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Abstract
We establish new comparison theorems, to offer criteria for all nonoscillatory
solutions of the third-order functional differential equation

[
r(t)

[
x′(t)

]γ ]′′
+ p(t)xβ(τ (t)) = 0

tend to zero. We consider both delay and advanced case of studied equation. The
results obtained essentially improve and complement earlier ones.
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1 Introduction
We are concerned with the asymptotic behavior of all solutions of the third-order func-
tional differential equations

[
r(t)

[
x′(t)

]γ ]′′ + p(t)xβ
(
τ (t)

)
= . (E)

Throughout the article, we will assume r,p ∈ C([t,∞)), τ ∈ C([t,∞)) and
(H) γ , β are the ratios of two positive odd integers,
(H) r(t) > , p(t) > , τ ′(t) > , limt→∞ τ (t) = ∞.

In the sequel, it is assumed that (E) is in a canonical form, i.e.,

R(t) =
∫ t

t
r–/γ (s) ds → ∞ as t → ∞.

By a solution of Equation (E) we mean a function x(t) ∈ C([Tx,∞)), Tx ≥ t, which has
the property r(t)(x′(t))γ ∈ C([Tx,∞)) and satisfies Equation (E) on [Tx,∞). We consider
only those solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} >  for all T ≥ Tx. We
assume that (E) possesses such a solution. A solution of (E) is called oscillatory if it has
arbitrarily large zeros on [Tx,∞) and otherwise it is called to be nonoscillatory.
Various techniques were established for examination of (E) and its particular cases. In

the articles [–], the authors have introduced comparison theorems for comparing stud-
ied equation with a set of the first order delay/advanced equation, in the sense that os-
cillation of these first order equations yields desired properties of third order equation.
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Properties of (E) have been usually studied under condition β = γ or β < γ . In this article
we establish results, where β ≥ γ . Moreover, in the cited articles the authors in generally
consider either delay or advanced equations, but our technique permits to study both ad-
vanced and delayed cases. On the other hand, in the existing comparison results of this
kind, there are studied equations always compared with canonical second order differen-
tial equation, but in this article we were able to establish comparison with noncanonical
differential equation.
We offer new comparison principles, in which we compare our third order equation

with the second order differential inequality and this reduction essentially simplifies the
investigation of the properties of third order differential equations. Our results generalize
those presented in [–].

Remark . All functional inequalities considered in this article are assumed to hold
eventually, that is, they are satisfied for all t large enough.

2 Main results
In the following lemma, we present the classification of the possible nonoscillatory solu-
tions of (E).

Lemma . Let x(t) be a nonoscillatory solution of (E). Then x(t) satisfies, one of the fol-
lowing conditions:

(C) x(t)x′(t) < , x(t)
[
r(t)

[
x′(t)

]γ ]′ > , x(t)
[
r(t)

[
x′(t)

]γ ]′′ < ,

(C) x(t)x′(t) > , x(t)
[
r(t)

[
x′(t)

]γ ]′ > , x(t)
[
r(t)

[
x′(t)

]γ ]′′ < ,

eventually.

Proof The proof follows immediately from the canonical form of (E) and details are left
to a reader. �

To simplify our formulations of the main results, we recall the following definition:

Definition . We say that (E) enjoys property (A) if every its nonoscillatory solution
satisfies (C).

Remark . It is easy to verify that condition

∫ ∞

t
p(s) ds = ∞, (.)

guarantees property (A) of (E). Consequently, in the sequel, we may assume that the inte-
gral on the left hand side of (.) is convergent.

Property (A) of (E) has been studied by various authors (see enclosed references). We
offer new technique for investigation property (A) of (E) based on the comparison theo-
rems, in which we reduce property (A) of (E) to the absence of certain positive solution of
the suitable second order differential inequality. At first, we establish criteria for property
(A) of advanced differential equation. We start with the following auxiliary result.
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Lemma . Let τ (t)≥ t. Assume that x(t) satisfies (C). Then for any k ∈ (, )

∣∣x(τ (t))∣∣ ≥ k
R(τ (t))
R(t)

∣∣x(t)∣∣, (.)

eventually.

Proof Assume that x(t) > . The monotonicity of w(t) = r(t)[x′(t)]γ implies that

x
(
τ (t)

)
– x(t) =

∫ τ (t)

t
x′(s) ds =

∫ τ (t)

t
w/γ (s)r–/γ (s) ds

≥ w/γ (t)
∫ τ (t)

t
r–/γ (s) ds = w/γ (t)

[
R
(
τ (t)

)
– R(t)

]
.

That is,

x(τ (t))
x(t)

≥  +
w/γ (t)
x(t)

[
R
(
τ (t)

)
– R(t)

]
. (.)

On the other hand, since x(t)→ ∞ as t → ∞, then for any k ∈ (, ) there exists a t large
enough, such that

kx(t)≤ x(t) – x(t) =
∫ t

t
w/γ (s)r–/γ (s) ds ≤ w/γ (t)

∫ t

t
r–/γ (s) ds≤ w/γ (t)R(t)

or equivalently,

w/γ (t)
x(t)

≥ k
R(t)

. (.)

Using (.) in (.), we get

x(τ (t))
x(t)

≥  +
k

R(t)
[
R
(
τ (t)

)
– R(t)

] ≥ k
R(τ (t))
R(t)

.

This completes the proof. �

Let us denote

p(t) =
Rβ (τ (t))
Rβ (t)

p(t). (.)

Theorem . Let τ (t) ≥ t. If for some c ∈ (, ) the second order differential inequality

(


p/β (t)

(
z′(t)

)/β)′
+ c

t/γ

r/γ (t)
z/γ (t)≤  (E)

has not any solution satisfying

z(t) > , z′(t) < ,
(


p/β (t)

(
z′(t)

)/β)′
< , (P)

then (E) has property (A).
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Proof Assume the contrary, let x(t) be a nonoscillatory solution of Equation (E), satisfying
(C). We may assume that x(t) > , for t ≥ t. Setting (.) into (E), we obtain

[
r(t)

[
x′(t)

]γ ]′′ + kβp(t)
Rβ (τ (t))
Rβ(t)

xβ (t) ≤ . (.)

On the other hand, it follows from the monotonicity of y(t) = [r(t)[x′(t)]γ ]′, that

r(t)
[
x′(t)

]γ ≥
∫ t

t
y(s) ds ≥ y(t)(t – t) ≥ cγ /β ty(t), (.)

eventually, where c ∈ (, ) is an arbitrary chosen constant. Evaluating x′(t) and then in-
tegrating from t (≥ t) to t, we are lead to

x(t)≥ c/β

∫ t

t

s/γ

r/γ (s)
y/γ (s) ds. (.)

Setting to (.), we have

y′(t) + ckβp(t)
[∫ t

t

s/γ

r/γ (s)
([
r(s)

[
x′(s)

]γ ]′)/γ ds
]β

≤ .

Integrating from t to ∞, one gets

y(t) ≥ c
∫ ∞

t
p(s)

[∫ s

t

u/γ

r/γ (u)
y/γ (u) du

]β

ds, (.)

where c = ckβ . Let us denote the right hand side of (.) by z(t). Then y(t) ≥ z(t) >  and
z(t) satisfies (P) and moreover,

 =
(


p/β (t)

(
z′(t)

)/β)′
+ c

t/γ (t)
r/γ (t)

y/γ (t)

≥
(


p/β (t)

(
z′(t)

)/β)′
+ c

t/γ (t)
r/γ (t)

z/γ (t).

Consequently, z(t) is a solution of the differential inequality (E), which contradicts our
assumption. �

We are prepared to establish the corresponding result also for delay differential equa-
tions. Let us denote

p(t) =
p(τ–(t))
τ ′(τ–(t))

. (.)

Theorem . Let τ (t)≤ t. If for some c ∈ (, ) the second order differential inequality

(


p/β (t)

(
z′(t)

)/β)′
+ c

t/γ

r/γ (t)
z/γ (t)≤  (E)
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has not any solution satisfying

z(t) > , z′(t) < ,
(


p/β (t)

(
z′(t)

)/β)′
< , (P)

then (E) has property (A).

Proof Assume the contrary, let x(t) be a positive solution of Equation (E), satisfying (C).
An integration of (E) from t to ∞, yields

[
r(t)

[
x′(t)

]γ ]′ ≥
∫ ∞

t
p(s)xβ

(
τ (s)

)
ds =

∫ ∞

τ (t)

p(τ–(s))
τ ′(τ–(s))

xβ (s) ds

≥
∫ ∞

t

p(τ–(s))
τ ′(τ–(s))

xβ (s) ds.

Using (.), one can see that y(t) = [r(t)[x′(t)]γ ]′ satisfies

y(t) ≥ c
∫ ∞

t
p(s)

[∫ s

t

u/γ

r/γ (u)
y/γ (u) du

]β

ds. (.)

Let us denote the right hand side of (.) by z(t). Then similarly as in the proof of Theo-
rem ., we can verify that z(t) is a positive solution of (E) and moreover, it satisfies (P),
which contradicts our assumption. �

Establishing, new criteria for elimination of solutions of (Ei) satisfying (Pi), i = , , we
immediately obtain sufficient conditions for property (A) of (E). Since (E) and (E) are
of the same form, we present just one general criterion and then, we adapt them for both
(Ei). So we consider the noncanonical differential inequality

(
a(t)

(
z′(t)

)α)′ + b(t)zδ(t) ≤ , (E*)

where
(H) α, δ are the ratios of two positive odd integers,
(H) a(t) > , b(t) > .
Let us denote

�(t) =
∫ ∞

t
a–/α(s) ds.

Theorem . Assume that δ > α. If for all k > 

lim sup
t→∞

∫ t

t

[
�δ(s)b(s) –

δαα

k(α + )α+�(s)a/α(s)

]
ds >


k
, (.)

then (E*) has not any solution satisfying

z(t) > , z′(t) < ,
(
a(t)

(
z′(t)

)α)′ < . (P*)
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Proof Let z(t) be a positive solution of (E*), such that (P*) holds. We define

w(t) =
a(t)(z′(t))α

zδ(t)
.

Then w(t) <  and, moreover,

w′(t) =
(a(t)(z′(t))α)′

zδ(t)
– δw(t)

z′(t)
z(t)

≤ –b(t) – δw+/α(t)
z–+δ/α(t)
a/α(t)

. (.)

On the other hand, noting that –(a(t)(z′(t))α)/α is positive and increasing, we see that
there exists a constant k >  such that –(a(t)(z′(t))α)/α ≥ k and

z(t) ≥
∫ ∞

t
–z′(s) ds =

∫ ∞

t
–
(
a(s)

(
z′(s)

)α)/αa–/α(s) ds
≥ –

(
a(t)

(
z′(t)

)α)/α
�(t) ≥ k�(t), (.)

or equivalently

z–+δ/α(t)≥ k�–+δ/α(t), (.)

where k = k–+δ/α
 . Setting (.) into (.), one gets

w′(t)≤ –b(t) – δkw+/α(t)
�–+δ/α(t)
a/α(t)

. (.)

It is useful to notice that (.) implies

zα–δ(t) ≥ –w(t)�α(t),

which together with (.) implies


kα


≥ –w(t)�δ(t). (.)

Multiplying (.) by �δ(t) and then integrating from t to t, we are lead to

w(t)�δ(t) –w(t)�δ(t) + δ

∫ t

t

�δ–(s)
a/α(s)

w(s) ds

≤ –
∫ t

t
b(s)�δ(s) ds – δk

∫ t

t

�δ–+δ/α(s)
a/α(s)

w+/α(s) ds,

which in view of (.) yields

∫ t

t

{
b(s)�δ(s) + δ

[
�δ–(s)
a/α(s)

(
w(s) + k�δ/α(s)w+/α(s)

)]}
ds ≤ 

kα

.

An elementary calculation shows that for the function f (u) = u+Au+/α , u <  the follow-
ing estimate holds

u +Au+/α ≥ –
αα

(α + )α+

Aα

.
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Consequently,

w(s) + k�δ/α(s)w+/α(s)≥ –
αα

(α + )α+


kα
�δ(s)

.

Therefore,

∫ t

t

[
�δ(s)b(s) –

δαα

k(α + )α+�(s)a/α(s)

]
ds ≤ 

k
,

with k = kα
 . Taking lim supt→∞ on both sides, we get a contradiction with (.). This

finishes our proof. �

Now, we transform condition (.) to the more practical form.

Corollary . Assume that δ > α. If

lim
t→∞�δ+(t)b(t)a/α(t) = ∞, (.)

then (E*) has not any solution satisfying (P*).

Proof It follows from (.) that for any k > 

�δ+(t)b(t)a/α(t)≥ δαα

k(α + )α+
+

k
,

eventually. That is

�δ(t)b(t) –
δαα

k(α + )α+�(t)a/α(t)
≥ 

k


�(t)a/α(t)
.

Integrating the above inequality from t to t, one gets

∫ t

t
�δ(s)

{
b(s) –

δαα

k(α + )α+�(s)a/α(s)

}
ds =


k

(
ln


�(t)

– ln


�(t)

)
.

Letting t → ∞, we see that (.) holds true and the assertion now follows from Theo-
rem .. �

We combine Theorems . and . together with Corollary ., to obtain easily verifiable
criteria for property (A) of (E).

Theorem . Let β > γ , τ (t)≥ t. If

lim
t→∞

(∫ ∞

t

Rβ (τ (s))
Rβ (s)

p(s) ds
)+/γ t/γ

r/γ (t)
Rβ (t)

p(t)Rβ (τ (t))
= ∞, (.)

then (E) has property (A).
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Proof We set α = /β , δ = /γ , a(t) = p–/β (t), and b(t) = c t/γ
r/γ (t) . Then �(t) =

∫ ∞
t p(s) ds.

Since (.) reduces to (.), Corollary . ensures that (E) has not any solution satisfying
(P). The assertion now follows from Theorem .. �

Theorem . Let β > γ , τ (t) ≤ t. If

lim
t→∞

(∫ ∞

t
p(s) ds

)+/γ
τ /γ (t)

r/γ (τ (t))
τ ′(t)
p(t)

= ∞, (.)

then (E) has property (A).

Proof We set α = /β , δ = /γ , a(t) = p–/β (t), and b(t) = c t/γ
r/γ (t) . Then �(t) =

∫ ∞
τ–(t) p(s) ds.

As (.) reduces to (.), Corollary . guarantees that (E) has not any solution satisfy-
ing (P). The assertion now follows from Theorem .. �

Remark. For τ (t)≡ t both conditions (.) and (.) simplifies to the same condition

lim
t→∞

(∫ ∞

t
p(s) ds

)+/γ t/γ

r/γ (t)


p(t)
= ∞,

for property (A) of (E).

Corollary . Assume that (E) enjoys property (A). If moreover,

∫ ∞

t


r/γ (v)

(∫ ∞

v

∫ ∞

u
p(s) dsdu

)/γ

dv = ∞, (.)

then every nonoscillatory solution of (E) tends to zero as t → ∞.

Proof Since (E) has property (A), every its nonoscillatory solution satisfies (C), and what
is more, (.) ensures that such solution tends to zero as t → ∞. �

Example . Consider the third order nonlinear differential equation

(
t
(
x′(t)

))′′ +
a
t
x(λt) = , t ≥ , (Ex)

where a >  and λ > . Since both conditions (.) and (.) hold, Theorems . and .
imply that (Ex) enjoys property (A) and, moreover, Corollary . guarantees that every
nonoscillatory solution of (Ex) tends to zero as t → ∞. For a = λ one such solution is
x(t) = /t.

3 Summary
Our results can be applied to both delay and advanced third order differential equations.
The criteria obtained are easy verifiable and have been precedented by suitable joint illus-
trative example.
Ourmethod essentially simplifies the examination of the third order equations andwhat

ismore, it supports backward the research on the second order delay/advanced differential
equations and inequalities.
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