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Abstract

This article is concerned with impulsive semilinear differential equations with
nonlocal initial conditions in Banach spaces. The approach used is fixed point
theorem combined with the technique of operator transformation. Existence results
are obtained when the nonlocal item is Lipschitz continuous. An example is also
given to illustrate the obtained theorem.
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1 Introduction
In this article, we deal with the existence of mild solutions for the following impulsive

semilinear nonlocal problem⎧⎨
⎩
u′(t) = Au(t) + f (t, u(t)), t ∈ [0,T], t �= ti,
u(0) = g(u),
�u(ti) = Ii(u(ti)), i = 1, 2, . . . , p, 0 < t1 < t2 < · · · < tp < T,

(1:1)

where A: D(A) ⊆ X ® X is the infinitesimal generator of strongly continuous semi-

group S(t) for t > 0 in a real Banach space X, �u(ti) = u(t+i ) − u(t−i ) constitutes an

impulsive condition. f and g are X -valued functions to be given later.

In recent years, the theory of impulsive differential inclusions has become an impor-

tant object of investigation because of its wide applicability in biology, medicine,

mechanics, control and in more and more fields. The impulsive conditions are the

appropriate model for describing some phenomena. For example, at certain moments,

the system changes their state rapidly, which cannot be modeled by traditional initial

value problems. For more detailed bibliography and exposition on this subject, we

refer to [1-6].

Here we first recall the study of nonlocal semilinear initial value problems. It was

first considered by Byszewski. Because it has better effect in the applications than the

classical initial condition, more and more authors have studied the following type of

semilinear differential equation under various conditions on S(t), f, and g,{
u′(t) = Au(t) + f (t, u(t)), t ∈ [0,T],
u(0) = g(u).

(1:2)
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For instance, Byszewski and Lakshmikantham [7] proved the existence and unique-

ness of mild solutions for nonlocal semilinear differential equations when f and g

satisfy Lipschitz type conditions. In [8], Ntouyas and Tsamatos studied the case with

compactness conditions. Byszewski and Akca [9] established the existence of solution

to functional-differential equation when the semigroup is compact, and g is convex

and compact on a given ball. Subsequently, Benchohra and Ntouyas [10] discussed sec-

ond order differential equation under compact conditions. Recently, Dong and Li [11]

study the semilinear differential inclusion when g is compact. By making full use of the

measure of noncompactness, Obukhovski and Zecca [12] discuss the controllability for

semilinear differential inclusions with a noncompact semigroup, Xue [13-15] estab-

lished new existence theorems for semilinear and nonlinear nonlocal problem,

respectively.

Next, we focus on the study of impulsive problems. Liu [5] discuss the classic initial

problem when f is Lipschitz continuous with respect to its second variable and the

impulsive functions Ii are Lipschitz continuous. Cardinali and Rubbioni [3] study the

multivalued impulsive semilinear differential equation by means of the Hausdorff mea-

sure of noncompactness. Liang et al. [16] investigate the nonlocal impulsive problems

under the assumptions of g is compact, Lipschitz, and g is not compact and not

Lipschitz, respectively.

The goal of this article is to make use of the Hausdorff measure of noncompactness

and the fixed point theory to deal with the impulsive semilinear differential equation

(1.1). We obtain the existence of mild solution of the nonlocal problem (1.1) when g is

Lipschitz continuous. In particular, in our proof, we do not need the Lipschitz continu-

ity of f. Thus the compactness of S(t) or f and the Lipschitz continuity of f are the spe-

cial case of our results.

This article is organized as follows. In Section 2, we recall some facts about the mea-

sure of noncompactness, fixed point theorem and semilinear differential equations. In

Section 3, we give the existence result of the problem (1.1) when g is Lipschitz contin-

uous. In Section 4, an example is given to illustrate our abstract results.

2 Preliminaries
Let E be a real Banach space, we introduce the Hausdorff measure of noncompactness

a defined on each bounded subset Ω of E by

α(�) = inf{r > 0; there are finite points x1, x2, . . . , xn ∈ E with � ⊂ ∪n
i=1B(xi, r)}.

Now, we recall some basic properties of the Hausdorff measure of noncompactness.

Lemma 2.1 [17]. For all bounded subsets Ω, Ω1, Ω2 of E, the following properties are

satisfied:

(1) Ω is precompact if and only if a(Ω) = 0;

(2) α(�) = α(�̄) = α(conv�) , where �̄ and convΩ mean the closure and convex hull

of Ω, respectively;

(3) a(Ω1) ≤ a(Ω2) when Ω1 ⊂ Ω2;

(4) a(Ω1 ∪ Ω2) ≤ max{a(Ω1), a(Ω2)};

(5) a(lΩ) = |l|a(Ω), for any l Î R;

(6) a(Ω1 + Ω2) ≤ a(Ω1) + a(Ω2), where Ω1 + Ω2 = {x + y; x Î Ω1,y Î Ω2};
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(7) if {Wn}+∞
n=1 is a decreasing sequence of nonempty bounded closed subsets of E and

lim
n→∞ α(Wn) = 0 , then ∩+∞

n=1Wn is nonempty and compact in E.

The map Q: D ⊂ E ® E is said to be an a-contraction, if there exists a positive con-

stant k < 1 such that a(QB) <ka(B) for every bounded closed subset B ⊂ D (see [18]).

Lemma 2.2 ([17]: Darbo-Sadovskii). If D ⊂ E is bounded closed and convex, the con-

tinuous map Q: D ® D is an a-contraction, then the map Q has at least one fixed

point in D.

Throughout this article, let (X, ||.||) be a real Banach space. We denote by C([0, T]; X)

the Banach space of all continuous functions from [0, T] to X with the norm ||u|| = sup

{||u(t) ||, t Î [0, T]} and by L1 ([0, T]; X) the Banach space of all X-valued Bochner integr-

able functions defined on [0, T] with the norm ‖u‖1 =
∫ T
0

∥∥u(t)∥∥ dt . Let PC([0, T]; X) =
{u: [0, T] ® X: u(t) be continuous at t ≠ ti and left continuous at t = ti and the right limit

u(t+i ) exists for i = 1, 2,... ,p}. It is easy to check that PC([0, T]; X) is a Banach space with

the norm ||u||PC = sup{||u (t)||, t Î [0, T]} and C([0, T]; X) ⊆ PC([0, T]; X) ⊆ L1([0, T]; X).

Moreover, we denote b by the Hausdorff measure of noncompactness of X, denote bc by
the Hausdorff measure of noncompactness of C ([0, T]; X) and denote bpc by the Haus-

dorff measure of noncompactness of PC([0, T]; X).

C0-semigroup S(t) is said to be equicontinuous if {S(t)x: x Î B} is equicontinuous for

t > 0 for all bounded set B ⊂ E. Consequently, the following lemma is easily verified.

Lemma 2.3 If the semigroup S(t) is equicontinuous and w Î L1([0, T]; R+), then the

set {
∫ t
0 S(t − s)u(s)ds,

∥∥u(s)∥∥ ≤ w(s) , ||u(s)|| ≤ w(s) for a.e. s Î [0, T]} is equicontinuous

for t Î [0, T].

Lemma 2.4 If W ⊆ PC([0, T]; X) is bounded, then we have

sup
t∈[0,T]

β(W(t)) ≤ βpc(W),

where W(t) = {u(t); u Î W} ⊂ X.

Proof. For arbitrary ε > 0, there exists Wi ⊆ PC([0, T]; X), i = 1, 2,..., n, such that

W ⊆ ∪n
i=1Wi and

diam(Wi) ≤ 2βpc(W) + ε, i = 1, 2, . . . ,n.

Hence, for every t Î [0, T], W(t) ⊆ ∪n
i=1Wi(t) , and diam(Wi(t)) ≤ diam(Wi), i = 1,

2,..., n, that is

2β(W(t)) ≤ max
1≤i≤n

diam(Wi(t)) ≤ max
1≤i≤n

diam(Wi) ≤ 2βpc(W) + ε,

and therefore,

sup
t∈[0,T]

β(W(t)) ≤ βpc(W).

To discuss the problem (1.1), we also need the following lemma.

Lemma 2.5 [4]. If W ⊆ C([0, T]; X) is bounded, then for all t Î [0, T],

β(W(t)) ≤ βc(W),

where W(t) = {u(t);u Î W} ⊂ X. Furthermore, if W is equicontinuous on [0, T], then b
(W(t)) is continuous on [0, T] and
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βc(W) = sup{β(W(t)) : t ∈ [0,T]}.

We will also use the sequential measure of noncompactness b0 generated by b, that
is, for any bounded subset Ω ⊂ X, we define

β0(�) = sup{β({xn : n ≥ 1}) : {xn}+∞
n=1 is a sequence in �}.

It follows that

β0(�) ≤ β(�) ≤ 2β0(�). (2:1)

In addition, when X is separable, we have b0(Ω) = b(Ω).

For the above related results on the sequential measure of noncompactness, we refer

to [17].

Definition 2.1 A function u Î C([0, T]; X) is said to be a mild solution of the nonlo-

cal problem (1.2), if

u(t) = S(t)g(u) +

t∫
0

S(t − s)f (s, u(s))ds

for all t Î [0, T].

Let Γf be the only mild solution of the following semilinear system

u′(t) = Au(t) + f (t), a.e. t ∈ [0,T],

u(0) = u0.

Now, we give the following result about b-estimation of mild solutions (see [19]),

similarly, see also [20,21].

Lemma 2.6 Let {fk}+∞
k=1 be a sequence of functions in L1([0, T]; X). Assume that there

exists � Î L1([0, T]; R+) satisfying∥∥fk(t)∥∥ ≤ ϕ(t) a.e on [0,T] for all k ≥ 1.

Then for all t Î [0, T], we have

β({(�fk)(t) : k ≥ 1}) ≤ 2M

t∫
0

β({fk(s) : k ≥ 1})ds.

Definition 2.2 A function u Î PC([0, T]; X) is said to be a mild solution of the non-

local problem (1.1), if it satisfies

u(t) = S(t)g(u) +

t∫
0

S(t − s)f (s, u(s))ds +
∑

0<ti<t

S(t − ti)Ii(u(ti)), 0 ≤ t ≤ T.

Since {S(t): t Î [0, T]} is a strongly continuous semigroup of bounded linear opera-

tors, we may assume ||S(t)|| ≤ M for all t Î [0, T]. In addition, let r be a finite positive

constant, and set Br: = {x Î X: ||x|| ≤ r} and Wr: = {u Î PC([0, T]; X): u(t) Î Br, ∀ t Î
[0, T]}.
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3 Main results
In this section, by using the method and technique of operator transformation, Haus-

dorff measure of noncompactness and fixed point, we give the existence result for the

nonlocal problem (1.1). First, we give the following hypotheses:

(HA) The C0 semigroup S(t) generated by A is equicontinuous;

(Hf) f: [0, T] × X ® X satisfies the following conditions:

(1) f(·, x): [0, T] ® X is measurable for all x Î X,

(2) f(t, ·): X ® X is continuous for a.e. t Î [0, T],

(3) there exists l(t) Î L1(0, T; R+) such that

β(f (t,D) ≤ l(t)β(D),

for a.e. t Î [0, T] and every bounded subset D ⊂ X;

(HI) Ii: X ® X is Lipschitz continuous with Lipschitz constant ki, for i = 1, 2,...,p;

(Hg) There exists a constant k ∈ (0, 1/M −
∑p

i=1
ki) such that

∥∥g(u) − g(v)
∥∥ ≤ k ‖u − v‖ , for u, v ∈ PC([0,T];X);

(Hr) M(
∥∥g(0)∥∥ +

∑p

i=1

∥∥Ii(0)∥∥ + T · sup
t∈[0,T],u∈Wr

∥∥f (t, u(t))∥∥) ≤ (1 − M(k +
∑p

i=1
ki))r. .

Theorem 3.1 Assume that the conditions (HA), (Hf)(1)-(3), (HI), (Hg), and (Hr) are

satisfied. Then the nonlocal problem (1.1) has at least one mild solution on [0, T] pro-

vided that M(4l1 + k +
∑p

i=1
ki) < 1 , where l1 =

∫ T
0 l(s)ds .

Define the operator R: PC([0, T]; X) ® C([0, T]; X) by

Ru(t) =

t∫
0

S(t − s)f (s, u(s))ds, 0 ≤ t ≤ T.

Using the dominated convergence theorem, it is easy to check that R is continuous

on PC([0, T]; X) by the continuity of f with respect to the second argument. Further-

more, by the assumption (Hr) and Lemma 2.3, we know R(Wr) is bounded and equi-

continuous on [0, T].

To prove the above theorem, we first give the following lemma.

Lemma 3.1 If the condition (Hr) holds, then for arbitrary bounded set W ⊂ Wr, we

have

β(RW(t)) ≤ 4M

t∫
0

β(f (s,W(s))ds, t ∈ [0,T].

Proof. For any t Î [0, T], due to the inequality (2.1), we obtain that for arbitrary

given ε > 0, there exists a sequence {vk}+∞
k=1 ⊂ W such that

β(RW(t)) ≤ 2β({Rvk(t) : k ≥ 1}) + ε. (3:1)
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Since

(�f (·, vk(·)))(t) = S(t)u0 +

t∫
0

S(t − s)f (s, vk(s))ds for all t ∈ [0,T],

we obtain

β({�f (·, vk(·)))(t) : k ≥ 1}) = β({(S(t)u0 +
t∫

0

S(t − s)f (s, vk(s))ds) : k ≥ 1})

= β({Rvk(t) : k ≥ 1}).

On the other hand, it follows from Lemma 2.6 that

β({(�f (·, vk(·)))(t) : k ≥ 1}) ≤ 2M

t∫
0

β({f (s, vk(s)) : k ≥ 1})ds.

Hence, we have

β({Rvk(t) : k ≥ 1}) ≤ 2M

t∫
0

β({f (s, vk(s)) : k ≥ 1})ds.

By applying (3.1), we can derive that

β(RW(t)) ≤ 4M

t∫
0

β({f (s, vk(s)))ds : k ≥ 1}ds + ε.

Since

β({f (s, vk(s))) : k ≥ 1} ≤ β(f (s,W(s))),

we infer that

β(RW(t)) ≤ 4M

t∫
0

β(f (s,W(s))ds + ε.

Since the above inequality holds for arbitrary ε > 0, it follows that

β(RW(t)) ≤ 4M

t∫
0

β(f (s,W(s))ds.

This completes the proof.

Proof of Theorem 3.1 Define the operator Q: PC([0, T]; X) ® PC([0, T]; X) by

(Qu)(t) = u(t) − S(t)g(u) −
∑

0<ti<t

S(t − ti)Ii(u(ti)), 0 ≤ t ≤ T.

Obviously, the fixed point of Q-l R is the mild solution of the nonlocal impulsive pro-

blem (1.1). Subsequently, we will prove that Q-l R has a fixed point by Lemma 2.2.
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At first, we prove that Q is Lipschitz continuous with constant 1 +M(k +
∑p

i=1 ki) . In

fact, by using the conditions (Hg) and (HI), for u1,u2 Î PC([0, T]; X), we have∥∥(Qu1)(t) − (Qu2)(t)
∥∥ ≤ ∥∥u1(t) − u2(t)

∥∥ +
∥∥S(t)g(u1) − S(t)g(u2)

∥∥
+

p∑
i=1

∥∥S(t − ti)Ii(u1(ti)) − S(t − ti)Ii(u2(ti))
∥∥

≤ ‖u1 − u2‖PC +Mk‖u1 − u2‖PC +M
p∑
i=1

ki‖u1 − u2‖PC

= (1 +M(k +
p∑
i=1

ki))‖u1 − u2‖PC.

Secondly, we show that Q is bijective. For this purpose, for any fixed v Î PC([0,T];

X), we consider the following equation:

(Qu)(t) = u(t) − S(t)g(u) −
∑

0<ti<t

S(t − ti)Ii(u(ti)) = v(t), 0 ≤ t ≤ T.

Now define the operator L: PC([0, T]; X) ® PC([0, T]; X) by

(Lu)(t) = S(t)g(u) +
∑

0<ti<t

S(t − ti)Ii(u(ti)) + v(t), 0 ≤ t ≤ T.

It is easy to see that the existence and uniqueness of the fixed point of L for any v Î
PC([0, T]; X) implies that Q is bijective. In the following, we will prove that L has a

unique fixed point in PC([0, T]; X). Indeed, for u1, u2 Î PC([0, T]; X),∥∥(Lu1)(t) − (Lu2)(t)
∥∥ ≤ ∥∥S(t)g(u1) − S(t)g(u2)

∥∥
+

p∑
i=1

∥∥S(t − ti)Ii(u1(ti)) − S(t − ti)Ii(u2(ti))
∥∥

≤ Mk‖u1 − u2‖PC +M
p∑
i=1

ki‖u1 − u2‖PC

≤ M(k +
p∑
i=1

ki)‖u1 − u2‖PC.

From the condition (Hg), we find that M(k +
∑p

i=1 ki) < 1 , that is, L is a contraction

operator on PC([0, T]; X). According to Banach’s fixed point theorem, L has a unique

fixed point. Thus, Q is bijective.

Third, we prove that Q-1 is Lipschitz continuous with constant

1/(1 − M(k +
∑p

i=1 ki)) . In fact, for v1, v2 Î PC([0, T]; X),

∥∥(Q−1v1)(t) − (Q−1v2)(t)
∥∥ ≤ ∥∥v1(t) − v2(t)

∥∥ +
∥∥S(t)g(Q−1(v1)) − S(t)g(Q−1(v2))

∥∥
+

p∑
i=1

∥∥S(t − ti)Ii(Q−1(v1)(ti)) − S(t − ti)Ii(Q−1(v2)(ti))
∥∥

≤ ‖v1 − v2‖PC +Mk
∥∥Q−1(v1) − Q−1(v2)

∥∥
PC

+M
p∑
i=1

ki
∥∥Q−1(v1) − Q−1(v2)

∥∥
PC

≤ ‖v1 − v2‖PC +M(k +
p∑
i=1

ki))
∥∥Q−1(v1) − Q−1(v2)

∥∥
PC.
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Next, we claim that (Q-1R)Wr ⊆ Wr. Actually, for any u Î Wr ⊆ PC([0, T]; X), let v =

(Q-1R)u, from the hypotheses (HI) and (Hg), we have

∥∥v(t)∥∥ ≤ ∥∥S(t)g(v)∥∥ +
p∑
i=1

∥∥S(t − ti)Ii(v)(ti))
∥∥

+

t∫
0

∥∥S(t − s)
∥∥ sup
t∈[0,T],u∈Wr

∥∥f (s, u(s)∥∥ ds

≤ M((k +
p∑
i=1

ki)‖v‖PC +
∥∥g(0)∥∥ +

p∑
i=1

∥∥Ii(0)∥∥
+ T · sup

t∈[0,T],u∈Wr

∥∥f (t, u(t))∥∥).
By the condition (Hr), we infer that ||v||PC ≤ r. Thus, (Q-1 R)Wr ⊆ Wr.

At last, we prove that Q-1R is a bpc-contraction. As Q-1 is Lipschitz continuous and R

is continuous on PC([0,T]; X), we have Q-1 R is continuous on PC([0,T]; X). Actually,

since R(Wr) is bounded and equicontinuous on [0, T], we can even deduce that Q-1 R

(Wr) ⊆ PC([0, T]; X) is equicontinuous on Ji, i = 0, 1, 2,..., p, where J0 = (0, t1], J1 = (t1,

t2],..., Jp-1 = (tp-1, tp], Jp = (tp, T]. Because Q-1 is Lipschitz continuous with constant

1/(1 − M(k +
∑p

i=1 ki)) for W ⊆ Wr, we obtain that

βpc(Q−1RW) ≤ βpc(RW)

/(
1 − M

(
k +

p∑
i=1

ki

))
.

Noting that RW ⊆ C([0, T]; X) ⊆ PC([0, T]; X), the following conclusion is obvious:

βpc(RW) ≤ βc(RW).

Thus,

βpc(Q−1RW) ≤ βc(RW)/(1 − M(k +
p∑
i=1

ki)).

On the other hand, from Lemma 3.1, for t Î [0, T], we know that

β(RW(t)) ≤ 4M

t∫
0

β(f (s,W(s))ds

≤ 4M

t∫
0

l(s)β(W(s))ds.

From Lemmas 2.4 and 2.5, we have

βc(RW) ≤ 4l1Mβpc(W).

Consequently,

βpc(Q−1RW) ≤ 4l1Mβpc(W)/(1 − M(k +
p∑
i=1

ki)).

Zhu et al. Advances in Difference Equations 2012, 2012:10
http://www.advancesindifferenceequations.com/content/2012/1/10

Page 8 of 11



Since M(4l1 + k +
∑p

i=1 ki) < 1 , the mapping Q-1 R ia a bpc-contraction in Wr. By

Lemma 2.2, the operator Q-1 R has a fixed point in Wr, which is just the mild solution

of nonlocal impulsive problem (1.1). This completes the proof.

Remark 3.1 In many previous articles, such as [4,11,14,16,19,22-24], the authors

obtain the existence results under many different conditions. However, they need the

compactness of the semigroup S(t) or nonlocal item g, or the Lipschitz continuity of f.

Here, we make use of the technique of operator transformation and the Hausdorff

measure of noncompactness to obtain the existence result, without the compactness

condition of nonlocal item g and Lipschitz assumption on f. Therefore, our result has

wide applications. Furthermore, we also have the following conclusions.

First, we list the following hypotheses:

(H′
A) The C0 semigroup S(t) is compact;

(Hf)(3’) f(t, ·): X ® X is compact for a.e. t Î [0, T].

(Hf)(3”) f(t, ·): X ® X is Lipschitz continuous, i.e., there exists a constant k’ > 0 such

that ||f(t, x)-f(t, y)|| ≤ k’||x - y|| for a.e. t Î [0, T], x,y Î X.

Theorem 3.2 Assume that the conditions (H′
A) , (Hf)(1)-(3), (HI), (Hg), and (Hr) are

satisfied. Then the nonlocal problem (1.1) has at least one mild solution on [0, T].

Theorem 3.3 Assume that the conditions (HA), (Hf)(1)(2)(3’), (HI), (Hg), and (Hr) are

satisfied. Then the nonlocal problem (1.1) has at least one mild solution on [0, T].

Moreover, if the condition (Hf)(3) in Theorem 3.1 is replaced by (Hf)(3”), then we

obtain the existence result (Theorem 2.1) of [16].

4 An example
As an application of Theorem 3.1, we consider the following semilinear impulsive

parabolic equation:

∂

∂t
w(t, x) = −A(x,D)w(t, x) + F(t,w(t, x)), t ∈ [0,T], x ∈ Ω, t �= ti,

Dαw(t, x) = 0, t ∈ [0,T], x ∈ ∂Ω for |α| ≤ m,

w(0, x) +
q∑
j=1

cjw(sj, x) = u0(x), 0 < s1 < · · · < sq < T, x ∈ Ω,

w(t+i , x) − w(t−i , x) = Ii(w(ti, x)), i = 1, 2, . . . , p,

where Ω is a bounded domain in Rn(n ≥ 1) with smooth boundary ∂Ω, A(x, D)u = Σ|

a|≤2maa(x) D
au is strongly elliptic, u0 Î L2(Ω), F: [0, T] × R ® R and cj are given real

numbers for j = 1, 2,...,q.

Take X = L2(Ω) and define the operator A: D(A) ⊆ X ® X by

D(A) = H2m(Ω) ∩ Hm
0 (Ω),

Au = −A(x,D)u.

It is turned out that the operator A generates an equicontinuous C0-semigroup on X.

More details about the fact can be found in the monograph of Pazy [25]. This implies

that the semigroup {T(t), t ≥ 0} generated by A satisfies the condition (HA).

Now, we assume that:
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(1) f: [0, T]x X ®X is defined by

f (t, y)(x) = F(t, y(x)), t ∈ [0,T], x ∈ Ω.

(2) g: PC([0, T; X]) ® X is a continuous function defined by

g(u)(x) = u0(x) −
q∑
j=1

cju(sj)(x), 0 < s1 < · · · < sq < T, x ∈ Ω,

where u(s)(x) = w(s, x),0 <s <T, x Î Ω.

(3) Ii: X ® X is a continuous function for each i = 1, 2,... ,p, defined by

Ii(y)(x) = Ii(y(x)).

Under these assumptions, the above partial differential system (4.1) can be reformu-

lated as the abstract semilinear impulsive problem (1.1), and conditions (Hf), (Hg), and

(Hr) are satisfied with k =
∑q

j=1

∣∣cj∣∣, ∥∥g(0)∥∥ = ‖u0‖ . In addition, if the inequality

M(4l1 +
∑q

j=1

∣∣cj∣∣ + ∑p
i=1 ki) < 1 holds, then due to Theorem 3.1, the problem (4.1) has

at least one mild solution u Î C([0,T]; L2(Ω)).
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