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Abstract
We consider the nonoscillatory half-linear difference equation

�(rk�(�xk)) + ck�(xk+1) = 0, �(x) := |x|p–1 sgn x, p > 1,

and we study the influence of the perturbations r̃, c̃ on the oscillatory properties of
the equation

�
[
(rk + r̃k)�(�xk)

]
+ (ck + c̃k)�(xk+1) = 0.

The presented oscillation and nonoscillation criteria are obtained using the variational
principle and the so-called modified Riccati technique.

1 Introduction
In this article, we study oscillatory properties of the second-order half-linear difference
equation of the form

L[xk] := �
(
rk�(�xk)

)
+ ck�(xk+) = , �(x) := |x|p– sgnx, p > , ()

where r, c are real-valued sequences, rk �= . If p = , then () reduces to the linear Sturm-
Liouville difference equation

�(rk�xk) + ckxk+ = . ()

The basic qualitative theory of () has been established in the article [] and is summarized
in the books [, ].Many oscillatory properties of () are very similar to that of (), however
the absence of the linearity requires sometimes to use differentmethods in half-linear case.
In this article, we deal with the so-called perturbation principle. We suppose that equa-

tion () is nonoscillatory and that h is a solution of () and we give conditions under which
the perturbed equation

L̃[xk] := �
[
(rk + r̃k)�(�xk)

]
+ (ck + c̃k)�(xk+) = , ()

where rk + r̃k �= , is oscillatory or nonoscillatory. Similar problem has been studied in [,
], where the case r̃k =  has been considered. We extend some results of those papers to
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the general case r̃k �=  and we also show that the assumption limk→∞ rkhk�(�hk) = ∞
considered in [] can be replaced by alternative conditions. We are motivated also by the
results of [, ], where the two-term perturbations of the half-linear differential equation

(
r(t)�

(
x′))′ + c(t)�(x) = , r(t) > 

are studied.
The article is organized as follows. In the next section, we recall the basic methods of

oscillation theory for (), in particular the variational principle and the Riccati technique.
Section  is devoted to the so-called modified Riccati technique. In Section , we present
the main results of this article, the oscillation and nonoscillation criteria for the perturbed
equation () and in the last section, we show how the results can be applied to the per-
turbed equation of the Euler type.

2 Preliminaries
Oscillatory properties of () are defined using the concept of the generalized zero. We
say that a solution x of () has a generalized zero in an interval (m,m + ] if xm �=  and
rmxmxm+ ≤ . Equation () is said to be disconjugate on an interval [m,n] if any solution
of () has at most one generalized zero on (m,n+ ] and the solution for which xm =  has
no generalized zero on (m,n+ ]. Consequently, equation () is said to be nonoscillatory if
there existsm ∈N such that this equation is disconjugate on [m,n] for every n >m. In the
opposite case, () is said to be oscillatory.
One of the basic methods used to investigate (non)oscillation of () is the variational

technique which relates nonoscillation of () to a positivity of a certain p-degree func-
tional.

Lemma  [] Equation () is nonoscillatory if and only if there exists m ∈ N such that

F (y,m,∞) :=
∞∑
k=m

[
rk|�yk|p – ck|yk+|p

]
> 

for every nontrivial sequence y ∈U(m), where

U(m) :=
{
y = {yk}∞k=; yk = ,k ≤ m,∃n >m : yk = ,k ≥ n

}
.

The second basic method used is the Riccati technique which is based on the relation-
ship between nonoscillation of () and the solvability (in a neighborhood of infinity) of the
Riccati-type equation

R[wk] := wk+ + ck –
rkwk

�(�–(rk) +�–(wk))
= , ()

where �– is the inverse function of �, i.e. �–(s) = |s|q– sgn s, q := p
p– . Indeed, if x is a

solution of () such that xk �=  on some discrete interval [m,∞), then wk = rk�(�xk/xk) is
a solution of () on [m,∞). More precisely, we have the following equivalent statements.

Lemma  [] The following statements are equivalent:
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(i) Equation () is nonoscillatory.
(ii) There exists a solution w of () such that rk +wk >  for large k.
(iii) There exists a solution w of the Riccati inequality R[wk] ≤  such that rk +wk >  for

large k.

If () is nonoscillatory, then there exists a solutionwk of () such that rk +wk >  for large
k. Among all solutions w with this property, there is the so-calledminimal solution w̃ for
which w̃k < wk on some interval [m,∞), where rk + wk >  and rk + w̃k > . The minimal
solution w̃ can be constructed as follows. Let () be disconjugate on [n,∞) and let N > n.
Denote by xN the solution of () which satisfies xNN = , xNN+ �=  and let wN = r�(�xN /xN )
be the solution of () associated with xN . Then

w̃k = lim
N→∞wN

k for every k ∈ [n + ,∞). ()

For details of this construction see []. The solution x̃ of () which is associated with the
minimal solution w̃ of () by the substitution w̃ = r�(�x̃/x̃), is called the recessive solution
of (). The recessive solution is defined uniquely up to themultiplication by a real constant.
Next, we formulate a comparison statement for minimal solutions of two Riccati equa-

tions. The Riccati equation associated with () is

R̃[wk] := wk+ + ck + c̃k –
(rk + r̃k)wk

�(�–(rk + r̃k) +�–(wk))
= . ()

Lemma  []
(i) Let () be nonoscillatory and let r̃k ≤ , c̃k ≥  for large k. Further, let w̃ and w̄ be the

minimal solutions of the corresponding Riccati equations () and (), respectively.
Then there exists m ∈ Z such that w̃k ≤ w̄k for k ∈ [m,∞).

(ii) If ck ≥  and
∑∞ r–qk = ∞, then the minimal solution of () satisfies w̃k ≥  for

large k.

Note that the statement (ii) of the previous lemma is a special case of the statement (i).
Condition

∑∞ r–qk = ∞ implies that the recessive solution of the equation�(rk�(�xk)) =
 is a constant sequence, hence the minimal solution of the associated Riccati equation is
w =  and this is compared with the minimal solution of ().

3 Modified Riccati equation and related results
In this section, we suppose that equation () is nonoscillatory, by hwe denote a positive so-
lution of this equation and suppose that both the coefficients rk , rk + r̃k are positive for large
k. This sign restriction is needed when proving inequalities (), () and estimate () be-
low, for details see []. Since these estimates play the crucial role in the (non)oscillation
criteria based on themodified Riccati technique presented in this section, we suppose that
rk > , rk + r̃k >  for large k throughout the whole Section .
Denote

Gk := (rk + r̃k)hk�(�hk), ()

http://www.advancesindifferenceequations.com/content/2012/1/101
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define the function

H(k, v) := v + (rk + r̃k)hk+�(�hk) –
(rk + r̃k)(v +Gk)h

p
k+

�(hqk�–(rk + r̃k) +�–(v +Gk))
, ()

and consider the so-called modified Riccati equation

Rm[vk] := �vk +
[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ +H(k, vk) = . ()

We show that there is a relation between operators given in () and () and estimate
the function H(k, v) by a term involving v, which, in turn, enables us to compare Riccati
equation associated with () with the Riccati equation related to a certain linear equation.

Lemma  Let w be a sequence such that rk + r̃k +wk �=  and suppose that vk = hpkwk –Gk.
Then

Rm[vk] = hpk+R̃[wk].

Proof By a direct computation

�vk = hpk+wk+ – hpkwk –�
(
(rk + r̃k)�(�hk)

)
hk+ – (rk + r̃k)|�hk|p

and

H(k, vk) = hpkwk + (rk + r̃k)|�hk|p – (rk + r̃k)h
p
kh

p
k+wk

�(hqk�–(rk + r̃k) +�–(hpkwk))

= hpkwk + (rk + r̃k)|�hk|p – (rk + r̃k)h
p
k+wk

�(�–(rk + r̃k) +�–(wk))
.

Hence,

�vk +�
(
(rk + r̃k)�(�hk)

)
hk+ +H(k, vk) = hpk+wk+ –

(rk + r̃k)h
p
k+wk

�(�–(rk + r̃k) +�–(wk))
.

Adding the term hpk+(ck + c̃k) to both sides of the last equality, we obtain

�vk + hk+L̃[hk] +H(k, vk) = hpk+R̃[wk],

where L̃ is the operator defined in (). Since h is a solution of (), we have the required
identity. �

Lemma  Let H(k, v) be defined in ().
(i) It holds H(k, v)≥  for v > –(rk + r̃k)hk(�(hk) +�(�hk)) with the equality if and

only if v = .
(ii) Suppose that hk�hk >  for k ∈ [m,∞) and denote Rk = 

q (rk + r̃k)hkhk+|�hk|p–.
Then we have the following inequalities for v≥  and k ∈ [m,∞):

(Rk + v)H(k, v)≥ v, p ∈ (, ], ()

(Rk + v)H(k, v)≤ v, p ≥ . ()

http://www.advancesindifferenceequations.com/content/2012/1/101
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(iii) Suppose that lim infk→∞ Gk > , then for large k:

(Rk + v)H(k, v) = v
(
 + o()

)
as v → . ()

(iv) Suppose that hk�hk >  for large k and

∞∑ �hk
hk

= ∞,
∞∑(

�hk
hk

)

< ∞, ()

 < lim inf
k→∞

Gk , lim sup
k→∞

Gk <∞. ()

Then
∑∞ H(k, v) = ∞ for every v > .

Proof The proof of the statements (i), (ii), (iii) (with rk + r̃k replaced by rk) can be found in
[].
(iv) Let v >  be arbitrary. The function H(k, v) can be written as follows:

H(k, v) = v + (rk + r̃k)hk+�(�hk) –
(rk + r̃k)(v +Gk)h

p
k+

�(hqk�–(rk + r̃k) +�–(v +Gk))

= v +
hk+
hk

Gk –
(v +Gk)h

p
k+

�(hqk +�–( v+Gk
rk+r̃k

))

= v +
hk+
hk

Gk –
(
hk+
hk

)p (v +Gk)
�( +�–( v+Gk

(rk+r̃k )h
p
k
))
.

The second condition in () implies �hk
hk

→  as k → ∞, hence, using the formula

( + x)s =
∞∑
j=

(
s
j

)
xj =  + sx +O

(
x

)
, as x→ , s ∈ R, ()

we have

(
hk+
hk

)p

=
(
 +

�hk
hk

)p

=  + p
�hk
hk

+O
((

�hk
hk

))
as k → ∞

and since the first condition in () holds, we have

�–
(

v +Gk

(rk + r̃k)h
p
k

)
= �–

(Gk( + v
Gk
)

(rk + r̃k)h
p
k

)

=
�hk
hk

�–
(
 +

v
Gk

)
→  as k → ∞.

Consequently, again using () and conditions (),

[
�

(
 +�–

(
v +Gk

(rk + r̃k)h
p
k

))]–

=
(
 +

�hk
hk

�–
(
 +

v
Gk

))–p

=  + ( – p)
�hk
hk

�–
(
 +

v
Gk

)
+O

((
�hk
hk

))
,

http://www.advancesindifferenceequations.com/content/2012/1/101
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as k → ∞. Hence, H(k, v) can be written in the form

H(k, v) = v +
(
 +

�hk
hk

)
Gk –

(
 + p

�hk
hk

+O
((

�hk
hk

)))
(v +Gk)

×
(
 – (p – )

�hk
hk

�–
(
 +

v
Gk

)
+O

((
�hk
hk

)))

= v +Gk +
�hk
hk

Gk

– (v +Gk)
[
 – (p – )

�hk
hk

�–
(
 +

v
Gk

)
+ p

�hk
hk

+O
((

�hk
hk

))]

=
�hk
hk

Gk +Gk

(
 +

v
Gk

)[
(p – )

�hk
hk

�–
(
 +

v
Gk

)
– p

�hk
hk

]
+O

((
�hk
hk

))

=
�hk
hk

Gk

[
 + (p – )

∣∣∣∣ + v
Gk

∣∣∣∣
q

– p
(
 +

v
Gk

)]
+O

((
�hk
hk

))
,

as k → ∞.
Consider the functionA(x) := + (p–)|+x|q –p(+x). By a direct computationA′(x) =

p(�–( + x) – ) and A′′(x) = q| + x|q–. This means that the function A(x) has a local
minimum at x̃ =  and it is positive and increasing for x > .
By conditions () there exist constants c > , d >  such that c <Gk < d for large k. Since

v
Gk

> v
d , we have

 + (p – )
∣∣∣∣ + v

Gk

∣∣∣∣
q

– p
(
 +

v
Gk

)
>  + (p – )

∣∣∣∣ + v
d

∣∣∣∣
q

– p
(
 +

v
d

)
= A

(
v
d

)
> .

Consequently,

H(k, v) > cA
(
v
d

)
�hk
hk

+O
((

�hk
hk

))
.

The convergence of the series
∑∞ O((�hk

hk
)) follows from the second condition in ().

This means, by the first condition in (), that
∑∞ H(k, v) = ∞. �

4 Oscillation and nonoscillation criteria
We start with a statement based on the variational principle. This statement generalizes a
result of [] dealing with the case r̃k = . Here, we do not need the sign restriction on rk ,
rk + r̃k , we suppose that rk �=  and rk + r̃k �=  for large k.

Theorem  Let h be the recessive solution of () and let �(r̃k/rk)≤  for large k. If

∞∑[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ = ∞, ()

then () is oscillatory.

http://www.advancesindifferenceequations.com/content/2012/1/101
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Proof The proof is based on Lemma . Let N ∈ N be arbitrary and let K , L, M, N be
positive integers satisfying N < K < L <M < N , where K is such that () is disconjugate
on [K ,∞) and �(r̃k/rk)≤  holds on this interval, and L is such that h has no generalized
zero on [L,∞), i.e. rkhkhk+ >  on [L,∞). The values M,N will be specified later. Define
the sequence

yk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, k =N, . . . ,K ,

fk , k = K , . . . ,L,

hk , k = L, . . . ,M,

gk , k =M, . . . ,N ,

, k ≥ N ,

()

where f is any sequence satisfying fK = , fL = hL and g is a solution of () forwhich gM = hM ,
gN = . The fact that such a solution really exists follows from the disconjugacy of () on
[K ,∞) and from the homogeneity of the solution space of (). Indeed, if x is a solution of
() given by xN = , xN– �= , then rkxkxk+ >  on [M,N – ] and gk = hM

xM
xk is the solution

of () satisfying the required boundary conditions. It also holds rkgkgk+ >  on [M,N –].
Denote

w[h] := r
�(�h)
�(h)

, w[g] := r
�(�g)
�(g)

the corresponding solutions of Riccati equation (). Set

F (y;K ,L – ) =
L–∑
k=K

[
(rk + r̃k)|�fk|p – (ck + c̃k)|fk+|p

]
=: α ∈R. ()

Next, using summation by parts, and since h is a solution of (), we have

F (y;L,M – ) =
M–∑
k=L

[
(rk + r̃k)|�hk|p – (ck + c̃k)|hk+|p

]

= (rk + r̃k)�(�hk)hk
∣∣∣M
L

–
M–∑
k=L

[
�

[
(rk + r̃k)�(�hk)

]
+ (ck + c̃k)�(hk+)

]
hk+

=
(
 +

r̃k
rk

)
w[h]
k |hk|p

∣∣∣M
L
–

M–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

=
(
 +

r̃M
rM

)
w[h]
M |hM|p –

M–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ + α, ()

where α ∈R.
Concerning interval [M,N], since gN =  and h has no generalized zero in this interval,

it follows from [, Lemma ] that w[g]
k < w[h]

k for k ∈ [M,N – ]. This means that

rk�(�gk)gk < rk
�(�hk)
�(hk)

|gk|p, k ∈ [M,N – ]. ()

http://www.advancesindifferenceequations.com/content/2012/1/101
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At the same time,  < rkgkgk+
rkhkhk+

= gk
hk

gk+
hk+

for k ∈ [M,N – ], hence the condition gM = hM
implies gkhk >  for k ∈ [M,N – ]. Hence, () implies rk(�gkhk – �hkgk) <  for k ∈
[M,N – ] and

�

(
gk
hk

)
=
rk(�gkhk – gk�hk)

rkhkhk+
< , k ∈ [M,N – ]. ()

Next, again summing by parts and using the boundary conditions and the fact that g is
a solution of (),

F (y;M,N – ) =
N–∑
k=M

[
(rk + r̃k)|�gk|p – (ck + c̃k)|gk+|p

]

= –
(
 +

r̃M
rM

)
w[g]
M |hM|p –

N–∑
k=M

[
�

(
r̃k�(�gk)

)
+ c̃k�(gk+)

]
gk+.

Using () and since �(r̃k/rk) < ,

N–∑
k=M

[
�

(
r̃k�(�gk)

)
+ c̃k�(gk+)

]
gk+

=
N–∑
k=M

[
�

(
r̃k
rk
rk�(�gk)

)
gk+ + c̃k|gk+|p

]

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�gk+)gk+ +

r̃k
rk

�
(
rk�(�gk)

)
gk+ + c̃k|gk+|p

]

≥
N–∑
k=M

[
�

(
r̃k
rk

)
rk+

�(�hk+)
�(hk+)

|gk+|p – r̃k
rk
ck|gk+|p + c̃k|gk+|p

]

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�hk+)hk+ –

r̃k
rk
ck|hk+|p + c̃k|hk+|p

] |gk+|p
|hk+|p

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�hk+)hk+ +

r̃k
rk

�
(
rk�(�hk)

)
hk+ + c̃k|hk+|p

] |gk+|p
|hk+|p

=
N–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

|gk+|p
|hk+|p .

Since () holds, by the second mean value theorem of summation calculus, see [,
Lemma .], there exists n ∈ [M,N – ] such that

N–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

|gk+|p
|hk+|p

≥ |gM|p
|hM|p

n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

+
|gN |p
|hN |p

N–∑
k=n

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

http://www.advancesindifferenceequations.com/content/2012/1/101
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=
n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+.

Combining the above computations, we have

F (y;M,N – ) ≤ –
(
 +

r̃M
rM

)
w[g]
M |hM|p –

n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+. ()

Consequently, using (), () and (), we obtain

F (y;N,∞) =
∞∑

k=N

[
(rk + r̃k)|�yk|p – (ck + c̃k)|yk+|p

]

=F (y;K ,L – ) +F (y;L,M – ) +F (y;M,N – )

≤ α + α +
(
 +

r̃M
rM

)
|hM|p(w[h]

M –w[g]
M

)

–
n–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+.

Let α >  be arbitrary. It follows from condition () thatM can be taken so large that

n–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ ≥ α + α + α.

Since h is the recessive solution of (), i.e. w[h] is the minimal solution of (), from its
construction () we have

w[h]
M = lim

N→∞w[g]
M .

Hence, N can be taken so large that

(
 +

r̃M
rM

)
|hM|p(w[h]

M –w[g]
M

)
< α.

Consequently, ifM, N are taken as above, then

F (y;N,∞)≤ ,

and this means that equation () is oscillatory by Lemma . The proof is complete. �

The following results are based on themodified Riccati technique. Here we suppose that
h is a positive solution of the nonoscillatory equation () and rk > , rk + r̃k >  for large k.
Denote

Ck :=
[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+, Rk :=


q
(rk + r̃k)hkhk+|�hk|p–. ()

http://www.advancesindifferenceequations.com/content/2012/1/101
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First we present a statement, where, using the global inequalities (), (), equation ()
is compared with the linear equation

�(Rk�yk) +Ckyk+ = . ()

This statement generalizes [, Theorems . and .].

Theorem  Let h be a solution of () such that hk > , hk�hk >  for large k.
(i) Let p≥ , and suppose that Ck ≥  for large k and

∑∞ 
Rk

= ∞. If the linear
equation () is nonoscillatory, then equation () is also nonoscillatory.

(ii) Let p≤ , and suppose that h is the recessive solution of (), r̃k ≤ , c̃k ≥  for large k.
If the linear equation () is oscillatory, then equation () is also oscillatory.

Proof (i) Nonoscillation of equation () means that there exists a solution v of the Riccati
equation

�vk +Ck +
vk

Rk + vk
= 

such that Rk +vk >  for large k. Assumptions of the theorem imply, in view of Lemma (ii),
that vk ≥  for large k. Hence, from Lemma (ii) it follows

(Rk + vk)H(k, vk) ≤ vk for large k,

i.e. vk solves the inequality

�vk +Ck +H(k, vk) ≤ 

for large k. Consequently, by Lemma , we have that the sequence w = h–p(v + G) is a
solution of Riccati inequality R̃[wk] ≤ . Moreover,

rk + r̃k +wk = rk + r̃k + h–pk vk + (rk + r̃k)�(�hk/hk) = h–pk vk +
(
 +

r̃k
rk

)(
rk +w[h]

k
)
,

where w[h]
k is a solution of () related to a nonoscillatory solution h of () and hence rk +

w[h]
k >  for large k. Since vk ≥  for large k, we have rk + r̃k + w̃k >  for large k. Hence,

equation () is nonoscillatory according to Lemma .
(ii) Suppose, by contradiction, that equation () is nonoscillatory and let w be a solution

of the associated Riccati equation (). Then, by Lemma , v = hpw–G solves the modified
Riccati equation (). Since r̃k ≤ , c̃k ≥ , it follows from Lemma  that wk ≥ w[h]

k for large
k, where w[h]

k = rk�(�hk/hk) is the minimal solution of (). This means that vk = hpkwk

–Gk = hpk(wk – ( + r̃k
rk
)w[h]

k ) ≥  for large k. Applying inequality () we have

(Rk + vk)H(k, vk) ≥ vk

for large k and hence v solves the inequality

�vk +Ck +
vk

Rk + vk
≤ ,

http://www.advancesindifferenceequations.com/content/2012/1/101
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which, together with the fact that Rk +vk >  for large k, means that () is nonoscillatory.�

The next two statements are based on the estimate () which holds for all p > . Hence
we do not have to distinguish between the cases p > , p < . The idea of the proofs is the
same as in Theorem  and we skip the proofs since they are similar to that in [, Theo-
rems . and .]. The only difference is that we replace rk by rk + r̃k .

Theorem  Suppose that h is a solution of () such that hk > , hk�hk >  for large k and
let

∞∑ 
Rk

= ∞,
∞∑

Ck <∞, Ck ≥  for large k ()

and

lim inf
k→∞

Gk > . ()

If there exists ε >  such that the linear equation

�(Rk�yk) + ( + ε)Ckyk+ =  ()

is nonoscillatory, then equation () is also nonoscillatory.

Theorem  Suppose that h is the recessive solution of () such that hk > , hk�hk > ,
c̃k ≥ , r̃k ≤  for large k, conditions () hold and

lim
k→∞

Gk = ∞. ()

If there exists ε >  such that the linear equation

�(Rk�yk) + ( – ε)Ckyk+ =  ()

is oscillatory, then equation () is also oscillatory.

The next statement is a version of Theorem . In the proof of the statement we use
Lemma (iv). This enables to replace condition () by alternative conditions. This state-
ment is new also in case r̃ = .

Theorem  Suppose that h is the recessive solution of () such that hk > , hk�hk > ,
c̃k ≥ , r̃k ≤  for large k and conditions (), () and () hold. If there exists ε >  such
that the linear equation () is oscillatory, then equation () is also oscillatory.

Proof Suppose, by contradiction, that equation () is nonoscillatory and let w be a solu-
tion of the associated Riccati equation () and v = hpw –G the associated solution of the
modified Riccati equation (). Similarly as in the proof of Theorem (ii), we conclude that
vk ≥  for large k. Since Ck ≥  for large k and H(k, vk) is nonnegative, we have for large k

�vk = –Ck –H(k, vk) ≤ .

http://www.advancesindifferenceequations.com/content/2012/1/101
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This means that there exists a finite limit limk→∞ vk . Summing the modified Riccati equa-
tion from N to k, N being sufficiently large, and using the fact that v is nonnegative, we
obtain

vN ≥
k∑

j=N

Cj +
k∑

j=N

H(j, vj).

Letting k → ∞ and since
∑∞ Ck < ∞, we have

∑∞ H(k, vk) < ∞. From Lemma (iv) it
follows that limk→∞ vk = . Now we can use the estimate (). There exists N such that

H(k, vk) >
(
 –

ε



)
vk

Rk + vk
for k >N.

We have

Rk =

q
(rk + r̃k)hkhk+|�hk|p– = 

q
Gk

(
 +

hk
�hk

)
>

q
Gk .

Hence, by (), limk→∞ vk
Rk

=  and similarly as in [, Theorem .], we obtain for suffi-

ciently large k the estimate 
Rk
–ε +vk

< – ε


Rk+vk
. Hence,

H(k, vk) >
(
 –

ε



)
vk

Rk + vk
>

vk
Rk
–ε

+ vk

for sufficiently large k. This means that vk solves the inequality

�vk +Ck +
vk

Rk
–ε

+ vk
< ,

which is the Riccati inequality associated with equation () and since Rk
–ε

+ vk > , we
have nonoscillation of (). This is a contradiction. �

It is known (see []), that if ck ≥ , rk > ,
∑∞ r–k = ∞,

∑∞ ck < ∞, then the linear
equation () is nonoscillatory provided

lim sup
k→∞

k–∑
r–j

∞∑
j=k

cj <


, ()

and it is oscillatory provided

lim inf
k→∞

k–∑
r–j

∞∑
j=k

cj >


. ()

Applying this criterion to equations (), (), we obtain the following result.

Corollary  Suppose that h is a solution of () such that hk > , hk�hk >  for large k and
let conditions () and () be satisfied.

http://www.advancesindifferenceequations.com/content/2012/1/101
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(i) If

lim sup
k→∞

k–∑ 
(rj + r̃j)hjhj+|�hj|p–

∞∑
j=k

Cj <

q

, ()

then equation () is nonoscillatory.
(ii) Let moreover h be the recessive solution of (), c̃k ≥ , r̃k ≤  for large k and let either

condition () or conditions () and () be satisfied. If

lim inf
k→∞

k–∑ 
(rj + r̃j)hjhj+|�hj|p–

∞∑
j=k

Cj >

q

,

then equation () is oscillatory.

Proof Consider, e.g., the case (i), the case (ii) is analogous. Condition () can be written
in the form

lim sup
k→∞

k–∑
R–
j

∞∑
j=k

Cj <


.

Consequently, there exists ε >  such that

lim sup
k→∞

k–∑
R–
j

∞∑
j=k

( + ε)Cj <


,

hence equation () is nonoscillatory and this implies, by Theorem , nonoscillation of
(). �

Remark  If r̃k = , c̃k ≥ , then the statements of Theorem  reduce to [, Theorems .
and .]. More precisely, (non)oscillation of

�
(
rk�(�xk)

)
+ (ck + c̃k)�(xk+) =  ()

is compared with that of the linear equation

�
(
R
k�yk

)
+C

k yk+ = , R
k :=


q
rkhkhk+|�hk|p–,C

k := c̃kh
p
k+. ()

In part (ii) of Theorem  we suppose that p ≤ , r̃k ≤ , c̃k ≥ . Under these conditions, if
equation () is oscillatory, then () is oscillatory by [, Theorem .] and oscillation of
() follows then by the Sturm comparison theorem, see, e.g., []. However, Theorem , part
(ii) extends [, Theorem .] in case when the perturbation c̃k is ‘not too much positive’
so that equation () and hence also () is nonoscillatory.
Similarly, if r̃k = , c̃k ≥ , then Theorem  reduces to [, Theorem .] and Theorem 

reduces to [, Theorem .]. Theorem  is new also in case r̃k =  and it allows us to
drop the condition limk→∞ rkhk�(�hk) = ∞ considered in [, Theorem .] and replace
it by alternative conditions. This is useful when studying perturbations of the Euler-type
equation, see the next section.
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Remark  The conditions r̃k ≤ , c̃k ≥  considered in Theorem (ii), Theorem  and
Theorem  are used to show that wk – ( + r̃k/rk)w[h]

k ≥ , where w and w[h] are the solu-
tions of the Riccati type equations associated with equations () and (), respectively. We
conjecture thatwk and (+ r̃k/rk)w[h]

k can be compared by another argument thanLemma,
so the sign restriction on the perturbation terms r̃k , c̃k can be relaxed, similarly as in the
continuous case [].

5 Application
In this section, we apply the previous results to the perturbed Euler-type difference equa-
tion

�
(
( + r̃k)�(�xk)

)
+

(
γp

(k + )p
+ c̄k

)
�(xk+) = , γp :=

(
p – 
p

)p–

. ()

This equation is considered as a perturbation of the nonoscillatory equation

�
(
�(�xk)

)
+ ck�(xk+) = , ()

where

ck = –
��(�hk)
�(hk+)

, hk = k
p–
p . ()

It is easy to see that hk = k
p–
p is a solution of () and it was shown in [] that if p ≥ ,

then it is the recessive solution. By a direct computation, as shown in [], the coefficient
ck is of the form

ck =
γp

(k + )p
(
 +O

(
(k + )–

))
, as k → ∞

and also

�hk =
p – 
p

k–

p
(
 +O

(
k–

))
,

hk�(�hk) =
(
p – 
p

)p–(
 +O

(
k–

))
,

hkhk+(�hk)p– =
(
p – 
p

)p–

k
(
 +O

(
k–

))
,

��(�hk) = –
(
p – 
p

)p

(k + )–+

p
(
 +O

(
(k + )–

))
,

as k → ∞. Consequently,

�hk
hk

=
p – 
p

k–
(
 +O

(
k–

))
, as k → ∞,

hence conditions () are satisfied and we have

Gk =
(
p – 
p

)p–

( + r̃k)
(
 +O

(
k–

))
, Rk = 

(
p – 
p

)p–

( + r̃k)k
(
 +O

(
k–

))
,
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and

Ck = �r̃k�(�hk+)hk+ + r̃k��(�hk)hk+ +
(
c̄k –O

(
(k + )–p–

))
hpk+

=
(
p – 
p

)p–

�r̃k
(
 +O

(
(k + )–

))
–

(
p – 
p

)p

(k + )–r̃k
(
 +O

(
(k + )–

))

+ (k + )p–c̄k –O
(
(k + )–

)
, ()

as k → ∞. Using these computations, Corollary  applied to () reads as follows.

Corollary  Let Ck be given in () and suppose that

∞∑
Ck <∞, Ck ≥  for large k, lim inf

k→∞
( + r̃k) > ,

∞∑ 
( + r̃k)k

= ∞.

(i) If

lim sup
k→∞

k–∑ 
( + r̃j)j

∞∑
j=k

Cj <



(
p – 
p

)p–

,

then equation () is nonoscillatory.
(ii) Suppose moreover that p ≥ , limk→∞ c̄k(k + )p+ = ∞, r̃k ≤  for large k. If

lim inf
k→∞

k–∑ 
( + r̃j)j

∞∑
j=k

Cj >



(
p – 
p

)p–

,

then equation () is oscillatory.
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