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Abstract
We establish the Rofe-Beketov formula for symplectic systems on time scales. This
result generalizes the well-known d’Alembert formula (or the Reduction of Order
Theorem) and the Rofe-Beketov formula published for the second order
Sturm-Liouville equations on time scales. Moreover, this result is new even in the
discrete time case.
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1 Introduction
In this article, we solve the open problem presented in [, Remark (iv)] concerning the
Rofe-Beketov formula for symplectic systems on time scales (see Theorem ), i.e., for the
first order dynamic system

z� = S(t)z (S)

on a time scale T. We unify the Rofe-Beketov formulas published recently in the literature
for the second order Sturm-Liouville differential, difference, and dynamic equations and
also for the linear Hamiltonian differential systems andwe generalize them by establishing
its dynamic counterpart for system (S). We point out that this result is new even in the
discrete time case (see Remark (v)) and,moreover, it can be viewed as an improvement of
the corresponding Reduction of Order Theorem, see [, Remark ] and [, Theorem .],
respectively.
Let us consider the second order Sturm-Liouville differential equation

–
(
p(t)x′)′ + q(t)x = , t ∈ J , ()

where p >  on J and p–, q ∈ Lloc(J). Let x be a solution of () without zeros in J̃ ⊆ J and
t ∈ J̃ . Then the second linearly independent solution y of () on J̃ can be expressed with
using the so-called d’Alembert formula (or the Reduction of Order Theorem) as

y(t) = x(t)
∫ t

t

ds
p(s)x(s)

, t ∈ J̃ , ()

see, e.g. [, Theorem .], and these solutions are normalized, i.e.,

w[x, y](t) := x(t)p(t)y′(t) – p(t)x′(t)y(t)≡ , t ∈ J̃ .
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The Rofe-Beketov formula improves identity () and it gives a similar result without the
assumption x(t) �=  for t ∈ J̃ . More precisely, if x is a nontrivial solution of () then the
function

y(t) = x(t)
∫ t

t

(q(s) + 
p(s) )(x

(s) – (p(s)x′(s)))
(x(s) + (p(s)x′(s)))

ds –
p(t)x′(t)

x(t) + (p(t)x′(t))
, t ∈ J , ()

represents the second linearly independent solution of equation () on J and it holds
w[x, y] ≡ . This statement was established in [, Lemma ] and it is a generalization of the
original Rofe-Beketov formula presented for equation () with p(·) ≡  in [, Lemma ].
An application of identity () can be found in the study of the relative oscillation theory
and spectral properties of differential operators associated with (), see [, ].
In the year , identity () was generalized for the linear Hamiltonian differential

system

x′ = A(t)x + B(t)u, u′ = C(t)x –A*(t)u, t ∈ J , (H)

where A, B, C are n × n matrix-valued locally integrable complex functions and B = B*,
C = C*, see [, Theorem .]. This result is recalled in the following proposition, where we
denote the Hermitian component of the matrix A by ReA, i.e., ReA := (A + A*)/, see e.g.
[, pp.-] or [, Facts ..-..].

Proposition  (Rofe-Beketov formula for (H)) If
( X
U

)
is a n × n matrix solution of (H)

such that X*U =U*X and det(X*X +U*U) �= , then the pair

X̃ = XF –UG, Ũ =UF +XG,

where we put

G :=
(
X*X +U*U

)–,
F :=

∫ t

t
G

{
X*(B +C)X –U*(B +C)U – Re

[
X*(ReA)U

]}
Gds, t ∈ J ,

forms the second linearly independent n× n matrix-valued solution of (H) satisfying the
condition X*Ũ – U*X̃ ≡ I, i.e., the solutions

( X
U

)
and

( X̃
Ũ

)
are normalized. Moreover, the

conditions X̃*Ũ = Ũ*X̃ and det(X̃*X̃ + Ũ*Ũ) �=  hold also true.

The Rofe-Beketov formula was also established for the second order Sturm-Liouville
dynamic equation

–
(
p(t)x�

)� + q(t)xσ = , t ∈ T, ()

where T denotes a time scale, see [, Theorem ]. In addition, since this result was new in
the discrete time case, i.e., T = Z, the Rofe-Beketov formula for the second order Sturm-
Liouville difference equation

–�(pk�xk) + qkxk+ =  ()
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was presented in [, Remark (ii)]. In this article we complete this treatment by proving the
Rofe-Beketov formula for symplectic dynamic (and consequently for difference) systems.

2 Preliminaries on time scales and symplectic systems
The time scale calculus was originally published by Hilger in his dissertation [], see also
[]. It is well known that this theory provides suitable tools for a study of differential
and difference (among others) equations under the unified framework. The time scale
theory has been developed in the last  years intensively and we refer to [, ] for the
fundamental results achieved in this field.
A time scale T is any nonempty closed subset of real numbers R. With respect to the

standard terminology, the forward jump operator σ : T → T and the backward jump op-
erator ρ : T → T are introduced as

σ (t) := inf{s ∈ T|s > t} and ρ(t) := sup{s ∈ T|s < t},

respectively, and simultaneously we put inf∅ := supT and sup∅ := infT. The graininess
function μ : T→ [,∞) is defined as μ(t) := σ (t) – t.
Let t ∈ T be a point such that t > infT. It is said to be left-dense and left-scattered if

ρ(t) = t and ρ(t) < t, respectively. On the other hand, a point t ∈ T satisfying t < supT is
called right-dense and right-scattered if σ (t) = t and σ (t) > t, respectively. In addition, for
a =minT we put ρ(a) = a and for b =maxT we have σ (b) = b. We also use the following
notation

T
κ :=

⎧⎨⎩T \ {b}, if the point b ∈ T is a left-scattered maximum of T,

T, otherwise.

For a complex-valued function f and t ∈ T
κ we define f �(t), i.e., the �-derivative of f at t,

as the number (provided it exists) with the property that for any given ε >  there is a
neighborhood U of t (i.e., U = (t – δ, t + δ) for some δ > ) such that

∣∣f σ (t) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣,
where we used the notation f σ (t) := f (σ (t)). We note that f �(b) is not well defined if b =
maxT exists and is left-scattered.
The rule for the differentiation of a product fg has the well-known form

(fg)�(t) = f �(t)g(t) + f σ (t)g�(t) = f �(t)gσ (t) + f (t)g�(t) ()

and it also holds

f σ (t) = f (t) +μ(t)f �(t) ()

whenever f �(t) exists.
A complex function f is called regressive on J ⊆ T

κ if

I +μ(t)f (t) is invertible for all t ∈ J ,

http://www.advancesindifferenceequations.com/content/2012/1/104
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where I denotes an appropriate identity matrix. A function f is called regulated if its right-
hand limit f (t+) exists (finite) at all right-dense points t ∈ T and the left-hand limit f (t–)
exists (finite) at all left-dense points t ∈ T. Provided a function f is regulated and it is
continuous at each right-dense point t ∈ T, it is called rd-continuous (we write f ∈ Crd)
onT. A function f is said to be piecewise rd-continuous (f ∈ Cprd) onT if it is regulated and
if f is rd-continuous at all but possibly finitely many right-dense points t ∈ T. A function
f is said to be rd-continuously �-differentiable (f ∈ C

rd) on T if f � exists for all t ∈ T
κ and

f � ∈ Crd onTκ . Finally, a function f is said to be piecewise rd-continuously�-differentiable
(f ∈ C

prd) on [a,b]T if f is continuous on T and f �(t) exists at all except of possibly finitely
many points t ∈ T

κ , and f � ∈ Cprd on T
κ .

It is also well known that for any rd-continuous function onT there exists an antideriva-
tive F , i.e., a function satisfying F�(t) = f (t) for all t ∈ T

κ . A time scale integral of a function
f over a time scale interval [c,d]∩T, where c,d ∈ T, is defined as

∫ d

c
f (t)�t := F(d) – F(c)

for any antiderivative F of f .
In this article, we are interested in the symplectic system on time scales

z� = S(t)z, t ∈ T
κ , (S)

where the n× nmatrix-valued complex function S(·) satisfies

S
*(t)J +J S(t) +μ(t)S*(t)J S(t) =  for all t ∈ T

κ with J :=

(
 I
–I 

)
. ()

With using the block notation Z =
( X
U

)
and S(t) :=

(
A(t) B(t)
C(t) D(t)

)
, system (S) can be written in

the form

X� =A(t)X +B(t)U , U� =C(t)X +D(t)U ,

where X,U ∈ C
prd are n×m,  ≤ m ≤ n, matrix-valued complex functions and the coeffi-

cients are n×nmatrix-valued complex functions such thatA,B,C,D ∈ Cprd onT. Identity
() can be also written in this block notation as (we omit the argument t)

B
* –B +μ

(
B
*
D –D

*
B

)
= ,

C
* –C +μ

(
C

*
A –A

*
C

)
= ,

A
* +D +μ

(
A

*
D –C

*
B

)
= .

⎫⎪⎪⎬⎪⎪⎭ ()

Moreover, we note that identity () implies the symplecticity of thematrix (I+μS) onTκ ,
i.e., (I +μS)*J (I +μS) = J . Since every symplectic matrix is invertible, it follows that the
matrix-valued function S(·) is regressive on T

κ . Hence the existence of a unique solution
for any (vector or matrix) initial value problem is a consequence of [, Theorem .] or
[, Theorem .], see also [, Remark ].
The theory of symplectic difference systems was initiated in [] as the discrete coun-

terpart of system (H), while the study of system (S) originates in []. It is a well-known
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fact that system (S) includes many special cases, e.g., equations (), () and (), system (H),
discrete symplectic systems, and any even order Sturm-Liouville equation, see [].
We associate with system (S) theWronskian matrix given by

W [Z, Z̃](t) := X*(t)Ũ(t) –U*(t)X̃(t) =

(
X(t)
U(t)

)*

J
(
X̃(t)
Ũ(t)

)
,

where Z =
( X
U

)
and Z̃ =

( X̃
Ũ

)
are any n × m,  ≤ m ≤ n, solutions of (S). It is a direct

consequence ofW�[Z, Z̃] ≡  that the Wronskian matrix takes a constant value on T.
A solution Z =

( X
U

)
of (S) is said to be a conjoined solution ifW [Z,Z]≡ , i.e., X*(t)U(t)

is a Hermitian matrix at one (and hence at any) t ∈ T. Two solutions Z, Z̃ are called nor-
malized if W [Z, Z̃] ≡ I . A solution Z =

( X
U

)
is said to be a basis if rankZ = n on T. It was

shown in [, Proposition .] that the value of rankZ(t) is also constant on T.

3 Main result
The Reduction of Order Theorem for system (S) was published in [, Remark ] and it is
recalled in the following proposition.

Proposition  (Reduction of Order Theorem for (S)) Let Z =
( X
U

)
be a conjoined basis of

(S) such that X is invertible on the time scale interval I := [a,b]∩T, a,b ∈ T. Then Z̃ =
( X̃
Ũ

)
,

where

X̃ := X(t)
∫ t

a

{(
Xσ

)–
BX*–}(s)�s,

Ũ :=U(t)
∫ t

a

{(
Xσ

)–
BX*–}(s)�s +X*–(t),

⎫⎪⎪⎬⎪⎪⎭ t ∈ T,

is also a conjoined basis of (S). Moreover, Z and Z̃ are linearly independent (even normal-
ized), i.e., they form a basis of the solution space for (S).

Now, we improve this proposition in the main result by dropping the invertibility of X,
i.e., we state and prove the Rofe-Beketov formula for system (S).

Theorem  (Rofe-Beketov formula for (S)) Let Z =
( X
U

)
be a conjoined basis of (S). Then

the pair Z̃ =
( X̃
Ũ

)
given by

X̃ = XF –UG, Ũ = XG +UF , ()

where

G :=
(
X*X +U*U

)–, ()

F :=
∫ t

t

{
Gσ

[
Xσ *(B +C)X +Xσ *(D –A)U

+Uσ *(D –A)X –Uσ *(B +C)U
]
G

}
(s)�s

⎫⎪⎬⎪⎭ ()

for a fixed t ∈ T chosen without any restriction, solves also system (S). Moreover, Z̃ is a
basis of (S) and it holds W [Z, Z̃] ≡ I (i.e., they are linearly independent and normalized).
In addition, Z̃ constitutes also a conjoined basis if F * = F.

http://www.advancesindifferenceequations.com/content/2012/1/104
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Proof The proof is based on the variation of parameters method. By differentiating iden-
tity ()(i), and from (), we get

X̃� = X�F +XσF� –U�G –UσG�. ()

Since Z =
( X
U

)
solves system (S) and Z̃ =

( X̃
Ũ

)
has to solve the same system, it follows from

() that

XσF� –UσG� = X̃� –X�F +U�G =
[
(B +C)X + (D –A)U

]
G. ()

Similarly, we obtain

UσF� +XσG� = Ũ� –U�F –X�G = –
[
(A –D)X + (B +C)U

]
G. ()

Since Z is a conjoined basis, the multiplication of identity () by Xσ * from the left and
identity () by Uσ * from the left yields in the sum

(
Xσ *Xσ +Uσ *Uσ

)
F�

=
[
Xσ *(B +C)X +Xσ *(D –A)U +Uσ *(D –A)X –Uσ *(B +C)U

]
G. ()

Analogously, multiplying identity () by –Uσ * from the left and identity () by Xσ * from
the left, we get the dynamic equation

(
Xσ *Xσ +Uσ *Uσ

)
G�

= –
[
Xσ *(A –D)X +Xσ *(B +C)U +Uσ *(B +C)X +Uσ *(D –A)U

]
G.

Nevertheless, we can get the form of G explicitly. If we multiply identity ()(i) from the
left by –U* and identity ()(ii) from the left by X*, we obtain by adding these equa-
tions

X*Ũ –U*X̃ =
(
X*U –U*X

)
F +

(
X*X +U*U

)
G.

Since Z is a conjoined basis and it has to be satisfiedW [Z, Z̃] ≡ I , it follows

I = X*Ũ –U*X̃ =
(
X*X +U*U

)
G, i.e., G =

(
X*X +U*U

)–,
i.e.,G is determined by (). Consequently, identity () yields that thematrix-valued func-
tion F is given by () for a fixed t ∈ T chosen without any restriction at the outset of the
proof.
Now, from the facts that the value of rank Z̃ is constant and the matrix G has a full rank,

and since it holds

(
X̃(t) Ũ(t)

)
=

(
–U(t)G(t) X(t)G(t)

)
=

(
X(t) U(t)

)(
 G(t)

–G(t) 

)
,

http://www.advancesindifferenceequations.com/content/2012/1/104
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it follows that the solution Z̃ forms a basis of (S), i.e., rank Z̃ = n (see also Remark ()(i)).
Moreover, from (), (), identity X*U =U*X, and by the direct calculation, we obtain

X̃*Ũ – Ũ*X̃ = F*(X*U –U*X
)
F + F*(X*X +U*U

)
G

–G*(X*X +U*U
)
F +G*(X*U –U*X

)
G = F* – F ,

i.e., Z̃ is also a conjoined solution if F* = F on T, and the proof is complete. �

Remark 
(i) The fact that Z̃ represents a basis of (S), follows also from the calculation

X̃*X̃ + Ũ*Ũ = F*G–F +G*

since the condition rank Z̃ = n is equivalent with det(X̃*X̃ + Ũ*Ũ) �= . This
condition is obviously satisfied at t = t and hence it holds true for any t ∈ T.

(ii) With using the block identities in () and identity (), the function F can be also
given in the form

F =
∫ t

t

{
Gσ

[
X*(

C
* +B +μ

(
A

*
B +C

*
D

))
X

–X*(
A

* +A +μ
(
A

*
A +C

*
C

))
U

+U*(
D

* +D +μ
(
B
*
B +D

*
D

))
X

–U*(
B
* +C +μ

(
B
*
A +D

*
C

))
U

]
G

}
(s)�s.

On the other hand, with using identity () for system (S), i.e., Zσ = (I +μS)Z, and
without the block notation (i.e., only with Z, Z̃, and S) the coefficient matrices in
()-() can be written as G = (Z*Z)– and

F = –
∫ t

t

{[
Z*(I +μ

(
S + S

* +μS*S
))
Z
]–

× [
Z*(

S + S
* +μS*S

)
J Z

](
Z*Z

)–}(s)�s.

⎫⎪⎬⎪⎭ ()

(iii) It follows from identities () and () that it is satisfied F*(t) = F(t) for a point t ∈ T

and, consequently, the pair Z̃ forms a conjoined basis if it holds μ(t) = . Especially
if T =R, we have σ (t) = t, μ(t) = , and f �(t) = f ′(t). In this setting, system (S) has
the form of (H) and the statement of Theorem  corresponds to Proposition , i.e.,
[, Theorem .].

(iv) Equation (), where /p,q ∈ Cprd, can be written as the symplectic dynamic system

(
x

px�

)�

=

(
 /p
q μq/p

)(
x

px�

)
.

Theorem  yields for a nontrivial solution x of () that the second linearly
independent solution y such that p(xy� – x�y) ≡ , can be expressed as

y(t) = f (t)x(t) – g(t)p(t)x�(t),

http://www.advancesindifferenceequations.com/content/2012/1/104


Zemánek Advances in Difference Equations 2012, 2012:104 Page 8 of 9
http://www.advancesindifferenceequations.com/content/2012/1/104

where we put

g(t) :=


x + (px�)
,

f (t) :=
∫ t

t

μq(xσx� + (px�)σx/p) + xσ (/p + q)x – (px�)σ (/p + q)px�

[x + (px�)][x + (px�)]σ
�s.

This result corresponds to [, Theorem ] by a direct calculation using identity ()
and reduces to [, Lemma ] in the special case T =R.

(v) As mentioned in the introduction, Theorem  is new even in the discrete time case,
i.e., for T = Z. In this case, system (S) can be written as the discrete symplectic
system

Xk+ =AkXk +BkUk , Uk+ =CkXk +DkUk , (SZ)

where we put Ak :=A(k) + I , Bk := B(k), Ck :=C(k), and Dk :=D(k) + I . Hence, if
Z =

( X
U

)
is a conjoined basis of (SZ), then the pair Z̃ =

( X̃
Ũ

)
given by (), where

Gk :=
(
X*
kXk +U*

kUk
)– = (

Z*
kZk

)–
and

Fk :=
k–∑
i=k

{
Gi+

[
X*
i+(Bi +Ci)Xi +X*

i+(Di –Ai)Ui

+U*
i+(Di –Ai)Xi –U*

i+(Bi +Ci)Ui
]
Gi

}
= –

k–∑
i=k

{(
Z*
iS

*
iSiZi

)–[Z*
i
(
S
*
iSi – I

)
J Zi

](
Z*
i Zi

)–}

with Sk =
(
Ak Bk
Ck Dk

)
, represents a solution of (SZ) such thatW [Z, Z̃] = I , compare

with [, Theorem .].
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