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Abstract
We consider the nonoscillatory half-linear difference equation

�(rk�(�xk)) + ck�(xk+1) = 0, �(x) := |x|p–1 sgn x, p > 1,

and we study the influence of the perturbations r̃, c̃ on the oscillatory properties of
the equation

�
[
(rk + r̃k)�(�xk)

]
+ (ck + c̃k)�(xk+1) = 0.

The presented oscillation and nonoscillation criteria are obtained using the variational
principle and the so-called modified Riccati technique.

1 Introduction
In this article, we study oscillatory properties of the second-order half-linear difference
equation of the form

L[xk] := �
(
rk�(�xk)

)
+ ck�(xk+) = , �(x) := |x|p– sgnx, p > , ()

where r, c are real-valued sequences, rk �= . If p = , then () reduces to the linear Sturm-
Liouville difference equation

�(rk�xk) + ckxk+ = . ()

The basic qualitative theory of () has been established in the article [] and is summarized
in the books [, ].Many oscillatory properties of () are very similar to that of (), however
the absence of the linearity requires sometimes to use differentmethods in half-linear case.
In this article, we deal with the so-called perturbation principle. We suppose that equa-

tion () is nonoscillatory and that h is a solution of () and we give conditions under which
the perturbed equation

L̃[xk] := �
[
(rk + r̃k)�(�xk)

]
+ (ck + c̃k)�(xk+) = , ()

where rk + r̃k �= , is oscillatory or nonoscillatory. Similar problem has been studied in [,
], where the case r̃k =  has been considered. We extend some results of those papers to
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the general case r̃k �=  and we also show that the assumption limk→∞ rkhk�(�hk) = ∞
considered in [] can be replaced by alternative conditions. We are motivated also by the
results of [, ], where the two-term perturbations of the half-linear differential equation

(
r(t)�

(
x′))′ + c(t)�(x) = , r(t) > 

are studied.
The article is organized as follows. In the next section, we recall the basic methods of

oscillation theory for (), in particular the variational principle and the Riccati technique.
Section  is devoted to the so-called modified Riccati technique. In Section , we present
the main results of this article, the oscillation and nonoscillation criteria for the perturbed
equation () and in the last section, we show how the results can be applied to the per-
turbed equation of the Euler type.

2 Preliminaries
Oscillatory properties of () are defined using the concept of the generalized zero. We
say that a solution x of () has a generalized zero in an interval (m,m + ] if xm �=  and
rmxmxm+ ≤ . Equation () is said to be disconjugate on an interval [m,n] if any solution
of () has at most one generalized zero on (m,n+ ] and the solution for which xm =  has
no generalized zero on (m,n+ ]. Consequently, equation () is said to be nonoscillatory if
there existsm ∈N such that this equation is disconjugate on [m,n] for every n >m. In the
opposite case, () is said to be oscillatory.
One of the basic methods used to investigate (non)oscillation of () is the variational

technique which relates nonoscillation of () to a positivity of a certain p-degree func-
tional.

Lemma  [] Equation () is nonoscillatory if and only if there exists m ∈ N such that

F (y,m,∞) :=
∞∑
k=m

[
rk|�yk|p – ck|yk+|p

]
> 

for every nontrivial sequence y ∈U(m), where

U(m) :=
{
y = {yk}∞k=; yk = ,k ≤ m,∃n >m : yk = ,k ≥ n

}
.

The second basic method used is the Riccati technique which is based on the relation-
ship between nonoscillation of () and the solvability (in a neighborhood of infinity) of the
Riccati-type equation

R[wk] := wk+ + ck –
rkwk

�(�–(rk) +�–(wk))
= , ()

where �– is the inverse function of �, i.e. �–(s) = |s|q– sgn s, q := p
p– . Indeed, if x is a

solution of () such that xk �=  on some discrete interval [m,∞), then wk = rk�(�xk/xk) is
a solution of () on [m,∞). More precisely, we have the following equivalent statements.

Lemma  [] The following statements are equivalent:
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(i) Equation () is nonoscillatory.
(ii) There exists a solution w of () such that rk +wk >  for large k.
(iii) There exists a solution w of the Riccati inequality R[wk] ≤  such that rk +wk >  for

large k.

If () is nonoscillatory, then there exists a solutionwk of () such that rk +wk >  for large
k. Among all solutions w with this property, there is the so-calledminimal solution w̃ for
which w̃k < wk on some interval [m,∞), where rk + wk >  and rk + w̃k > . The minimal
solution w̃ can be constructed as follows. Let () be disconjugate on [n,∞) and let N > n.
Denote by xN the solution of () which satisfies xNN = , xNN+ �=  and let wN = r�(�xN /xN )
be the solution of () associated with xN . Then

w̃k = lim
N→∞wN

k for every k ∈ [n + ,∞). ()

For details of this construction see []. The solution x̃ of () which is associated with the
minimal solution w̃ of () by the substitution w̃ = r�(�x̃/x̃), is called the recessive solution
of (). The recessive solution is defined uniquely up to themultiplication by a real constant.
Next, we formulate a comparison statement for minimal solutions of two Riccati equa-

tions. The Riccati equation associated with () is

R̃[wk] := wk+ + ck + c̃k –
(rk + r̃k)wk

�(�–(rk + r̃k) +�–(wk))
= . ()

Lemma  []
(i) Let () be nonoscillatory and let r̃k ≤ , c̃k ≥  for large k. Further, let w̃ and w̄ be the

minimal solutions of the corresponding Riccati equations () and (), respectively.
Then there exists m ∈ Z such that w̃k ≤ w̄k for k ∈ [m,∞).

(ii) If ck ≥  and
∑∞ r–qk = ∞, then the minimal solution of () satisfies w̃k ≥  for

large k.

Note that the statement (ii) of the previous lemma is a special case of the statement (i).
Condition

∑∞ r–qk = ∞ implies that the recessive solution of the equation�(rk�(�xk)) =
 is a constant sequence, hence the minimal solution of the associated Riccati equation is
w =  and this is compared with the minimal solution of ().

3 Modified Riccati equation and related results
In this section, we suppose that equation () is nonoscillatory, by hwe denote a positive so-
lution of this equation and suppose that both the coefficients rk , rk + r̃k are positive for large
k. This sign restriction is needed when proving inequalities (), () and estimate () be-
low, for details see []. Since these estimates play the crucial role in the (non)oscillation
criteria based on themodified Riccati technique presented in this section, we suppose that
rk > , rk + r̃k >  for large k throughout the whole Section .
Denote

Gk := (rk + r̃k)hk�(�hk), ()

http://www.advancesindifferenceequations.com/content/2012/1/101


Fišnarová Advances in Difference Equations 2012, 2012:101 Page 4 of 16
http://www.advancesindifferenceequations.com/content/2012/1/101

define the function

H(k, v) := v + (rk + r̃k)hk+�(�hk) –
(rk + r̃k)(v +Gk)h

p
k+

�(hqk�–(rk + r̃k) +�–(v +Gk))
, ()

and consider the so-called modified Riccati equation

Rm[vk] := �vk +
[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ +H(k, vk) = . ()

We show that there is a relation between operators given in () and () and estimate
the function H(k, v) by a term involving v, which, in turn, enables us to compare Riccati
equation associated with () with the Riccati equation related to a certain linear equation.

Lemma  Let w be a sequence such that rk + r̃k +wk �=  and suppose that vk = hpkwk –Gk.
Then

Rm[vk] = hpk+R̃[wk].

Proof By a direct computation

�vk = hpk+wk+ – hpkwk –�
(
(rk + r̃k)�(�hk)

)
hk+ – (rk + r̃k)|�hk|p

and

H(k, vk) = hpkwk + (rk + r̃k)|�hk|p – (rk + r̃k)h
p
kh

p
k+wk

�(hqk�–(rk + r̃k) +�–(hpkwk))

= hpkwk + (rk + r̃k)|�hk|p – (rk + r̃k)h
p
k+wk

�(�–(rk + r̃k) +�–(wk))
.

Hence,

�vk +�
(
(rk + r̃k)�(�hk)

)
hk+ +H(k, vk) = hpk+wk+ –

(rk + r̃k)h
p
k+wk

�(�–(rk + r̃k) +�–(wk))
.

Adding the term hpk+(ck + c̃k) to both sides of the last equality, we obtain

�vk + hk+L̃[hk] +H(k, vk) = hpk+R̃[wk],

where L̃ is the operator defined in (). Since h is a solution of (), we have the required
identity. �

Lemma  Let H(k, v) be defined in ().
(i) It holds H(k, v)≥  for v > –(rk + r̃k)hk(�(hk) +�(�hk)) with the equality if and

only if v = .
(ii) Suppose that hk�hk >  for k ∈ [m,∞) and denote Rk = 

q (rk + r̃k)hkhk+|�hk|p–.
Then we have the following inequalities for v≥  and k ∈ [m,∞):

(Rk + v)H(k, v)≥ v, p ∈ (, ], ()

(Rk + v)H(k, v)≤ v, p ≥ . ()
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(iii) Suppose that lim infk→∞ Gk > , then for large k:

(Rk + v)H(k, v) = v
(
 + o()

)
as v → . ()

(iv) Suppose that hk�hk >  for large k and

∞∑ �hk
hk

= ∞,
∞∑(

�hk
hk

)

< ∞, ()

 < lim inf
k→∞

Gk , lim sup
k→∞

Gk <∞. ()

Then
∑∞ H(k, v) = ∞ for every v > .

Proof The proof of the statements (i), (ii), (iii) (with rk + r̃k replaced by rk) can be found in
[].
(iv) Let v >  be arbitrary. The function H(k, v) can be written as follows:

H(k, v) = v + (rk + r̃k)hk+�(�hk) –
(rk + r̃k)(v +Gk)h

p
k+

�(hqk�–(rk + r̃k) +�–(v +Gk))

= v +
hk+
hk

Gk –
(v +Gk)h

p
k+

�(hqk +�–( v+Gk
rk+r̃k

))

= v +
hk+
hk

Gk –
(
hk+
hk

)p (v +Gk)
�( +�–( v+Gk

(rk+r̃k )h
p
k
))
.

The second condition in () implies �hk
hk

→  as k → ∞, hence, using the formula

( + x)s =
∞∑
j=

(
s
j

)
xj =  + sx +O

(
x

)
, as x→ , s ∈ R, ()

we have

(
hk+
hk

)p

=
(
 +

�hk
hk

)p

=  + p
�hk
hk

+O
((

�hk
hk

))
as k → ∞

and since the first condition in () holds, we have

�–
(

v +Gk

(rk + r̃k)h
p
k

)
= �–

(Gk( + v
Gk
)

(rk + r̃k)h
p
k

)

=
�hk
hk

�–
(
 +

v
Gk

)
→  as k → ∞.

Consequently, again using () and conditions (),

[
�

(
 +�–

(
v +Gk

(rk + r̃k)h
p
k

))]–

=
(
 +

�hk
hk

�–
(
 +

v
Gk

))–p

=  + ( – p)
�hk
hk

�–
(
 +

v
Gk

)
+O

((
�hk
hk

))
,
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as k → ∞. Hence, H(k, v) can be written in the form

H(k, v) = v +
(
 +

�hk
hk

)
Gk –

(
 + p

�hk
hk

+O
((

�hk
hk

)))
(v +Gk)

×
(
 – (p – )

�hk
hk

�–
(
 +

v
Gk

)
+O

((
�hk
hk

)))

= v +Gk +
�hk
hk

Gk

– (v +Gk)
[
 – (p – )

�hk
hk

�–
(
 +

v
Gk

)
+ p

�hk
hk

+O
((

�hk
hk

))]

=
�hk
hk

Gk +Gk

(
 +

v
Gk

)[
(p – )

�hk
hk

�–
(
 +

v
Gk

)
– p

�hk
hk

]
+O

((
�hk
hk

))

=
�hk
hk

Gk

[
 + (p – )

∣∣∣∣ + v
Gk

∣∣∣∣
q

– p
(
 +

v
Gk

)]
+O

((
�hk
hk

))
,

as k → ∞.
Consider the functionA(x) := + (p–)|+x|q –p(+x). By a direct computationA′(x) =

p(�–( + x) – ) and A′′(x) = q| + x|q–. This means that the function A(x) has a local
minimum at x̃ =  and it is positive and increasing for x > .
By conditions () there exist constants c > , d >  such that c <Gk < d for large k. Since

v
Gk

> v
d , we have

 + (p – )
∣∣∣∣ + v

Gk

∣∣∣∣
q

– p
(
 +

v
Gk

)
>  + (p – )

∣∣∣∣ + v
d

∣∣∣∣
q

– p
(
 +

v
d

)
= A

(
v
d

)
> .

Consequently,

H(k, v) > cA
(
v
d

)
�hk
hk

+O
((

�hk
hk

))
.

The convergence of the series
∑∞ O((�hk

hk
)) follows from the second condition in ().

This means, by the first condition in (), that
∑∞ H(k, v) = ∞. �

4 Oscillation and nonoscillation criteria
We start with a statement based on the variational principle. This statement generalizes a
result of [] dealing with the case r̃k = . Here, we do not need the sign restriction on rk ,
rk + r̃k , we suppose that rk �=  and rk + r̃k �=  for large k.

Theorem  Let h be the recessive solution of () and let �(r̃k/rk)≤  for large k. If

∞∑[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ = ∞, ()

then () is oscillatory.

http://www.advancesindifferenceequations.com/content/2012/1/101
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Proof The proof is based on Lemma . Let N ∈ N be arbitrary and let K , L, M, N be
positive integers satisfying N < K < L <M < N , where K is such that () is disconjugate
on [K ,∞) and �(r̃k/rk)≤  holds on this interval, and L is such that h has no generalized
zero on [L,∞), i.e. rkhkhk+ >  on [L,∞). The values M,N will be specified later. Define
the sequence

yk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

, k =N, . . . ,K ,

fk , k = K , . . . ,L,

hk , k = L, . . . ,M,

gk , k =M, . . . ,N ,

, k ≥ N ,

()

where f is any sequence satisfying fK = , fL = hL and g is a solution of () forwhich gM = hM ,
gN = . The fact that such a solution really exists follows from the disconjugacy of () on
[K ,∞) and from the homogeneity of the solution space of (). Indeed, if x is a solution of
() given by xN = , xN– �= , then rkxkxk+ >  on [M,N – ] and gk = hM

xM
xk is the solution

of () satisfying the required boundary conditions. It also holds rkgkgk+ >  on [M,N –].
Denote

w[h] := r
�(�h)
�(h)

, w[g] := r
�(�g)
�(g)

the corresponding solutions of Riccati equation (). Set

F (y;K ,L – ) =
L–∑
k=K

[
(rk + r̃k)|�fk|p – (ck + c̃k)|fk+|p

]
=: α ∈R. ()

Next, using summation by parts, and since h is a solution of (), we have

F (y;L,M – ) =
M–∑
k=L

[
(rk + r̃k)|�hk|p – (ck + c̃k)|hk+|p

]

= (rk + r̃k)�(�hk)hk
∣∣∣M
L

–
M–∑
k=L

[
�

[
(rk + r̃k)�(�hk)

]
+ (ck + c̃k)�(hk+)

]
hk+

=
(
 +

r̃k
rk

)
w[h]
k |hk|p

∣∣∣M
L
–

M–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

=
(
 +

r̃M
rM

)
w[h]
M |hM|p –

M–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ + α, ()

where α ∈R.
Concerning interval [M,N], since gN =  and h has no generalized zero in this interval,

it follows from [, Lemma ] that w[g]
k < w[h]

k for k ∈ [M,N – ]. This means that

rk�(�gk)gk < rk
�(�hk)
�(hk)

|gk|p, k ∈ [M,N – ]. ()

http://www.advancesindifferenceequations.com/content/2012/1/101
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At the same time,  < rkgkgk+
rkhkhk+

= gk
hk

gk+
hk+

for k ∈ [M,N – ], hence the condition gM = hM
implies gkhk >  for k ∈ [M,N – ]. Hence, () implies rk(�gkhk – �hkgk) <  for k ∈
[M,N – ] and

�

(
gk
hk

)
=
rk(�gkhk – gk�hk)

rkhkhk+
< , k ∈ [M,N – ]. ()

Next, again summing by parts and using the boundary conditions and the fact that g is
a solution of (),

F (y;M,N – ) =
N–∑
k=M

[
(rk + r̃k)|�gk|p – (ck + c̃k)|gk+|p

]

= –
(
 +

r̃M
rM

)
w[g]
M |hM|p –

N–∑
k=M

[
�

(
r̃k�(�gk)

)
+ c̃k�(gk+)

]
gk+.

Using () and since �(r̃k/rk) < ,

N–∑
k=M

[
�

(
r̃k�(�gk)

)
+ c̃k�(gk+)

]
gk+

=
N–∑
k=M

[
�

(
r̃k
rk
rk�(�gk)

)
gk+ + c̃k|gk+|p

]

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�gk+)gk+ +

r̃k
rk

�
(
rk�(�gk)

)
gk+ + c̃k|gk+|p

]

≥
N–∑
k=M

[
�

(
r̃k
rk

)
rk+

�(�hk+)
�(hk+)

|gk+|p – r̃k
rk
ck|gk+|p + c̃k|gk+|p

]

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�hk+)hk+ –

r̃k
rk
ck|hk+|p + c̃k|hk+|p

] |gk+|p
|hk+|p

=
N–∑
k=M

[
�

(
r̃k
rk

)
rk+�(�hk+)hk+ +

r̃k
rk

�
(
rk�(�hk)

)
hk+ + c̃k|hk+|p

] |gk+|p
|hk+|p

=
N–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

|gk+|p
|hk+|p .

Since () holds, by the second mean value theorem of summation calculus, see [,
Lemma .], there exists n ∈ [M,N – ] such that

N–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

|gk+|p
|hk+|p

≥ |gM|p
|hM|p

n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+

+
|gN |p
|hN |p

N–∑
k=n

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+
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=
n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+.

Combining the above computations, we have

F (y;M,N – ) ≤ –
(
 +

r̃M
rM

)
w[g]
M |hM|p –

n–∑
k=M

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+. ()

Consequently, using (), () and (), we obtain

F (y;N,∞) =
∞∑

k=N

[
(rk + r̃k)|�yk|p – (ck + c̃k)|yk+|p

]

=F (y;K ,L – ) +F (y;L,M – ) +F (y;M,N – )

≤ α + α +
(
 +

r̃M
rM

)
|hM|p(w[h]

M –w[g]
M

)

–
n–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+.

Let α >  be arbitrary. It follows from condition () thatM can be taken so large that

n–∑
k=L

[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+ ≥ α + α + α.

Since h is the recessive solution of (), i.e. w[h] is the minimal solution of (), from its
construction () we have

w[h]
M = lim

N→∞w[g]
M .

Hence, N can be taken so large that

(
 +

r̃M
rM

)
|hM|p(w[h]

M –w[g]
M

)
< α.

Consequently, ifM, N are taken as above, then

F (y;N,∞)≤ ,

and this means that equation () is oscillatory by Lemma . The proof is complete. �

The following results are based on themodified Riccati technique. Here we suppose that
h is a positive solution of the nonoscillatory equation () and rk > , rk + r̃k >  for large k.
Denote

Ck :=
[
�

(
r̃k�(�hk)

)
+ c̃k�(hk+)

]
hk+, Rk :=


q
(rk + r̃k)hkhk+|�hk|p–. ()
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First we present a statement, where, using the global inequalities (), (), equation ()
is compared with the linear equation

�(Rk�yk) +Ckyk+ = . ()

This statement generalizes [, Theorems . and .].

Theorem  Let h be a solution of () such that hk > , hk�hk >  for large k.
(i) Let p≥ , and suppose that Ck ≥  for large k and

∑∞ 
Rk

= ∞. If the linear
equation () is nonoscillatory, then equation () is also nonoscillatory.

(ii) Let p≤ , and suppose that h is the recessive solution of (), r̃k ≤ , c̃k ≥  for large k.
If the linear equation () is oscillatory, then equation () is also oscillatory.

Proof (i) Nonoscillation of equation () means that there exists a solution v of the Riccati
equation

�vk +Ck +
vk

Rk + vk
= 

such that Rk +vk >  for large k. Assumptions of the theorem imply, in view of Lemma (ii),
that vk ≥  for large k. Hence, from Lemma (ii) it follows

(Rk + vk)H(k, vk) ≤ vk for large k,

i.e. vk solves the inequality

�vk +Ck +H(k, vk) ≤ 

for large k. Consequently, by Lemma , we have that the sequence w = h–p(v + G) is a
solution of Riccati inequality R̃[wk] ≤ . Moreover,

rk + r̃k +wk = rk + r̃k + h–pk vk + (rk + r̃k)�(�hk/hk) = h–pk vk +
(
 +

r̃k
rk

)(
rk +w[h]

k
)
,

where w[h]
k is a solution of () related to a nonoscillatory solution h of () and hence rk +

w[h]
k >  for large k. Since vk ≥  for large k, we have rk + r̃k + w̃k >  for large k. Hence,

equation () is nonoscillatory according to Lemma .
(ii) Suppose, by contradiction, that equation () is nonoscillatory and let w be a solution

of the associated Riccati equation (). Then, by Lemma , v = hpw–G solves the modified
Riccati equation (). Since r̃k ≤ , c̃k ≥ , it follows from Lemma  that wk ≥ w[h]

k for large
k, where w[h]

k = rk�(�hk/hk) is the minimal solution of (). This means that vk = hpkwk

–Gk = hpk(wk – ( + r̃k
rk
)w[h]

k ) ≥  for large k. Applying inequality () we have

(Rk + vk)H(k, vk) ≥ vk

for large k and hence v solves the inequality

�vk +Ck +
vk

Rk + vk
≤ ,

http://www.advancesindifferenceequations.com/content/2012/1/101


Fišnarová Advances in Difference Equations 2012, 2012:101 Page 11 of 16
http://www.advancesindifferenceequations.com/content/2012/1/101

which, together with the fact that Rk +vk >  for large k, means that () is nonoscillatory.�

The next two statements are based on the estimate () which holds for all p > . Hence
we do not have to distinguish between the cases p > , p < . The idea of the proofs is the
same as in Theorem  and we skip the proofs since they are similar to that in [, Theo-
rems . and .]. The only difference is that we replace rk by rk + r̃k .

Theorem  Suppose that h is a solution of () such that hk > , hk�hk >  for large k and
let

∞∑ 
Rk

= ∞,
∞∑

Ck <∞, Ck ≥  for large k ()

and

lim inf
k→∞

Gk > . ()

If there exists ε >  such that the linear equation

�(Rk�yk) + ( + ε)Ckyk+ =  ()

is nonoscillatory, then equation () is also nonoscillatory.

Theorem  Suppose that h is the recessive solution of () such that hk > , hk�hk > ,
c̃k ≥ , r̃k ≤  for large k, conditions () hold and

lim
k→∞

Gk = ∞. ()

If there exists ε >  such that the linear equation

�(Rk�yk) + ( – ε)Ckyk+ =  ()

is oscillatory, then equation () is also oscillatory.

The next statement is a version of Theorem . In the proof of the statement we use
Lemma (iv). This enables to replace condition () by alternative conditions. This state-
ment is new also in case r̃ = .

Theorem  Suppose that h is the recessive solution of () such that hk > , hk�hk > ,
c̃k ≥ , r̃k ≤  for large k and conditions (), () and () hold. If there exists ε >  such
that the linear equation () is oscillatory, then equation () is also oscillatory.

Proof Suppose, by contradiction, that equation () is nonoscillatory and let w be a solu-
tion of the associated Riccati equation () and v = hpw –G the associated solution of the
modified Riccati equation (). Similarly as in the proof of Theorem (ii), we conclude that
vk ≥  for large k. Since Ck ≥  for large k and H(k, vk) is nonnegative, we have for large k

�vk = –Ck –H(k, vk) ≤ .

http://www.advancesindifferenceequations.com/content/2012/1/101
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This means that there exists a finite limit limk→∞ vk . Summing the modified Riccati equa-
tion from N to k, N being sufficiently large, and using the fact that v is nonnegative, we
obtain

vN ≥
k∑

j=N

Cj +
k∑

j=N

H(j, vj).

Letting k → ∞ and since
∑∞ Ck < ∞, we have

∑∞ H(k, vk) < ∞. From Lemma (iv) it
follows that limk→∞ vk = . Now we can use the estimate (). There exists N such that

H(k, vk) >
(
 –

ε



)
vk

Rk + vk
for k >N.

We have

Rk =

q
(rk + r̃k)hkhk+|�hk|p– = 

q
Gk

(
 +

hk
�hk

)
>

q
Gk .

Hence, by (), limk→∞ vk
Rk

=  and similarly as in [, Theorem .], we obtain for suffi-

ciently large k the estimate 
Rk
–ε +vk

< – ε


Rk+vk
. Hence,

H(k, vk) >
(
 –

ε



)
vk

Rk + vk
>

vk
Rk
–ε

+ vk

for sufficiently large k. This means that vk solves the inequality

�vk +Ck +
vk

Rk
–ε

+ vk
< ,

which is the Riccati inequality associated with equation () and since Rk
–ε

+ vk > , we
have nonoscillation of (). This is a contradiction. �

It is known (see []), that if ck ≥ , rk > ,
∑∞ r–k = ∞,

∑∞ ck < ∞, then the linear
equation () is nonoscillatory provided

lim sup
k→∞

k–∑
r–j

∞∑
j=k

cj <


, ()

and it is oscillatory provided

lim inf
k→∞

k–∑
r–j

∞∑
j=k

cj >


. ()

Applying this criterion to equations (), (), we obtain the following result.

Corollary  Suppose that h is a solution of () such that hk > , hk�hk >  for large k and
let conditions () and () be satisfied.
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(i) If

lim sup
k→∞

k–∑ 
(rj + r̃j)hjhj+|�hj|p–

∞∑
j=k

Cj <

q

, ()

then equation () is nonoscillatory.
(ii) Let moreover h be the recessive solution of (), c̃k ≥ , r̃k ≤  for large k and let either

condition () or conditions () and () be satisfied. If

lim inf
k→∞

k–∑ 
(rj + r̃j)hjhj+|�hj|p–

∞∑
j=k

Cj >

q

,

then equation () is oscillatory.

Proof Consider, e.g., the case (i), the case (ii) is analogous. Condition () can be written
in the form

lim sup
k→∞

k–∑
R–
j

∞∑
j=k

Cj <


.

Consequently, there exists ε >  such that

lim sup
k→∞

k–∑
R–
j

∞∑
j=k

( + ε)Cj <


,

hence equation () is nonoscillatory and this implies, by Theorem , nonoscillation of
(). �

Remark  If r̃k = , c̃k ≥ , then the statements of Theorem  reduce to [, Theorems .
and .]. More precisely, (non)oscillation of

�
(
rk�(�xk)

)
+ (ck + c̃k)�(xk+) =  ()

is compared with that of the linear equation

�
(
R
k�yk

)
+C

k yk+ = , R
k :=


q
rkhkhk+|�hk|p–,C

k := c̃kh
p
k+. ()

In part (ii) of Theorem  we suppose that p ≤ , r̃k ≤ , c̃k ≥ . Under these conditions, if
equation () is oscillatory, then () is oscillatory by [, Theorem .] and oscillation of
() follows then by the Sturm comparison theorem, see, e.g., []. However, Theorem , part
(ii) extends [, Theorem .] in case when the perturbation c̃k is ‘not too much positive’
so that equation () and hence also () is nonoscillatory.
Similarly, if r̃k = , c̃k ≥ , then Theorem  reduces to [, Theorem .] and Theorem 

reduces to [, Theorem .]. Theorem  is new also in case r̃k =  and it allows us to
drop the condition limk→∞ rkhk�(�hk) = ∞ considered in [, Theorem .] and replace
it by alternative conditions. This is useful when studying perturbations of the Euler-type
equation, see the next section.
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Remark  The conditions r̃k ≤ , c̃k ≥  considered in Theorem (ii), Theorem  and
Theorem  are used to show that wk – ( + r̃k/rk)w[h]

k ≥ , where w and w[h] are the solu-
tions of the Riccati type equations associated with equations () and (), respectively. We
conjecture thatwk and (+ r̃k/rk)w[h]

k can be compared by another argument thanLemma,
so the sign restriction on the perturbation terms r̃k , c̃k can be relaxed, similarly as in the
continuous case [].

5 Application
In this section, we apply the previous results to the perturbed Euler-type difference equa-
tion

�
(
( + r̃k)�(�xk)

)
+

(
γp

(k + )p
+ c̄k

)
�(xk+) = , γp :=

(
p – 
p

)p–

. ()

This equation is considered as a perturbation of the nonoscillatory equation

�
(
�(�xk)

)
+ ck�(xk+) = , ()

where

ck = –
��(�hk)
�(hk+)

, hk = k
p–
p . ()

It is easy to see that hk = k
p–
p is a solution of () and it was shown in [] that if p ≥ ,

then it is the recessive solution. By a direct computation, as shown in [], the coefficient
ck is of the form

ck =
γp

(k + )p
(
 +O

(
(k + )–

))
, as k → ∞

and also

�hk =
p – 
p

k–

p
(
 +O

(
k–

))
,

hk�(�hk) =
(
p – 
p

)p–(
 +O

(
k–

))
,

hkhk+(�hk)p– =
(
p – 
p

)p–

k
(
 +O

(
k–

))
,

��(�hk) = –
(
p – 
p

)p

(k + )–+

p
(
 +O

(
(k + )–

))
,

as k → ∞. Consequently,

�hk
hk

=
p – 
p

k–
(
 +O

(
k–

))
, as k → ∞,

hence conditions () are satisfied and we have

Gk =
(
p – 
p

)p–

( + r̃k)
(
 +O

(
k–

))
, Rk = 

(
p – 
p

)p–

( + r̃k)k
(
 +O

(
k–

))
,
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and

Ck = �r̃k�(�hk+)hk+ + r̃k��(�hk)hk+ +
(
c̄k –O

(
(k + )–p–

))
hpk+

=
(
p – 
p

)p–

�r̃k
(
 +O

(
(k + )–

))
–

(
p – 
p

)p

(k + )–r̃k
(
 +O

(
(k + )–

))

+ (k + )p–c̄k –O
(
(k + )–

)
, ()

as k → ∞. Using these computations, Corollary  applied to () reads as follows.

Corollary  Let Ck be given in () and suppose that

∞∑
Ck <∞, Ck ≥  for large k, lim inf

k→∞
( + r̃k) > ,

∞∑ 
( + r̃k)k

= ∞.

(i) If

lim sup
k→∞

k–∑ 
( + r̃j)j

∞∑
j=k

Cj <



(
p – 
p

)p–

,

then equation () is nonoscillatory.
(ii) Suppose moreover that p ≥ , limk→∞ c̄k(k + )p+ = ∞, r̃k ≤  for large k. If

lim inf
k→∞

k–∑ 
( + r̃j)j

∞∑
j=k

Cj >



(
p – 
p

)p–

,

then equation () is oscillatory.
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