(k)x∗
2(k)

m2 + x∗
1(k)

2

]

= − a11(k)[x1(k − τ ) − x∗
1(k − τ )] − a12(k)x2(k)

m2 + x1(k)
2 +

a11(k)x∗
2(k)

m2 + x∗
1(k)

2

= −a11(k)[x1(k) − x∗
1(k)] − F(k)[x2(k) − x∗

2(k)]

+ G(k)[x1(k) − x∗
1(k)] + a11(k){[x1(k) − x∗

1(k)]

− [x1(k − τ ) − x∗
1(k − τ )]},
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where

F(k) =
{
a12(k)

}
/
{
m2 + x∗

1(k)
2
}
,

G(k) =
{
a12(k)x2(k)[x∗

1(k) + x1(k)]
}
/
{
[m2 + x1(k)

2][m2 + x∗
1(k)

2]
}
.

Hence,

ln
x1(k + 1)
x∗
1(k + 1)

= ln
x1(k)
x∗
1(k)

− a11(k)[x1(k) − x∗
1(k)] − F(k)[x2(k) − x∗

2(k)]

+ G(k)[x1(k) − x∗
1(k)] + a11(k){[x1(k) − x1(k − τ )]

− [x∗
1(k) − x∗

1(k − τ )]}.

(3:2)

Since[
x1(k) − x1(k − τ )

]− [x∗
1(k) − x∗

1(k − τ )
]

=
k−1∑
s=k−τ

[x1(s + 1) − x1(s)] −
k−1∑
s=k−τ

[x∗
1(s + 1) − x∗

1(s)]

=
k−1∑
s=k−τ

{[x1(s + 1) − x∗
1(s + 1)] − [x1(s) − x∗

1(s)]},

(3:3)

and [
x1(s + 1) − x∗

1(s + 1)
]− [x1(s) − x∗

1(s)
]

=
{
x1(s) exp

[
r1(s) − a11(s)x1(s − τ ) − a12(s)x2(s)

m2 + x1(s)
2

]

−x∗
1(s) exp

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]}
− [x1(s) − x∗

1(s)]

= x1(s)
{
exp

[
r1(s) − a11(s)x1(s − τ ) − a12(s)x2(s)

m2 + x1(s)
2

]

−exp

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]}

+[x1(s) − x∗
1(s)]

{
exp

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]
− 1

}
.

By the mean value theorem, one has

[x1(s + 1) − x∗
1(s + 1)] − [x1(s) − x∗

1(s)]

= [x1(s) − x∗
1(s)]P(s)

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]

+ x1(s)Q(s)[−a11(s)[x1(s − τ ) − x∗
1(s − τ )]

− a12(s)x2(s)

m2 + x1(s)
2 +

a11(s)x∗
2(s)

m2 + x∗
1(s)

2

]

= (x1(s) − x∗
1(s))P(s)

[
r1(s) − a11(s)x∗

1(s − τ ) − a12(s)x∗
2(s)

m2 + x∗
1(s)

2

]

+ x1(s)Q(s)[−a11(s)[x1(s − τ ) − x∗
1(s − τ )] − F(s)[x2(s) − x∗

2(s)]

+ G(s)[x1(s) − x∗
1(s)]].

(3:4)
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Thus we can easily obtain (3.1) by substituting (3.3) and (3.4) into (3.2). The proof of

Lemma 3.1 is completed.

Now we are in the position of stating the main result on the global attractivity of

system (1.3).

Theorem 3.1. In addition to (H1)-(H2), assume further that (H3) there exist positive

constants l1, l2 such that

α =: min
(

λ1ρ − λ2
au21M2

m2
1

, λ2� − λ1σ

)
> 0

holds, where r, ϱ, s are defined by (3.23). Then for any two positive solutions (x1(k),

x2(k))
T and (x∗

1(k), x
∗
2(k))

Tof system (1.3), one has

lim
k→+∞

[|xi(k) − x∗
i (k)|] = 0, i = 1, 2.

Proof. Let (x1(k), x2(k))
T and (x∗

1(k), x
∗
2(k))

T be two arbitrary solutions of system (1.3).

To prove Theorem 3.1, for the first equation of system (1.3), we will consider the following

three steps,

Step 1. We let

V11(k) = |ln x1(k) − ln x∗
1(k)|. (3:5)

It follows from (3.1) that∣∣∣∣lnx1(k + 1)
x∗
1(k + 1)

∣∣∣∣ ≤
∣∣∣∣ lnx1(k)x∗

1(k)
− a11(k)[x1(k) − x∗

1(k)]

∣∣∣∣
+ F(k)|x2(k) − x∗

2(k)| + G(k)|x1(k) − x∗
1(k)|

+ a11(k)
k−1∑
s=k−τ

{[P(s)J(s) +Q(s)x1(s)G(s)]|x1(s) − x∗
1(s)|

+Q(s)x1(s) [a11(s)|x1(s − τ ) − x∗
1(s − τ )|

+ F(s)|x2(s) − x∗
2(s)|]},

(3:6)

where

J(s) = r1(s) + a11(s)x∗
1(s − τ ) +

a12(s)x∗
2(s)

m2
.

By the mean value theorem, we have

x1(k) − x∗
1(k) = exp[ln x1(k)] − exp[ln x∗

1(k)] = ξ1(k)ln
x1(k)
x∗
1(k)

(3:7)

that is,

ln
x1(k)
x∗
1(k)

=
1

ξ1(k)
[x1(k) − x∗

1(k)], (3:8)
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where ξ1(k) lies between x1(k) and x∗
1(k). So, we have∣∣∣∣ ln x1(k

x∗
1(k)

− a11(k)
[
x1(k) − x∗

1(k)
] ∣∣∣∣

=

∣∣∣∣ lnx1(k)x∗
1(k)

∣∣∣∣−
∣∣∣∣ lnx1(k)x∗

1(k)

∣∣∣∣ +
∣∣∣∣ lnx1(k)x∗

1(k)
− a11(k)

[
x1(k) − x∗

1(k)
] ∣∣∣∣

=

∣∣∣∣ lnx1(k)x∗
1(k)

∣∣∣∣− 1
ξ1(k)

| x1(k) − x∗
1(k) |

+

∣∣∣∣ 1
ξ1(k)

[
x1(k) − x∗

1(k)
]− a11(k)

[
x1(k) − x∗

1(k)
] ∣∣∣∣

=

∣∣∣∣ lnx1(k)x∗
1(k)

∣∣∣∣− 1
ξ1(k)

| x1(k) − x∗
1(k) |

+

∣∣∣∣ 1
ξ1(k)

− a11(k)

∣∣∣∣ | x1(k) − x∗
1(k) |

=

∣∣∣∣ lnx1(k)x∗
1(k)

∣∣∣∣−
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a11(k)

∣∣∣∣
]

| x1(k) − x∗
1(k) |.

(3:9)

According to Theorem 2.1, there exists a positive integer k0 such that mi ≤ xi(k)

x∗
i (k) ≤ Mi for k > k0 and i = 1, 2. Therefore, for all k >k0 + τ, we can obtain that

�V11 = V11(k + 1) − V11(k)

≤ −
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a11(k)

∣∣∣∣
]

| x1(k) − x∗
1(k) | + F(k)| x2(k) − x∗

2(k) |

+ G(k)| x1(k) − x∗
1(k) | + a11(k)

k−1∑
s=k−τ

{[P(s)J(s) +M1Q(s)G(s)]

|x1(s) − x∗
1(s) | +M1Q(s)

[
a11(s)

∣∣x1(s − τ ) − x∗
1(s − τ )

∣∣
+ F(s)| x2(s) − x∗

2(s) |]}.

(3:10)

Step 2. Let

V12(k) =
k−1+τ∑
s=k

a11(s)
k−1∑
u=s−τ

{
[P(u)J(u) +M1Q(u)G(u)]

∣∣x1(u) − x∗
1(u)

∣∣
+M1Q(u) [a11(u)| x1(u − τ ) − x∗

1(u − τ ) | + F(u)| x2(u) − x∗
2(u)|]}.

(3:11)

Then

�V12 = V12(k + 1) − V12(k)

=
k+τ∑
s=k+1

a11(s)
{
[P(k)J(k) +M1Q(k)G(k)]

∣∣x1(k) − x∗
1(k)

∣∣
+M1Q(k)

[
a11(k)

∣∣x1(k − τ ) − x∗
1(k − τ )

∣∣ + F(k)
∣∣x2(k) − x∗

2(k)
∣∣]}

− a11(k)
k−1∑

u=k−τ

{
[P(u)J(u) +M1Q(u)G(u)]

∣∣x1(u) − x∗
1(u)

∣∣
+M1Q(u)

[
a11(u)

∣∣x1(u − τ ) − x∗
1(u − τ )

∣∣ + F(u)
∣∣x2(u) − x∗

2(u)
∣∣]} .

(3:12)
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Step 3. Let

V13(k) = M1

k−1∑
l=k−τ

Q (l + τ )a11(l + τ )| x1(l) − x∗
1(l)
∣∣ l+2τ∑
s=l+τ+1

a11(s). (3:13)

By a simple calculation, it follows that

�V13 = V13(k + 1) − V13(k)

=
k+2τ∑

s=k+τ+1

a11 (s)M1Q(k + τ )a11(k + τ )| x1(k) − x∗
1(k)

∣∣

−
k+τ∑
s=k+1

a11 (s)M1Q(k)a11(k)| x1(k − τ ) − x∗
1(k − τ )

∣∣ .
(3:14)

We now define

V1(k) = V11(k) + V12(k) + V13(k).

Then for all k > k0 + τ, it follows from (3.10)-(3.14) that

�V1 = V1(k + 1) − V1(k)

≤ −
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a11(k)

∣∣∣∣
] ∣∣x1(k) − x∗

1(k)
∣∣

+ F(k)
∣∣x2(k) − x∗

2(k)
∣∣ + G(k)

∣∣x1(k) − x∗
1(k)

∣∣
+

k+τ∑
s=k+1

a11(s)
{
[P(k)J(k) +M1Q(k)G(k)]

∣∣x1(k) − x∗
1(k)

∣∣
+ M1Q(k)F(k)

∣∣x2(k) − x∗
2(k)

∣∣}
+

k+2τ∑
s=k+τ+1

a11(s)M1Q(k + τ )a11(k + τ )
∣∣x1(k) − x∗

1(k)
∣∣ .

(3:15)

We let

V2(k) = |ln x2(k) − ln x∗
2(k) |. (3:16)

It follows from the second equation of system (1.3) that

ln
x2(k + 1)
x∗
2(k + 1)

− ln
x2(k)
x∗
2(k)

= ln
x2(k + 1)
x2(k)

− ln
x∗
2(k + 1)
x∗
2(k)

=
[
r2(k) − a21(k)

x2(k)
x1(k)

]
−
[
r2(k) − a21(k)

x∗
2(k)
x∗
1(k)

]

= −a21(k)
[
x2(k)
x1(k)

− x∗
2(k)
x∗
1(k)

]

= −a21(k)
x∗
1(k)

[x2(k) − x∗
2(k)] +

a21(k)x2(k)
x1(k)x∗

1(k)
[x1(k) − x∗

1(k)],

that is,

ln
x2(k + 1)
x∗
2(k + 1)

= ln
x2(k)
x∗
2(k)

− a21(k)
x∗
1(k)

[
x2(k) − x∗

2(k)
]
+
a21(k)x2(k)
x1(k)x∗

1(k)

[
x1(k) − x∗

1(k)
]
.(3:17)
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It follows from (3.17) that∣∣∣∣lnx2(k + 1)
x∗
2(k + 1)

∣∣∣∣ ≤
∣∣∣∣lnx2(k)x∗

2(k)
− a21(k)

x∗
1(k)

[
x2(k) − x∗

2(k)
]∣∣∣∣ + a21(k)M2

m2
1

| x1(k) − x∗
1(k) |.(3:18)

Similar to the argument of (3.7)-(3.9), we can obtain∣∣∣∣lnx2(k + 1)
x∗
2(k + 1)

∣∣∣∣ ≤
∣∣∣∣lnx2(k)x∗

2(k)

∣∣∣∣−
[

1
ξ2(k)

−
∣∣∣∣ 1
ξ2(k)

− a21(k)
x∗
1(k)

∣∣∣∣
]

| x2(k) − x∗
2(k) |

+
a21(k)M2

m2
1

| x1(k) − x∗
1(k) |.

(3:19)

Therefore,

�V2 ≤ −
[

1
ξ2(k)

−
∣∣∣∣ 1
ξ2(k)

− a21(k)
x∗
1(k)

∣∣∣∣
]

| x2(k) − x∗
2(k) |

+
a21(k)M2

m2
1

| x1(k) − x∗
1(k)|.

(3:20)

We now define a Lyapunov function as:

V(k) =
2∑
i=1

λiVi(k). (3:21)

It is easy to see that V (k) >0 and V (k0 +τ) <+∞. Calculating the difference of V

along the solution of system (1.3), we have that for k ≥ k0 + τ,

�V = λ1�V1 + λ2�V2

≤ λ1

{
−
[

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− a11(k)

∣∣∣∣
]
+ G(k)

+
k+τ∑
s=k+1

a11(s)[P(k)J(k) +M1Q(k)G(k)]

+
k+2τ∑

s=k+τ+1

a11(s)M1Q(k + τ )a11(k + τ )

}
| x1(k) − x∗

1(k)
∣∣

+ λ2
a21(k)M2

m2
1

| x1(k) − x∗
1(k)

∣∣
− λ2

{[
1

ξ2(k)
−
∣∣∣∣ 1
ξ2(k)

− a21(k)
x∗
1(k)

∣∣∣∣
]}

| x2(k) − x∗
2(k) |

+ λ1

{
F(k) +

k+τ∑
s=k+1

a11(s)M1Q(k)F(k)

}
| x2(k) − x∗

2(k) |

≤ −λ1

{
min (al11,

2
M1

− au11) − Gu − τau11[P
uJu +M1Q

uGu

+ au11M1Qu]}| x1(k) − x∗
1(k)

∣∣∣∣+λ2
au21M2

m2
1

| x1(k) − x∗
1(k)

∣∣∣∣
− λ2

{
min(

al21
M1

,
2
M2

− au21
m1

)

}
| x2(k) − x∗

2(k) |

+ λ1{Fu + τau11M1Q
uFu}| x2(k) − x∗

2(k) |

≤ −
(

λ1ρ − λ2
au21M2

m2
1

)
| x1(k) − x∗

1(k) | − (λ2� − λ1σ )| x2(k) − x∗
2(k) |

≤ −α{| x1(k) − x∗
1(k) | + | x2(k) − x∗

2(k) |},

(3:22)
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where

ρ = min(al11,
2
M1

− au11) − Gu − τau11[P
uJu +M1QuGu + au11M1Qu],

� = min(
al21
M1

,
2
M2

− au21
m1

),

σ = Fu + τau11M1Q
uFu.

(3:23)

Summing both sides of (3.22) from k0 + τ to k, it derives that

k∑
s=k0+τ

[V(s + 1) − V(s)] ≤ −α

k∑
s=k0+τ

2∑
i=1

| xi(s) − x∗
i (s) |, (3:24)

it then follows from (3.24) that for k > k0 + τ,

V(k + 1) + α

k∑
s=k0+τ

2∑
i=1

| xi(s) − x∗
i (s) | ≤ V(k0 + τ ),

that is,

k∑
s=k0+τ

2∑
i=1

| xi(s) − x∗
i (s) | ≤ V(k0 + τ )

α
.

Then

∞∑
k=k0+τ

2∑
i=1

| xi(k) − x∗
i (k) | ≤ V(k0 + τ )

α
< +∞.

Therefore, we can easily obtain that

lim
k→+∞

| xi(k) − x∗
i (k) | = 0, i = 1, 2.

This completes the proof of Theorem 3.1.

In the following section, we consider the periodic property of system (1.3).

Existence and global attractivity of positive periodic solutions
In this section, we assume that all the coefficients of system (1.3) are positive

sequences with common periodic ω, where ω is a fixed positive integer, stands for the

prescribed common period of the parameters in system (1.3), then the system (1.3) is

an ω-periodic system for this case. And so the coefficients of system (1.3) will naturally

satisfy assumption (H1).

In order to obtain the existence of positive periodic solutions of system (1.3), we first

make the following preparations that will be basic for this section.

Let X, Z be two Banach spaces. Consider an operator equation

Lx = λNx, λ ∈ (0, 1),

where L : DomL ∩ X ® Z is a linear operator and l, is a parameter. Let P and Q

denote two projectors such that

P : X ∩ DomL → KerL and Q : Z → Z/ImL.

Lu and Wang Advances in Difference Equations 2011, 2011:7
http://www.advancesindifferenceequations.com/content/2011/1/7

Page 12 of 19



Denote that J : ImQ ® KerL is an isomorphism of ImQ onto KerL. Recall that a lin-

ear mapping L : DomL ∩ X ® Z with KerL = L-1(0) and ImL = L(DomL), will be called

a Fredholm mapping if the following two conditions hold:

(i) KerL has a finite dimension;

(ii) ImL is closed and has a finite codimension.

Recall also that the codimension of ImL is dimension of Z/ImL, i.e., the dimension of

the cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer IndL = dim KerL - codim

ImL.

We shall say that a mapping N is L-compact on Ω if the mapping QN : �̄ → Z is

continuous, QN(�̄) is bounded and KP(I − Q)N : �̄ → X is compact. i.e., it is continu-

ous and KP(I − Q)N(�̄) is relatively compact, where KP : ImL ® DomL ∩ KerP is an

inverse of the restriction LP of L to DomL ∩ KerP, so that LKP = I and KP = I - P. The

following Lemma is from Gains and Mawhin [24].

Lemma 4.1. (Continuation Theorem) Let X, Z be two Banach spaces and L be a

Fredholm mapping of index zero. Assume that N : �̄ → Zis L-compact on �̄with Ω

open bounded in X. Furthermore assume:

(a) For each l Î (0, 1), x Î ∂Ω ∩ DomL, Lx ≠ lNx,
(b) QNx ≠ 0 for each × Î ∂Ω ∩ KerL,

(c) deg{JQNx, Ω ∩ KerL, 0} ≠ 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ �̄.

For convenience in the following discussion, we will use the notation below:

Iω = {0, 1, · · ·,ω − 1}, f̄ =
1
ω

ω−1∑
k=0

f (k), f L = min
k∈Iω

{f (k)}, f U = max
k∈Iω

{f (k)},

where {f(k)} is an ω-periodic sequence.

Lemma 4.2. Let f : Z ® R be ω-periodic, i.e., f(k + ω) = f(k), then for any fixed k1, k2
Î Iω and any k Î Z, one has

f (k) ≤ f (k1) +
ω−1∑
s=0

|f (s + 1) − f (s) |,

f (k) ≥ f (k2) −
ω−1∑
s=0

|f (s + 1) − f (s) |.

Denote

l2 = {x = {x(k)} : x(k) ∈ R2, k ∈ Z},

for a = (a1, a2)
T Î R2, define |a| = max{a1, a2}. Let l

ω ⊂ l2 denote the subspace of all

ω-periodic sequences equipped with the usual supremum norm ||·||, i.e.,

||x|| = max
k∈Iω

| x(k)| for x = {x(k) : k ∈ Z} ∈ lω.

Then it follows that lω is a finite dimensional Banach space.
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Let

lω0 =

{
x = {x(k) ∈ lω} :

ω−1∑
k=0

x(k) = 0

}
,

lωc =
{
x = {x(k) ∈ lω} : x(k) = h ∈ R2, k ∈ Z

}
.

Then it follows that lω0and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dimlωc = 2.

Set

A2 = 2r̄1ω + ln
(

r̄1 r̄2
ā11ā21

)
+ 2r̄2ω.

Theorem 4.1. Assume that

(H4) r̄1 >
ā12
m2

eA2

holds. Then periodic system (1.3) has at least one positive ω-periodic solution. Proof.

Since solutions of system (1.3) remained positive for k ≥ 0, we let

xi(k) = eui(k), i = 1, 2, (4:1)

then system (1.3) is reformulated as:

u1(k + 1) − u1(k) = r1(k) − a11(k)eu1(k−τ) − a12(k)eu2(k)

m2 + e2u1(k)
,

u2(k + 1) − u2(k) = r2(k) − a21(k)eu2(k)−u1(k).

(4:2)

It is easy to see that if (4.2) has one ω-periodic solution (u∗
1(k), u

∗
2(k))

T, then (1.3)

has one positive ω-periodic solution (x∗
1(k), x

∗
2(k))

T = (eu
∗
1(k), eu

∗
2(k))T. Therefore, to

complete the proof, it is only to show that (4.2) has at least one ω-periodic solution.

To use Lemma 4.1, we take X = Z = lω. Denote by L : X ® X the difference operator

given by Lu = {(Lu)(k)} with (Lu)(k) = u(k + 1) - u(k), for u Î X and k Î Z, and N : X

® X as follows:

Nu = N
[
u1
u2

]
=

⎡
⎣ r1(k) − a11(k)eu1(k−τ) − a12(k)eu2(k)

m2 + e2u1(k)
r2(k) − a21(k)eu2(k)−u1(k)

⎤
⎦ ,

for any u Î X, and k Î Z. It is trivial to see that L is a bounded linear operator and

KerL = lωc , ImL = lω0 , dimKerL = 2 = codim ImL,

then it follows that L is a Fredholm mapping of index zero.

Define

P
[
u1
u2

]
= Q

[
u1
u2

]
=

⎡
⎢⎢⎣

1
ω

ω−1∑
s=0

u1(s)

1
ω

ω−1∑
s=0

u2(s)

⎤
⎥⎥⎦ ,

[
u1
u2

]
∈ X = Z.

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I − Q),
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hence, by a simple computation, we can find that the generalized inverse (to L) KP :

ImL ® DomL ∩ KerP exists and is given by

KP(u) =
k−1∑
s=0

u(s) − 1
ω

ω−1∑
s=0

(ω − s)u(s).

Thus QN : X ® Z and KP (I - Q)N : X ® X are given by

QN(u) =
1
ω

ω−1∑
s=0

Nu(s),

and

KP(I − Q)Nx =
k−1∑
s=0

Nu(s) − 1
ω

ω−1∑
s=0

(ω − s)Nu(s) −
(
k
ω

− 1 + ω

2ω

) ω−1∑
s=0

Nu(s).

Consider the operator equation Lu = lNu, l Î (0, 1), we have

u1(k + 1) − u1(k) = λ

[
r1(k) − a11(k)eu1(k−τ) − a12(k)eu2(k)

m2 + e2u1(k)

]
,

u2(k + 1) − u2(k) = λ
[
r2(k) − a21(k)eu2(k)−u1(k)

]
.

(4:3)

Assume that u Î X is a solution of (4.3) for a certain l Î (0, 1). Summing on both

sides of (4.3) from 0 to ω - 1 with respect to k, we obtain

r̄1ω =
ω−1∑
k=0

a11(k)eu1(k−τ) +
ω−1∑
k=0

a12(k)eu2(k)

m2 + e2u1(k)
,

r̄2ω =
ω−1∑
k=0

a21(k)eu2(k)−u1(k).

(4:4)

From (4.3) and (4.4), we have

ω−1∑
k=0

∣∣u1(k + 1) − u1(k)
∣∣ ≤ λ

[
r̄1ω +

ω−1∑
k=0

a11(k)eu1(k−τ) +
ω−1∑
k=0

a12(k)eu2(k)

m2 + e2u1(k)

]
≤ 2r̄1ω,

ω−1∑
k=0

∣∣u2(k + 1) − u2(k)
∣∣ ≤ λ

[
r̄2ω +

ω−1∑
k=0

a21(k)eu2(k)−u1(k)

]
≤ 2r̄2ω.

(4:5)

Noting that u = {(u1(k), u2(k))
T} Î X. Then there exist ξi, hi Î Iω, i = 1, 2 such that

ui(ξi) = min
k∈Iω

{ui(k)}, ui(ηi) = max
k∈Iω

{ui(k)}, i = 1, 2. (4:6)

From (4.4) and (4.6), we obtain

r̄1ω ≥
ω−1∑
k=0

a11(k)eu1(ξ1) ≥ ā11ωe
u1(ξ1),

that is,

u1(ξ1) ≤ ln
(

r̄1
ā11

)
=: K1 (4:7)
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which, together with (4.5) and Lemma 4.2, leads to,

u1(k) ≤ u1(ξ1) +
ω−1∑
s=0

∣∣u1(s + 1) − u1(s)
∣∣ ≤ ln

(
r̄1
ā11

)
+ 2r̄1ω =: A1. (4:8)

On the other hand, by (4.4), (4.6), and (4.8), we also have

r̄2ω ≥
ω−1∑
k=0

a21(k)eu2(ξ2)−A1 , (4:9)

which yields

u2(ξ2) ≤ A1 + ln
r̄2
ā21

=: K2. (4:10)

The above inequality, together with (4.5) and Lemma 4.2, leads to,

u2(k) ≤ u2(ξ2) +
ω−1∑
s=0

∣∣u2(s + 1) − u2(s)
∣∣ ≤ 2r̄1ω + ln

(
r̄1 r̄2
ā11ā21

)
+ 2r̄2ω =: A2. (4:11)

From (4.4) and (4:5), we can deduce

ω−1∑
k=0

a11(k)eu1(η1) +
ω−1∑
k=0

a12(k)
m2

eA2 ≥ r̄1ω, (4:12)

that is,

u1(η1) ≥ ln
r̄1 − (ā21/m2)eA2

ā11
=: k1, (4:13)

and along with (4.5) and Lemma 4.2, we have

u1(k) ≥ u1(η1) −
ω−1∑
s=0

∣∣u1(s + 1) − u1(s)
∣∣ ≥ ln

r̄1 − (ā21/m2)eA2

ā11
− 2r̄1ω =: A3.(4:14)

Thus we derive from (4.8) and (4.14) that

max
k∈Iω

∣∣u1(k)∣∣ ≤ max {|A1| , |A3|} =: H1. (4:15)

On the other hand, by (4.4), (4.6), and (4.8), we get

ω−1∑
k=0

a21(k)eu2(η2)−A3 ≥ r̄2ω, (4:16)

which implies

u2(η2) ≥ A3 + ln
r̄2
ā21

=: k2. (4:17)

The above inequality, together with (4.5) and Lemma 4.2, leads to,

u2(k) ≥ u2(ξ2) −
ω−1∑
s=0

∣∣u2(s + 1) − u2(s)
∣∣ ≥ A3 + ln

r̄2
ā21

− 2r̄2ω =: A4. (4:18)
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It follows from (4.11) and (4.18) that

max
k∈Iω

∣∣u2(k)∣∣ ≤ max {|A2| , |A4|} =: H2. (4:19)

Clearly, Hi (i = 1, 2) are independent of l.
Next, for μ Î 0[1], we consider the following algebraic equations:

r̄1 − ā11eu1 − μā12eu2

m2 + e2u1
= 0,

r̄2 − ā21e
u2−u1 = 0,

(4:20)

where (u1(k), u2(k))
T Î R2. By the similar argument of (4.7), (4.10), (4.13), and (4.17),

we can derive the solutions (u1(k), u2(k))
T of (4.20) that satisfy

k1 ≤ u1 ≤ K1, k2 ≤ u2 ≤ K2. (4:21)

Denote H = H1 + H2 + C, here, C is taken sufficiently large such that C ≥ |K1| + |k1|

+ |K2| + |k2|. Now we take Ω = {(u1(k), u2(k))
T Î X : || (u1(k), u2(k))

T ||< H}. Now we

check the conditions of Lemma 4.1.

(a) From (4.15) and (4.19), one can see that for each l Î (0, 1), u Î ∂Ω ∩ DomL, Lu

≠ lNu.
(b) When (u1(k), u2(k))

T Î ∂Ω ∩ KerL = ∂Ω ∩ R2, (u1(k), u2(k))
T is a constant vector

in R2 with || (u1, u2)
T || = H. If

QN
[
u1
u2

]
=

⎡
⎣ r̄1 − ā11eu1 − ā12eu2

m2 + e2u1
r̄2 − ā21eu2−u1

⎤
⎦ =

[
0
0

]
,

then (u1(k), u2(k))
T is the constant solution of system (4.20) with μ = 1. From (4.21),

we have || (u1, u2)
T ||< H. This contradiction implies that for each u Î ∂Ω ∩ KerL,

QNu ≠ 0.

(c) we will prove that condition (c) of Lemma 4.1 is satisfied. To this end, we define

j : DomL × 0[1] ® X by

φ(u1, u2,μ) =
[
r̄1 − ā11eu1

r̄2 − ā21eu2−u1

]
+ μ

⎛
⎝− ā12eu2

m2 + e2u1
0

⎞
⎠ , (4:22)

where μ Î 0[1] is a parameter. When (u1, u2)
T Î ∂Ω ∩ KerL, (u1, u2)

T is a constant

vector in R2 with || (u1, u2)
T || = H. From (4.21), we know that j(u1, u2, μ) ≠ (0, 0)T

on ∂Ω ∩ KerL. Hence, due to homotopy invariance theorem of topology degree and

taking J = I : ImQ ® KerL, we have

deg(JQN(u),� ∩ KerL, (0, 0)T)

= deg(φ(u1, u2, 1),� ∩ KerL, (0, 0)T)

= deg(φ(u1, u2, 0),� ∩ KerL, (0, 0)T)

= deg((r̄1 − ā11eu1 , r̄2 − ā21eu2−u1 )T ,� ∩ KerL, (0, 0)T).

It is not difficult to see that the following algebraic equation:

r̄1 − ā11eu1 = 0,

r̄2 − ā21e
u2−u1 = 0,
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has a unique solution (u∗
1, u

∗
2)

T ∈ ∂� ∩ KerL. Thus

deg(JQN(u),� ∩ KerL, (0, 0)T) = sign

∣∣∣∣−ā11eu
∗
1 0

ā21eu
∗
2−u∗

1 −ā21eu
∗
2−u∗

1

∣∣∣∣ = 1 
= 0.

Finally, we will prove that N is L-compact on �̄. For any u ∈ �̄, we have

∥∥ QN(u)
∥∥ ≤ max

{
rU1 + aU11e

A1 +
aU12e

A2

m2
, rU2 + aU21e

A2−A3

}
=: E.

Hence, QN(�̄) is bounded. Obviously, QNu : �̄ → Z is continuous.

And also

||KP(I − Q)Nu|| ≤
k−1∑
s=0

||Nu(s)|| + 1
ω

ω−1∑
s=0

(ω − s)|| Nu(s)||

+
1 + 3ω

2ω

ω−1∑
s=0

||Nu(s)|| ≤ 1 + 7ω

2
E.

For any u ∈ �̄, k1, k2 Î Iω, without loss of generality, let k2 > k1, then we have

|KP(I − Q)Nu(k2) − KP(I − Q)Nu(k1)|

= |
k2−1∑
s=k1

Nu(s) − k2 − k1
ω

ω−1∑
s=0

Nu(s) |

≤
k2−1∑
s=k1

∣∣Nu(s)
∣∣ + k2 − k1

ω

ω−1∑
s=0

∣∣Nu(s)
∣∣ ≤ 2E| k2 − k1 |.

Thus, the set {KP(I − Q)Nu | u ∈ �̄} is equicontinuous and uniformly bounded.

By applying Ascoli-Arzela theorem, one can see that KP(I − Q)N(�̄) is compact.

Consequently, N is L-compact.

By now we have verified all the requirements of Lemma 4.1. Hence system (4.2) has

at least one ω-periodic solution. This ends the proof of Theorem 4.1.

By constructing similar Lyapunov function to those of Theorem 3.1, and using Theo-

rem 4.1, we have the following Theorem 4.2.

Theorem 4.2. Assume that the conditions of (H2)-(H4) hold. Then the positive peri-

odic solution of periodic system (1.3) is globally attractive.

Concluding remarks
In this article, a discrete time semi-ratio-dependent predator-prey system with Holling

type IV functional response and time delay is investigated. By using comparison theo-

rem and further developing the analytical technique of [14,21], we prove the system

(1.3) is permanent under some appropriate conditions. Further, by constructing the

suitable Lyapunov function, we show that the system (1.3) is globally attractive under

some appropriate conditions. If the system (1.3) is periodic one, by using the continu-

ous theorem of coincidence degree theory and Theorem 3.1, some sufficient conditions

are established, which guarantee the existence and global attractivity of positive peri-

odic solutions of the system (1.3). We note that the time delay has an effect on the

permanence and the global attractivity of periodic solution of system (1.3), but time

delay has no effect on the existence of positive periodic solutions.
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