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Abstract
We consider the nonoscillatory half-linear difference equation

A ®(Ax)) + G Pls) =0, PX) = x| sgnx, p>1,

and we study the influence of the perturbations 7, ¢ on the oscillatory properties of
the equation

Al +T) P(AX)] + (c + T DPxey1) = 0.

The presented oscillation and nonoscillation criteria are obtained using the variational
principle and the so-called modified Riccati technique.

1 Introduction
In this article, we study oscillatory properties of the second-order half-linear difference

equation of the form
Lixg] := A(rde(Axk)) + e ®@(wps1) =0, D(x) =[x sgnx, p>1, (1)

where r, ¢ are real-valued sequences, r¢ # 0. If p = 2, then (1) reduces to the linear Sturm-

Liouville difference equation
A(ri Axy) + cxxpe1 = 0. (2)

The basic qualitative theory of (1) has been established in the article [1] and is summarized
in the books [2, 3]. Many oscillatory properties of (1) are very similar to that of (2), however
the absence of the linearity requires sometimes to use different methods in half-linear case.

In this article, we deal with the so-called perturbation principle. We suppose that equa-
tion (1) is nonoscillatory and that 4 is a solution of (1) and we give conditions under which

the perturbed equation
Ll = A0k + 7) @(Axi0)] + (e + G) Pwenn) = 0, 3)
where 7y + 7 # 0, is oscillatory or nonoscillatory. Similar problem has been studied in [4,

5], where the case 7x = 0 has been considered. We extend some results of those papers to
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the general case 7 # 0 and we also show that the assumption limy_, oo r¢/ix ®(AMy) = 00
considered in [4] can be replaced by alternative conditions. We are motivated also by the
results of [6, 7], where the two-term perturbations of the half-linear differential equation

(r)@(x)) +c®)@) =0, r(t)>0

are studied.

The article is organized as follows. In the next section, we recall the basic methods of
oscillation theory for (1), in particular the variational principle and the Riccati technique.
Section 3 is devoted to the so-called modified Riccati technique. In Section 4, we present
the main results of this article, the oscillation and nonoscillation criteria for the perturbed
equation (3) and in the last section, we show how the results can be applied to the per-
turbed equation of the Euler type.

2 Preliminaries
Oscillatory properties of (1) are defined using the concept of the generalized zero. We
say that a solution x of (1) has a generalized zero in an interval (m,m + 1] if x,,, # 0 and
FmXmxm+1 < 0. Equation (1) is said to be disconjugate on an interval [m, n] if any solution
of (1) has at most one generalized zero on (m, n + 1] and the solution for which x,, = 0 has
no generalized zero on (m, n + 1]. Consequently, equation (1) is said to be nonoscillatory if
there exists m € N such that this equation is disconjugate on [, n] for every n > m. In the
opposite case, (1) is said to be oscillatory.

One of the basic methods used to investigate (non)oscillation of (1) is the variational
technique which relates nonoscillation of (1) to a positivity of a certain p-degree func-
tional.

Lemma 1 [1] Equation (1) is nonoscillatory if and only if there exists m € N such that

o]

Fy,m,00):= Y [rel Ayil? = exlyeal’] > 0

k=m

for every nontrivial sequence y € U(m), where
U(m) := {y =Yk =0k <m,In>m:y, =0,k > n}

The second basic method used is the Riccati technique which is based on the relation-
ship between nonoscillation of (1) and the solvability (in a neighborhood of infinity) of the

Riccati-type equation

TkWk

B () + oA my)) )

R[wg] = Wgaa + ¢k —

where ®7! is the inverse function of ®, i.e. ®71(s) = |s|9!sgns, q := [%. Indeed, if x is a
solution of (1) such that x; # 0 on some discrete interval [m1, 00), then wy = r ®(Axi/x) is
a solution of (4) on [m, 00). More precisely, we have the following equivalent statements.

Lemma 2 [1] The following statements are equivalent:
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(i) Equation (1) is nonoscillatory.
(ii) There exists a solution w of (4) such that r + wy > 0 for large k.
(iii) There exists a solution w of the Riccati inequality Rlwi] < 0 such that ry + wy > 0 for
large k.

If (1) is nonoscillatory, then there exists a solution wy of (4) such that r¢ + wi > 0 for large
k. Among all solutions w with this property, there is the so-called minimal solution w for
which W, < wi on some interval [m, 00), where r; + wy > 0 and r¢ + Wi > 0. The minimal
solution w can be constructed as follows. Let (1) be disconjugate on [#,00) and let N > n.
Denote by " the solution of (1) which satisfies x3 = 0, x,, # 0 and let w" = rd(Ax"N/xN)
be the solution of (4) associated with V. Then

Wi = lim wff for every k € [n +1,00). (5)

N—o0

For details of this construction see [5]. The solution X of (1) which is associated with the
minimal solution w of (4) by the substitution w = r®(Ax/%), is called the recessive solution
of (1). The recessive solution is defined uniquely up to the multiplication by a real constant.

Next, we formulate a comparison statement for minimal solutions of two Riccati equa-

tions. The Riccati equation associated with (3) is

i y (r + Te)wi
R[wy] := - r - 6
(Wi i= Wi + cx + Gk (D (ry + ) + P L(wp)) ©

Lemma 3 [5]
(i) Let (3) be nonoscillatory and let 7 <0, ¢x > 0 for large k. Further, let w and w be the
minimal solutions of the corresponding Riccati equations (4) and (6), respectively.
Then there exists m € 7 such that wy < wy for k € [m, c0).
(i) If ck > 0 and 3>° r,i_q = 00, then the minimal solution of (4) satisfies wi > 0 for
large k.

Note that the statement (ii) of the previous lemma is a special case of the statement (i).
Condition )™ r,l(_q = oo implies that the recessive solution of the equation A(rx ®(Axy)) =
0 is a constant sequence, hence the minimal solution of the associated Riccati equation is

w = 0 and this is compared with the minimal solution of (4).

3 Modified Riccati equation and related results

In this section, we suppose that equation (1) is nonoscillatory, by /2 we denote a positive so-
lution of this equation and suppose that both the coefficients ry, ri + 7 are positive for large
k. This sign restriction is needed when proving inequalities (10), (11) and estimate (12) be-
low, for details see [4]. Since these estimates play the crucial role in the (non)oscillation
criteria based on the modified Riccati technique presented in this section, we suppose that
i > 0, i + 7% > 0 for large k throughout the whole Section 3.

Denote

Gy = (rx + ) P(Ahg), (7)
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define the function

(ric + (v + GOKL,,

H(k,v):= Pl ©(Ahy) — ~ , 8
(k,v) = v + (ri + P (Ahy) SO (g + ) + (v + Gr) (8)

and consider the so-called modified Riccati equation
Riuvi] := Avie + [A(Fe®(AR)) + €D (iean) [ ricar + Hk, vie) = 0. 9)

We show that there is a relation between operators given in (6) and (9) and estimate
the function H(k, v) by a term involving v2, which, in turn, enables us to compare Riccati
equation associated with (3) with the Riccati equation related to a certain linear equation.

Lemma 4 Let w be a sequence such that ry + 1x + wi # 0 and suppose that vy = hfwk - Gk
Then

Rm[Vk] = hiﬂie[wk]'
Proof By a direct computation
Avi =1 Wi = Hiwi = A((ric + 7) D (AR ) iiear — (ric + 7o) | Ay P

and

(ryc + Fi) I Wi
S(HID(ri + i) + DL (Hwi))

H(k,vi) = Hywy + (ric + 7) | Al [P —

(ryc + Py Wi

= Iwic + (ric + 710 | A [P — D(P(ri + 7i) + DL (wp))

Hence,

(ric + P ;Wi

Avie + A((re + 7)) (A ) g + Hk, vie) = K Wi — i .
Vi + A((r + F) (AR ) hyear + Hk, vie) = B, Wit @10 770 + O1070)

Adding the term / , (ck + ¢x) to both sides of the last equality, we obtain
Avic+ b LU + Hk,vi) = K Rlwi],

where L is the operator defined in (3). Since / is a solution of (1), we have the required
identity. O

Lemma 5 Let H(k,v) be defined in (8).
(i) It holds H(k,v) > 0 for v > —(ri + 7 )i (O (hy) + ©(Ahy)) with the equality if and
only ifv=0.
(ii) Suppose that hy Ay > 0 for k € [m, 00) and denote Ry = %(rk + T | A P2,
Then we have the following inequalities for v > 0 and k € [m, 00):

(Re +v)H(k,v) >V, pe(1,2], (10)

Ry +v)H(k,v) <V, p=>2. (11)


http://www.advancesindifferenceequations.com/content/2012/1/101

Fisnarova Advances in Difference Equations 2012,2012:101
http://www.advancesindifferenceequations.com/content/2012/1/101

(iii) Suppose that liminfy_, o, Gg > 0, then for large k:
Ry + H(k,v) = v* (1 + 0(1)) asv— 0. (12)

(iv) Suppose that hiAhy > 0 for large k and

o0 00 2
Ahy Ahy
h—k =00, Z(h—k> <00, (13)
0< li,m inf Gy, lim sup G < oco. (14)
k— 00 k=00

Then Y > H(k,v) = 0o for every v > 0.

Proof The proof of the statements (i), (ii), (iii) (with rx + 7% replaced by rx) can be found in

[4].

(iv) Let v > O be arbitrary. The function H(k, v) can be written as follows:

(ri + ) (v + GOI,,

H(k,v) = P @( M) = F
( V) V+(rk+rk) k+1 ( k) cD(hZ(D—l(rk+rk)+®_1(V+Gk))

—v+ hk+1 Gk (V + Gk)hi+1
- - _1/V+G,
D O(hi + P M)

=v+

Hin Gi (hk+1)P (v+Gy)

h h -1 V+Gk
k k) d1+® ((rk+?k>hZ )
The second condition in (13) implies Ah—;k’k — 0 as k — 00, hence, using the formula
>\ s
(1+x)s=z</>xj:1+sx+0(x2), asx— 0, seR, (15)
j=0

we have

e \? Al \? Ahy Al 2
=(1+—) =1+p—= —_ K
and since the first condition in (14) holds, we have
q)_1< v+ Gy ):¢_1(Gk(1+GLk)>
(ric + 7ML (ric + 7 )H
Ahy

= — <1 1+l —0 ask— o0.
hy Gk

Consequently, again using (15) and conditions (14),
v+ G -1 Ahy v \\'7?
(oG ))] (5o ()
(ri + Fa) hi G

Al v Al \*
“1+0-p o1+ L 2R ),
+-p) i (+Gk)+o<( hk))

Page 5 of 16
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as k — oo. Hence, H(k,v) can be written in the form

2
Hk,v)=v+ (1+ %)Gk (1 +pAh—}]:k O((Ah—ilk> ))(v+ Gy)
Ahk 14 Ahk
( - lh—qu <1 Gk)+o(<hk))>

Ahy
=v+ G+ —Gg
Iy

1 v Ahy Ahy 2
‘(”Gk’[ ~p- ”—‘I’ (1 G,)*’”h—k*‘)((h—k) ﬂ
Ah Ahy v Ahy Ahy 2
e G“Gk(“e—>[<” S (l G)‘”h—k}*o((h—k))
Ahy v |? v Ahy
:h—Gk[ ‘f”(“a—)] *O(( e ) )

" Ge

as k — oo.

Consider the function A(x) := 1+ (p—1)|1 +x|7 — p(1 + x). By a direct computation A'(x) =
p(®71(1 + x) — 1) and A”(x) = g|1 + x|772. This means that the function A(x) has a local
minimum at ¥ = 0 and it is positive and increasing for x > 0.

By conditions (14) there exist constants ¢ > 0, d > 0 such that ¢ < Gy < d for large k. Since

& > ;» we have

1(p1)1vqlvl(p1)lvq1VA 0
+(p- + = - +—)>1+(p- + =] - +—=)=Al=]>
G| PTG d P\'Ta d

Consequently,

Ahy Ahy 2
H(k, A ol | — .
v~ (d> e (( hk)

The convergence of the series Y * O((5* Ahk )?) follows from the second condition in (13).

This means, by the first condition in (13), that S H(k,v) = co. (I

4 Oscillation and nonoscillation criteria
We start with a statement based on the variational principle. This statement generalizes a
result of [5] dealing with the case 7 = 0. Here, we do not need the sign restriction on ry,

Tk + Tk, we suppose that i # 0 and r¢ + 7, # 0 for large k.

Theorem 1 Let h be the recessive solution of (1) and let A(7i/ri) <O for large k. If

oo

Z[A(7k¢(Ahk)) + ¢ P (hjes1) i = 00, (16)

then (3) is oscillatory.
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Proof The proof is based on Lemma 1. Let Ny € N be arbitrary and let K, L, M, N be
positive integers satisfying Ny < K < L < M < N, where K is such that (1) is disconjugate
on [K,00) and A(7x/rx) < 0 holds on this interval, and L is such that / has no generalized
zero on [L,00), i.e. rihghy,y > 0 on [L,00). The values M, N will be specified later. Define
the sequence

0, k=N,,...,K,
foo k=K,...L,
Yiei=Yhe, k=L,...,M, (17)
g k=M,...,N,
0, k=N,

where f is any sequence satisfying fi = 0, f; = 4 and g is a solution of (1) for which gus = has,

gn = 0. The fact that such a solution really exists follows from the disconjugacy of (1) on

[K, 00) and from the homogeneity of the solution space of (1). Indeed, if x is a solution of

(1) given by xy = 0, xy_1 # 0, then rixgxr,1 > 0 on [M,N —2] and g = :—A";xk is the solution

of (1) satisfying the required boundary conditions. It also holds rxgkgk.1 > 0 on [M,N —2].
Denote

P(Ag)
el ._
om " T e

D(Ah
il . 28R

the corresponding solutions of Riccati equation (4). Set

L-1
FKL=1)=) [+ )AL = (e + @)fen ] =i en € R. (18)
k=K

Next, using summation by parts, and since / is a solution of (1), we have

M-1

FoLM=1) =Y [(rk + )| AP = (cic + &) e ]
k=L

M
= (i + TP AR |

M- 1
Al (r + F)P(AR)] + (ck + &) P (i) s
k=L
M-1
< ) e[ = S [AG(AI) + 5Pt i
k=L

M-1
( > hal? = Y [AFP(AR)) + &) uca + 2, (19)

k=L

where o, € R.

Concerning interval [M, N], since gy = O and / has no generalized zero in this interval,

it follows from [5, Lemma 3] that w,[f] <wy U for k e [M,N —1]. This means that

d(Ah
1k ®(AGgk < Tk qi(th;)

lgxl?, ke [M,N-1]. (20)

Page 7 of 16
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At the same time, 0 < :l’(‘f”’z% ﬁi g’;*l for k € [M,N — 2], hence the condition gy = hy

implies gih > 0 for k € [M,N - 1]. Hence, (20) implies ri(Agihx — Ahrgy) < 0 for k €

[M,N —1] and
(Agihy — gk Ah
A(g—k>:”( Gl = @A) o N 1), (21)
hi rihihia

Next, again summing by parts and using the boundary conditions and the fact that g is
a solution of (1),

N-1
F;MN=1) =Y [+ Bl Al - (ex + &)lgen ]
k=M

. N-1
—(1 + %)w}ff |ml? — Z[A(;k(D(Agk)) + C D () |G-
k=M

Using (20) and since A(7x/rx) < 0

N- 1
A7 ®(Ag)) + P (i) gk
k=M

N-1

= Z[A<—Vk@(Agk )gk+1 + Ck|gk+1|p:|
k=M
N-1

= [A( >Fk+1q> Agri1)gri1 Al (rk D(AZ))gre + Cklgenl” ]
k=M Tk
N-1 .

D(Ahgi1) 7 .

> Z[A<_k) Tkl Q77 ol | hc+1 |19 - _kck|gk+1 |p + Cklgk+1 |p:|
= (M) Tk
N-1 N

_ » p |gk+1 |p

=y |a Tt P(Ahies1) hicer — _Ck|hk+1| + C| i |
sy’ Tk g1 l?
- ~k g1l
Z[A< )"k+1¢’ Al + — A(re® (AR ) h + il b |pi| -
Py, Tk [Agesa 1P
- |gks1l?

=) [AFDP(AR)) + e P(hysr) i —— o
k=M |hk+1|

Since (21) holds, by the second mean value theorem of summation calculus, see [8,
Lemma 3.2], there exists n € [M, N — 1] such that

N-1

Z[A(7k¢(Ahk)) + 6D (iea) | it
Pl

|gk+1 |p
|hk+1 |p

p
- lgm|

n-1
= s DA (k@ (Ah)) + &) e

k=M

» N-1
P SR —
k=n
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n-1
= Y [AFDAR)) + & D) i
k=M

Combining the above computations, we have

~ n-1
Fy;M,N-1) < —(1 + :ﬂ)wl[ﬁ] |pl? — Z[A(7k¢(Ahk)) + 6D (i) i (22)
M k=M

Consequently, using (18), (19) and (22), we obtain

o]

F5No,00) = Y [k + )l Agl? = (ex + &) yaen ]
k=N

= FK,L-1)+ F(y; L, M —1) + F(y; M,N —1)

7
<o +og+ (1 + ﬁ)IhMl (Wz[\Z] Wz[f}])

'm
n-1
= [AFED(AL)) + &P () .
k=L

Let a3 > 0 be arbitrary. It follows from condition (16) that M can be taken so large that
n-1
Y [AFEDAR) + E&DUn) > e + s + .

k=L

Since /4 is the recessive solution of (1), i.e. w is the minimal solution of (4), from its

construction (5) we have

w/[(;[] = lim w][‘f,’[].
N—oo

Hence, N can be taken so large that

(1+—)|h P (W [7] wj[fif])<a3.

Consequently, if M, N are taken as above, then
F(y;Nop,00) <0,
and this means that equation (3) is oscillatory by Lemma 1. The proof is complete. O
The following results are based on the modified Riccati technique. Here we suppose that

h is a positive solution of the nonoscillatory equation (1) and r¢ > 0, rx + 7% > O for large k.

Denote

. - 2 - _
Cr:= [A(F®(Am) + & PUien) [ s, Rii= ZI(Vk + P i | Al P72, (23)

Page9of 16
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First we present a statement, where, using the global inequalities (10), (11), equation (3)
is compared with the linear equation

ARrAyr) + Cryrer = 0. (24)
This statement generalizes [4, Theorems 3.1 and 3.2].

Theorem 2 Let h be a solution of (1) such that hy > 0, hy Ahy > 0 for large k.
(i) Let p > 2, and suppose that Cy > 0 for large k and >_*° R—lk = o0o. If the linear
equation (24) is nonoscillatory, then equation (3) is also nonoscillatory.
(i) Let p <2, and suppose that h is the recessive solution of (1), 7y < 0, ¢x > 0 for large k.
If the linear equation (24) is oscillatory, then equation (3) is also oscillatory.

Proof (i) Nonoscillation of equation (24) means that there exists a solution v of the Riccati
equation

2

Vk
Avi+ Cr + =0
Rk+Vk

such that Ry + v > 0 for large k. Assumptions of the theorem imply, in view of Lemma 3(ii),
that v; > 0 for large k. Hence, from Lemma 5(ii) it follows

(Re + vi)H(k,vi) <vi  for large &,
i.e. vk solves the inequality
Avi+ Cr + Hk,ve) <0

for large k. Consequently, by Lemma 4, we have that the sequence w = h?(v + G) is a
solution of Riccati inequality i%[wk] < 0. Moreover,

_ . _ 7
T+ Tr+ Wi = 1+ T+ I vie + (e + 1) @(Ah ) = P vee + (1 + —k> (rc + w,[(h]),
T

where wg(h]

is a solution of (4) related to a nonoscillatory solution % of (1) and hence ry +
w,[(h] > 0 for large k. Since vx > 0 for large k, we have r¢ + 7 + wy > 0 for large k. Hence,
equation (3) is nonoscillatory according to Lemma 2.

(ii) Suppose, by contradiction, that equation (3) is nonoscillatory and let w be a solution
of the associated Riccati equation (6). Then, by Lemma 4, v = ##w — G solves the modified
Riccati equation (9). Since 7¢ < 0, ¢x > 0, it follows from Lemma 3 that wy > w,[f'] for large
k, where w,[(h] = e ®(Ahg/hy) is the minimal solution of (4). This means that v = hiwk

-Gi= h’,’;(wk -1+ i—i)w,[(h]) > 0 for large k. Applying inequality (10) we have
(Ri + vi)H (k, vi)) = vy

for large k and hence v solves the inequality

2
Avi + Cp +

=<0,
Rk+Vk
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which, together with the fact that Ri + v > 0 for large k, means that (1) is nonoscillatory. O

The next two statements are based on the estimate (12) which holds for all p > 1. Hence
we do not have to distinguish between the cases p > 2, p < 2. The idea of the proofs is the
same as in Theorem 2 and we skip the proofs since they are similar to that in [4, Theo-
rems 4.1 and 4.2]. The only difference is that we replace rx by 7 + 7.

Theorem 3 Suppose that h is a solution of (1) such that hy > 0, hx Ahy > 0 for large k and
let

[e¢]

i le = 00, Z Cr <00, Ci >0 forlargek (25)
and

liminf Gy > 0. (26)
If there exists € > 0 such that the linear equation

AR Ayr) + (1 +€)Cryrsr = 0 (27)
is nonoscillatory, then equation (3) is also nonoscillatory.

Theorem 4 Suppose that h is the recessive solution of (1) such that hy > 0, hi Ahy > 0,
¢k > 0, 7 < 0 for large k, conditions (25) hold and

lim Gy = oo. (28)

k— o0

If there exists € > 0 such that the linear equation
AR AYi) + (1 - €)Cryk =0 (29)
is oscillatory, then equation (3) is also oscillatory.

The next statement is a version of Theorem 4. In the proof of the statement we use
Lemma 5(iv). This enables to replace condition (28) by alternative conditions. This state-
ment is new also in case 7 = 0.

Theorem 5 Suppose that h is the recessive solution of (1) such that hi > 0, hiAhy > 0,
¢k > 0, 7 < 0 for large k and conditions (25), (13) and (14) hold. If there exists ¢ > 0 such
that the linear equation (29) is oscillatory, then equation (3) is also oscillatory.

Proof Suppose, by contradiction, that equation (3) is nonoscillatory and let w be a solu-
tion of the associated Riccati equation (6) and v = #’w — G the associated solution of the
modified Riccati equation (9). Similarly as in the proof of Theorem 2(ii), we conclude that
vk > 0 for large k. Since Cy > 0 for large k and H(k, v¢) is nonnegative, we have for large k

Avyg =-Cp —H(k, Vk) <0.
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This means that there exists a finite limit limg_, o vx. Summing the modified Riccati equa-
tion from N to k, N being sufficiently large, and using the fact that v is nonnegative, we

obtain

k k
=Y G+ Y H(,v).
j=N j=N

Letting k — oo and since Y > Ci < 0o, we have Y *° H(k, v) < co. From Lemma 5(iv) it
follows that limy_, o, vx = 0. Now we can use the estimate (12). There exists N such that

e\ v
H(k,vi)>|1-= for k > Nj.
2 Rk+Vk

We have

2 2
Ry = =(rg + F)hpa | AP~ = ZGi[ 1+ — | > =Gy
q q Ah

Hence, by (14), limj_ 1‘;—’/‘( = 0 and similarly as in [4, Theorem 4.1], we obtain for suffi-

e
1-3
Ry+vi

ciently large k the estimate Rk# < . Hence,

T tVk

2 2
H(k,vk)><1—f) Ye Y

2) Re+vie By

for sufficiently large k. This means that v, solves the inequality

2

Avi+ Cr + <0,

Ry
¢ + Vi

which is the Riccati inequality associated with equation (29) and since lli—ks + vk >0, we

have nonoscillation of (29). This is a contradiction. O

It is known (see [9]), that if ¢; > 0, rx > 0, > r7! = 00, Y * ¢x < 00, then the linear

equation (2) is nonoscillatory provided

k—o00

k-1 00 1
limsuerfl ch < (30)
j=k

and it is oscillatory provided
k-1 0 1
.. -1
hkrgggfz:rj ch > z (31)
j=k
Applying this criterion to equations (27), (29), we obtain the following result.

Corollary 1 Suppose that h is a solution of (1) such that hy > 0, hx Ahy > 0 for large k and
let conditions (25) and (26) be satisfied.
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(i) If

k-1 00
1 1
limsup Y Y G< 32
1m sup (r/ + ;,])h]h]+l|Ah]|p—2 = j < zq ( )

then equation (3) is nonoscillatory.
(i) Let moreover h be the recessive solution of (1), ¢x > 0, 7y < 0 for large k and let either
condition (28) or conditions (13) and (14) be satisfied. If

k—00

k-1 1 0 1
liminf Ci>—,
LD D sy VAT /2; 17 2

then equation (3) is oscillatory.

Proof Consider, e.g, the case (i), the case (ii) is analogous. Condition (32) can be written
in the form

k-1 00 1
limsup ¥ R Ci<-—.
man 353G
j=
Consequently, there exists ¢ > 0 such that

k-1 00 1
limsup » R1Y (1+¢)Ci<—,

hence equation (27) is nonoscillatory and this implies, by Theorem 3, nonoscillation of
(3). O

Remark 1 If 7, = 0, ¢ > 0, then the statements of Theorem 2 reduce to [4, Theorems 3.1

and 3.2]. More precisely, (non)oscillation of
A(re@(Axx)) + (i + &) Pxa1) = 0 (33)
is compared with that of the linear equation

2 .
A(R)Ayr) + Cysa =0, RY:= grkhkhkﬂmw-z, CY =G, (34)

In part (ii) of Theorem 2 we suppose that p <2, 7x <0, ¢x > 0. Under these conditions, if
equation (34) is oscillatory, then (33) is oscillatory by [4, Theorem 3.2] and oscillation of
(3) follows then by the Sturm comparison theorem, see, e.g., [1]. However, Theorem 2, part
(ii) extends [4, Theorem 3.2] in case when the perturbation ¢ is ‘not too much positive’
so that equation (33) and hence also (34) is nonoscillatory.

Similarly, if 74 = 0, ¢x > 0, then Theorem 3 reduces to [4, Theorem 4.2] and Theorem 4
reduces to [4, Theorem 4.1]. Theorem 5 is new also in case 7 = 0 and it allows us to
drop the condition limy_, o, rif1x ®(Aky) = 0o considered in [4, Theorem 4.1] and replace
it by alternative conditions. This is useful when studying perturbations of the Euler-type
equation, see the next section.
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Remark 2 The conditions 7, < 0, ¢ > 0 considered in Theorem 2(ii), Theorem 4 and
Theorem 5 are used to show that wy — (1 + ?k/rk)w,[(h] > 0, where w and w"l are the solu-
tions of the Riccati type equations associated with equations (3) and (1), respectively. We
conjecture that wy and (1+7;/ rk)w,[(h] can be compared by another argument than Lemma 3,
so the sign restriction on the perturbation terms 7, ¢x can be relaxed, similarly as in the

continuous case [6].

5 Application
In this section, we apply the previous results to the perturbed Euler-type difference equa-
tion

A((L+7)D(Axy) % Vo =0, v (222) (35)
(@ +7% xk)+<(k+1)p+ck> Xks1) =0, yp,_<7> i

This equation is considered as a perturbation of the nonoscillatory equation

A(P(Ax¢)) + cx P (xpa1) = 0, (36)
where
AD(A) p1
cGh=————, hp=k?. 37
S YV 37)

pr-1
It is easy to see that /ix = k 7 is a solution of (36) and it was shown in [10] that if p > 2,
then it is the recessive solution. By a direct computation, as shown in [4], the coefficient

¢ is of the form

= yp
(k+1)p

Ck (1+0(tk+1)7"), ask— o0

and also

Ay = ’%lk‘% (1+0(k™),

—1\#!
I ®(Ahy) = (”71) (1+0(k™)),
p-1\"
hichic (AR 2 = (7) k(1+O(k™)),
p-1\" —2+1 -1

AD(Ahy) = - e (k+1) 7 (1+O((k+1)7")),
as k — 00. Consequently,

Ahk _ ) 2 1

e Tk‘1(1+0(k'1)), as k — 0o,

hence conditions (13) are satisfied and we have

p-1 - ~ -1 p-1 bt ~ -1
Gk:(7> 1+ 70(1+ O(k)), Rk=2<7) (1+7k(1+ O(K™)),
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and

Cr = A7 ®(Ahg1)hicer + ik AP(A) By + (e — O((k + 1)) ) i

k+1

p-1\" . -1 r-1 -1
=|— Ark(l + O((k +1) )) (k +1)” rk(l + O((k +1) ))
p p
+(k+ 1 - O((k + 1)), (38)
as k — o0o. Using these computations, Corollary 1 applied to (35) reads as follows.

Corollary 2 Let Ci be given in (38) and suppose that

o0 o0 1
Z Cr <00, Ci >0 forlargek, likrggf(l +7%) >0, Z m =

@) If

1/p-1\""
li § § Ce<-(=—) ,
1m sup 1+r] ]<2< )

k—00

then equation (35) is nonoscillatory.
(i) Suppose moreover that p > 2, limy_, o, cx(k + 1)P*! = 0o, 7 < 0 for large k. If

1/p-1\""
1 f C>—-|— ,
lmmz(wj Z,>2( )

p

then equation (35) is oscillatory.

Competing interests
The author declares that she has no competing interests.

Acknowledgements
Research supported by the Grant P201/10/1032 of the Czech Science Foundation.

Received: 23 January 2012 Accepted: 11 June 2012 Published: 5 July 2012

Refe[ences

1. Rehdk, P: Oscillatory properties of second order half-linear difference equations. Czechoslov. Math. J. 51, 303-321
(2001)

2. Agarwal, RP, Bohner, M, Grace, SR, O'Regan, D: Discrete Oscillation Theory. Hindawi Publishing Corporation, New York
(2005)

3. Dosly, O, Rehak, P: Half-Linear Differential Equations. North-Holland Mathematics Studies, vol. 202. Elsevier,
Amsterdam (2005)

4. Dosly, O, Fisnarova, S: Linearized Riccati technique and (non)oscillation criteria for half-linear difference equations.
Adv. Diffe[, Equ. 2008, Article ID 438130 (2008)

5. Dosly, O, Rehdk, P: Recessive solution of half-linear second order difference equations. J. Differ. Equ. Appl. 9, 49-61
(2003)

6. Dosly, O, Fisnarov4, S: Half-linear oscillation criteria: Perturbation in term involving derivative. Nonlinear Anal., Theory
Methods Appl. 73, 3756-3766 (2010)

7. Dodly, O, Fisnarova, S: Variational technique and principal solution in half-linear oscillation criteria. Appl. Math.
Comput. 217,5385-5391 (2011)

8. Dosly, O: Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equ. Appl. 4, 425-450
(1998)

9. Erbe, LH, Zhang, BG: Oscillation of second order linear difference equations. Chin. J. Math. 16, 239-252 (1988)

10. Dosly, O, Fisnarova, S: Summation characterization of the recessive solution for half-linear second order difference

equations. Adv. Differ. Equ. 2009, Article ID 521058 (2009)


http://www.advancesindifferenceequations.com/content/2012/1/101

Fisnarova Advances in Difference Equations 2012,2012:101 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2012/1/101

doi:10.1186/1687-1847-2012-101

Cite this article as: Fisnarova: Oscillatory properties of half-linear difference equations: two-term perturbations.
Advances in Difference Equations 2012 2012:101.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.advancesindifferenceequations.com/content/2012/1/101

	Oscillatory properties of half-linear difference equations: two-term perturbations
	Abstract
	Introduction
	Preliminaries
	Modiﬁed Riccati equation and related results
	Oscillation and nonoscillation criteria
	Application
	Competing interests
	Acknowledgements
	References


