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Abstract
In this work, we study qualitative properties of the solutions of the following class of
nonlinear third order difference equations

xn+1 = pxn–1 + f (xn–1 – xn–2).

First we study the relation of attractivity and stability of equilibrium point of this
equation and some related equations. Further more we prove the existence of
Neimark-Sacker and period doubling (flip) bifurcation for this system by analysing the
characteristic equation, and investigate the direction of this bifurcations by using
normal form theory. Finally some numerical simulations are carried out to support the
analytical results.
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1 Introduction
We consider the third order difference equation

xn+ = pxn– + f (xn– – xn–), (.)

where p ∈ (, ), f : R → R is a continuous real function with f () = , f (x) �=  for x �= 
and x, x–, x– are given real numbers (initial conditions).
Particular cases of (.) have been appeared in mathematical models of macroeco-

nomics, see [, ]. Equations of the form xn+ = pxn + f (xn – xn–) considered and studied
extensively by [–].
In this workwe study various properties of (.). In Section we study attractivity, stabil-

ity and attractive region of (.) and its related equations. Further more we study bifurca-
tions of (.). In Section  we prove the existence of Neimark-Sacker and period doubling
(flip) bifurcation for this system by analysing the characteristic equation, and then in Sec-
tion we investigate the direction of this bifurcations by using normal form theory. Finally
in Section  we give numerical simulations to support our theoretical analysis.

© 2012 Memarbashi and Ghasemabadi; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and re-
production in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/107
mailto:r_memarbashi@yahoo.com
http://creativecommons.org/licenses/by/2.0


Memarbashi and Ghasemabadi Advances in Difference Equations 2012, 2012:107 Page 2 of 15
http://www.advancesindifferenceequations.com/content/2012/1/107

2 Attractivity
In this section we study global attractivity and stability of the equilibrium point of (.).
Equation (.) can be transformed to another form which has equivalent properties. Let

un = xn– – xn–. (.)

Then (.) reduced to

un+ = pun– + f (un–) – f (un–) (.)

which has the unique equilibrium u = .
At first we show the following result.

Theorem . The equilibrium point x =  is global attractive (respectively asymptotically
stable) in (.) if and only if u =  is global attractive (respectively asymptotically stable) in
(.).

Proof Equation (.) can be written as:

xn+ = pxn– + f (un), for n = , , , . . . . (.)

Hence we see that:

x = px– + f (u),

x = px + f (u),

x = px + f (u) = px– + pf (u) + f (u),

x = px + f (u) = px + pf (u) + f (u).

Using induction we have that, if n is even then:

xn = p
n
 x +

n
∑
i=

p
n
 –if (ui–). (.)

And if n is odd then:

xn = p
n+
 x– +

n+
∑
i=

p
n+
 –if (ui–). (.)

Now if n is even, let un =
∑ n


i= p

n
 –i|f (ui–)| and if n is odd, vn =

∑ n+


i= pn+
 –i|f (ui–)| we

prove that limn–→∞ un = .
We distinguish two cases.
Case . (

∑∞
i= |f (ui–)|/pi < ∞). In this case

lim
n–→∞un = lim

n–→∞p
n


n
∑
i=

|f (ui–)|
pi

= .
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Case . (
∑∞

i= |f (ui–)|/pi = ∞). In this case by using Stolz Theorem and since n is even,
we have that:

lim
n–→∞un = lim

n–→∞

∑ n

i=

|f (ui–)|
pi


p
n


= lim
n–→∞

∑ n+


i=
|f (ui–)|

pi –
∑ n


i=

|f (ui–)|
pi



p
n+


– 
p
n


= lim
n–→∞

|f (un+)|
 – p

.

Using continuity of f we see that if limn–→∞ un =  then limn–→∞ un =  (and by a similar
argument limn–→∞ vn = ), which implies that limn–→∞ xn = . �

By using weak contractions introduced in [] we obtain the following sufficient condi-
tions for attractivity of solutions of (.).

Proposition .
() If |f (t)| ≤ a|t| for all t and  < a < –p

 , then origin is globally attracting in (.).
() If  < f (t) ≤ a|t| for all t and  < a <  – p, then every positive solution of (.)

converges to zero.

Proof For the proof of (), define F(y, y, y) = py + f (y – y) and notice that

∣∣F(y, y, y)∣∣ ≤ p|y| + a|y – y| ≤ (p + a)max
{|y|, |y|, |y|}

since p + a < , it follows that F is a weak contraction on the entire space and therefore
by [], the origin is globally attracting.
() For y, y, y ≥  notice that:

F(y, y, y) ≤ py + amax{y, y} ≤ (p + a)max{y, y, y}.

Now since p+a < , it follows that F is a weak contraction on [, ), and since [, ) is in-
variant under VF (y, y, y) = (g(y, y, y), y, y), [] implies that the origin is exponentially
stable relative to [, ), hence every positive solution of (.) converges to zero. �

Now we study stability properties. Let xn be a solution of (.). We define the vector
y(n) = (y(n), y(n), y(n)) ∈R

, where

yj(n) = xn+j–, j = , , . (.)

Using this notation the delay Equation (.) transformed to the following D system:

y(n + ) = g
(
y(n)

)
, (.)

where g(y) = (y, y,py + f (y – y)) which has the unique equilibrium point (, , ).
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Now we study the relation of the stability properties of the delay Equation (.) to those
of the associated nondelay equation:

xn+ = f (xn), n≥ –. (.)

First we prove the following lemma which will be used in the next results.

Lemma . Let y(n) be a solution of the system (.). Then for n ≥  – j, the following
statements are true:
For odd n + j:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣ +

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣. (.)

And for even n + j:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣ +

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣. (.)

Furthermore for  ≤ n≤  – j:

yj(n) = yj+n(). (.)

Proof From (.) we have that for j = , , :

yj(n) = xn+j– = x(n–)+(j+)– = yj+(n – ), (.)

yj(n) = xn+j– = x+(n+j)– = yn+j(). (.)

Now by using these relations and induction we see that, if n is odd then:

y(n) = p
n+
 y() +

n+
∑
i=

p
n+
 –if

(
y(i – ) – y(i – )

)
. (.)

And if n is even then:

y(n) = p
n
 y() +

n
∑
i=

p
n
 –if

(
y(i – ) – y(i – )

)
. (.)

Furthers more:

yj(n) = xn+j– = x(n+j–)+– = y(n + j – ). (.)

By using this relation we have that, if n + j is odd then:

yj(n) = y(n + j – ) = p
n+j–

 y() +

n+j–
∑
i=

p
n+j–

 –if
(
y(i – ) – y(i – )

)
.
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And if n + j is even then:

yj(n) = y(n + j – ) = p
n+j–

 y() +

n+j–
∑
i=

p
n+j–

 –if
(
y(i – ) – y(i – )

)
. �

Theorem . Assume that f satisfies:

∣∣f (x + y)
∣∣ ≤ ∣∣f (x)∣∣ + ∣∣f (y)∣∣ (.)

for all x, y ∈ R. If the equilibrium point of (.) is stable, then the equilibrium point of (.)
is also stable.

Proof It is sufficient to prove the stability of the equilibrium of (.) because of the equiv-
alence of (.) and (.). Let ε >  be arbitrary. Since the equilibrium point of (.) is
stable, there exists δ >  such that |x–| < δ implies |xn| < (–p)ε

 for all n ≥ –. Choose
δ =min(δ, (–p)ε ), since y() = (y(), y(), y()) = (x–,x–,x), we have that

∥∥y()∥∥ =max
(∣∣y()∣∣, ∣∣y()∣∣, ∣∣y()∣∣) =max

(|x–|, |x–|, |x|) ≤ δ ≤ δ.

Now for n≥ –:

|xn| ≤ ( – p)ε


(.)

which implies that:

∣∣f (xn)∣∣ ≤ ( – p)ε


(.)

for all n ≥ –. Therefore, for n≥ :

∣∣f (y(n))∣∣ ≤ ( – p)ε


,
∣∣f (y(n))∣∣ ≤ ( – p)ε


. (.)

And hence

∣∣f (y(n) – y(n)
)∣∣ < ∣∣f (y(n))∣∣ + ∣∣f (y(n))∣∣ < ( – p)ε


+
( – p)ε


= ( – p)ε.

Now ‖y()‖ ≤ δ implies that |yj()| < δ < (–p)ε
 < ε for j = , , . Hence

∣∣yj(n)∣∣ = ∣∣yj+n()∣∣ < ε, for  ≤ n≤  – j

and from the previous lemma, if n + j is odd then:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣ +

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣

≤ εp
n+j–

 + ( – p)εp
n+j–



n+j–
∑
i=

p–i = ε
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and if n + j is even then:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣ +

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣

≤ εp
n+j–

 + ( – p)εp
n+j–



n+j–
∑
i=

p–i = ε.

Therefore, for arbitrary ε > , there exists δ > , such that ‖y()‖ < δ implies that ‖y(n)‖ < ε

for n≥ , and hence the equilibrium point of (.) is stable. �

Theorem . Assume that (.) holds. If there exists m >  such that G(m) = {x ∈ R :
|x| < m} is a subset of the attractive region of the equilibrium point of (.), then G(m) is
also contained in the attractive region of the equilibrium point of (.).

Proof Let ε >  be arbitrary. SinceG(m) is a subset of attractive region of (.), there exists
T such that |x–| <m implies that |xn| < ε for n > T. Assume that ‖y()‖ <m, thenwe have
|x–| < m. So there exists T ≥ T such that |x(n)| < ( – p)ε/ for n ≥ T, which implies
that:

∣∣f (y(n) – y(n)
)∣∣ ≤ ∣∣f (y(n))∣∣ + ∣∣f (y(n))∣∣

<
( – p)ε


+
( – p)ε


≤ ( – p)ε



for all n ≥ T + . Let j = , , . If n + j is odd we have:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣

+

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣

< mp
n+j–

 +
T+∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣ + ε



provided that n≥  – j. If n + j is even we have:

∣∣yj(n)∣∣ ≤ p
n+j–


∣∣y()∣∣

+

n+j–
∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣

< mp
n+j–

 +
T+∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣ + ε


.

Now:

∣∣f (y(i) – y(i)
)∣∣ ≤ ∣∣f (xi–)∣∣ + ∣∣f (xi–)∣∣ ≤ ∣∣f i(x–)∣∣ + ∣∣f i+(x–)∣∣. (.)
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The continuity of f implies there exists L >  such that |f i(x–)| < L and |f i+(x–)| < L. Now
if n + j is odd we have for n≥ T + :

∣∣yj(n)∣∣ <mp
n+j–

 +
T+∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣ + ε



<
ε


+

(
m +

L
 – p

)
p

n+j–T–
 .

Now choose T such that:

(
m +

L
 – p

)
p

n+j–T–
 ≤ ε


(.)

holds for n≥ T.
If n + j is even we have:

∣∣yj(n)∣∣ <mp
n+j–

 +
T+∑
i=

p
n+j–

 –i∣∣f (y(i – ) – y(i – )
)∣∣ + ε



<
ε


+

(
m +

L
 – p

)
p

n+j–T–
 .

Now choose T such that:

(
m +

L
 – p

)
p

n+j–T–
 ≤ ε


(.)

holds for n ≥ T. We consider T = min(T,T), Then ‖y()‖ <m implies that ‖y(n)‖ < ε

for n≥ T. Hence G(m) is also subset of attractive region of the equilibrium of (.). �

3 Existence of bifurcations
Now we study bifurcations of (.), for this aim we suppose that f ∈ C. First we prove the
existence of bifurcations. Dynamics of system (.) described by the mapping:

g(y, y, y) =
(
y, y,py + f (y – y)

)
. (.)

The Jacobian matrix of g at O is:

H =Dg|O =

⎡
⎢⎣

  
  
–q p + q 

⎤
⎥⎦

in which q = f ′(). The characteristic equation of H is:

λ – (p + q)λ + q = . (.)

http://www.advancesindifferenceequations.com/content/2012/1/107
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Figure 1 Region of asymptotic stability of system (1.1).

By the Jury’s conditions, the necessary and sufficient conditions for all eigenvalues of the
characteristic equation lying inside the unit circle are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p + q –  < ,

p –  < ,

 + p – q > ,

q + p +  > ,

p + q – q +  > .

We consider the following curves, which are the boundary curves of the region of asymp-
totic stability shown in Figure :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L : p + q –  = ,  < q < ,

L : p –  = , – < q < ,

L : p + q – q +  = , – < q < –
√


 ,

L : p = , – < q < .

On L, L, respectively p = ,  which is impossible. We show in the following theorem
occurrence of bifurcations on the boundary curves L, L.

Theorem . For system (.) the following conditions holds:
() Flip bifurcation occurs when (p,q) ∈ L.
() Neimark-Sacker bifurcation occurs when (p,q) ∈ L.

Proof First, we show the existence of the flip bifurcation. Because (p,q) ∈ L, we have the
characteristic equation:

(λ + )
(
λ – λ + q

)
=  (.)

http://www.advancesindifferenceequations.com/content/2012/1/107
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which has eigenvalues λ = –, λ, = ( ±
√
–q
 ). So Y = (,–, ) is an eigenvector of H

with corresponding eigenvalue λ = –, and  is not the eigenvalue. A straight forward
calculation shows that:

Range
(
I +Dg

(
X*))

|q+p=

= Span
(
x + y, y + z, (p + q – )x + (p + q)y + z

)T

in which (x, y, z) ∈R
. Now:

d
dq

Dg
(
X*)

|q+p= =

⎡
⎢⎣
  
  
–  

⎤
⎥⎦

and:

d
dq

Dg
(
X*)

|q+p=Y = (, ,–) �∈ Range
(
I +Dg

(
X*))

|q+p= .

Therefore by [, Th...], flip bifurcation occurs.
Now we show the existence of Neimark-Sacker bifurcation. If λ = eiθ is a root of Equa-

tion (.), separating the real and imaginary parts, we have the following:

⎧⎨
⎩
cosθ – (p + q) cos θ = –q,

sinθ – (p + q) sin θ = 

squaring and adding both equations, we have:

 – (p + q) – (p + q) cosθ = q

so we get:

cosθ =
 + (p + q) – q

(p + q)
.

In the case that (p,q) ∈ L we have q + p = q – . By substitution of q + p = q –  into
+(p+q)–q

(p+q) , we have:

cosθ =
q – 


.

Therefore, Equation (.) has a unique pair of complex roots:

λ, = e±i(
arc cos q

–


 ).

On the other hand, – < q <  means – < cosθ < –
 . Because cosθ =  cos θ –  and

– < cosθ < –
 , we get – <  cos θ –  < –

 and hence  < | cos θ | < 
 , which refers

http://www.advancesindifferenceequations.com/content/2012/1/107
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argλ �= ,±π
 ,± π

 ,±π . Thus λk �= , for k = , ,  and . On the other hand we have:

(
d|λ|
dq

)
|p+q–q+=

=
(

λ
dλ

dq
+ λ

dλ

dq

)
|p+q–q+=

=
( – cos θ )( cos θ +  cos θ – (p + q) – )

|eiθ – (p + q)| .

Assume that ( d|λ|
dq )|p+q–q+= = , that is, cos θ =  or  cos θ +  cos θ – (p+ q) –  = . In

previous discussion, we obtain  < cos θ < 
 , hence cos θ �= . If  cos θ + cos θ –(p+q)–

 = , then from cosθ = q–
 and p+q = q –, we see that q = ±,± 

 , which corresponds
to p = , ,– 

 , –

 that is impossible on L. So we have that, ( d|λ|

dq )|p+q–q+= �= . Therefore,
by the generic Neimark-Sacker bifurcation theorem [, ], Neimark-Sacker bifurcation
occurs, that is, the system (.) has a unique closed invariant curve bifurcating from the
equilibrium X*. �

4 Direction of the bifurcations
In the previous section,wehave shown that system (.) undergoes a flip (period-doubling)
bifurcation when (p,q) ∈ L and a Neimark-Sacker bifurcation when (p,q) ∈ L at equilib-
rium point X*. In this section, by using the normal form method for discrete systems, as
studied by Sacker, Kuznetsov and Wiggins, we shall study the direction of the two bifur-
cations and stability of the bifurcating invariant curves. We can write system as:

Un+ =DUn +G(Un), Un ∈ R
, (.)

where G(U) =O(‖U‖) is a smooth function and its Taylor expansion is:

G(U) =


B(U ,U) +



C(U ,U ,U) +O

(‖U‖), (.)

where:

B(U ,U) =
(
,,b(U ,U)

)
, C(U ,U ,U) =

(
,, c(U ,U ,U)

)

in which:
⎧⎨
⎩
b(φ,ψ) = f ′′()(φψ – φψ),

c(φ,ψ ,η) = c(φ,ψ ,η) = f ′′′()(–φψη + φψη – φψη)

for φ = (φ,φ,φ) ∈ R
, ψ = (ψ,ψ,ψ) ∈ R

 and η = (η,η,η) ∈ R
. At the beginning,

we study the direction of period-doubling bifurcation and the stability of period-doubling
cycle. Let w ∈R

 be the eigenvector of H with respect to eigenvalue –, that is, Hw = –w;
v ∈ R

 be the adjoint eigenvector of HT that is, HTv = –v where HT is the transposed
matrix, and 〈v,w〉 = , where 〈·, ·〉 is the standard scalar product in R. So we have:

⎧⎨
⎩
w = (–, , –),

v = –
q+ (q, –, ).

http://www.advancesindifferenceequations.com/content/2012/1/107
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Following the algorithms given in Kuznetsov [], the critical normal form coefficient
c(), that determines the nondegeneracy of the period-doubling bifurcation and the sta-
bility of period-doubling cycle, is given by the following formula:

c() =



〈
v,C(w,w,w)

〉
–


〈
v,B

(
w, (H – I)–B(w,w)

)〉
. (.)

From the above relations we have:

⎧⎨
⎩

〈v,B(w, (H – I)–B(w,w))〉 = ,

〈v,C(w,w,w)〉 = f ′′′()
–p

and therefore:

c() =
f ′′′()
( – p)

.

Applying the general theory for the direction of flip bifurcation and stability of period
doubling cycle (see Wiggins [] or Kuznetsov []), we derive the following result:

Theorem. For system (.) flip bifurcation occurs in X* when p+q = , and if f ′′′() > ,
the flip bifurcation is supercritical and if f ′′′() < , the flip bifurcation is subcritical.

Now, we are going to study the direction of the Neimark-Sacker bifurcation and the
stability of the bifurcating invariant curve in X*. In the above section, we see that H has
simple eigenvalues on the unit circle:

λ, = e±iθ , θ =
arc cos +(p+q)–q

(p+q)


.

Let α be a complex eigenvector corresponding to eiθ and β be a complex eigenvector of the
transposed matrix HT corresponding e–iθ , i.e. Hα = eiθα, HTβ = e–iθβ . By computation
we obtain the following eigenvectors:

α =
(
, eiθ , eiθ

)T , β =
(
,
–
q
e–iθ ,

–
q
e–iθ

)T

.

Normalize α with respect to β such that:

〈β ,α〉 = ,

where 〈·, ·〉means the standard scalar product inC defined by 〈β ,α〉 = βα +βα +βα,
we have:

α =
(
, eiθ , eiθ

)T ,
β =


q – e–iθ

(
q, –e–iθ , –e–iθ

)T .

http://www.advancesindifferenceequations.com/content/2012/1/107
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Following the algorithms given in Kuznetsov [], the critical normal form coefficient
a(), that determines the nondegeneracy of the Neimark-Sacker bifurcation and allows us
to predict the stability of bifurcating invariant curve, is given by the following formula:

a() =


Re

(
e–iθ

[〈
β ,C(α,α,α)

〉
+ 

〈
β ,B

(
α, (I –H)–B(α,α)

)〉

+
〈
β ,B

(
α,

(
eiθ I –H

)–)B(α,α)〉]).

Furthermore in this case we have:

〈
β ,C(α,α,α)

〉
=
f ′′′()(eiθ – eiθ + eiθ – )

(q – eiθ )
,

〈
β ,B

(
α, (I –H)–B(α,α)

)〉
= ,

〈
β ,B

(
α,

(
eiθ I –H

)–)B(α,α)〉

=
–(f ′′())(eiθ – eiθ – eiθ + eiθ – eiθ – )

(q – eiθ )(eiθ – peiθ )
.

Which yields the following formula for a():

a() =
f ′′′()A + (f ′′())A

(A
 + B

)

in which:

A = q cosθ – qp cosθ –  cosθ + p cosθ,

B = q sinθ – qp sinθ –  sinθ + p sinθ,

A = q + qp – p +
(
p – q – qp –  – p

)
cos θ

+
(
 – p – q – qp + qp

)
cosθ

+ (pq – p – ) cosθ + (–pq + ) cosθ

+ (pq + p) cosθ +
(
p – qp

)
cosθ

+ p cosθ – p cosθ,

A = (qp + p) cos θ – qp cos θ cosθ

+ q cos θ cosθ –  cos θ cosθ

+ p cos θ cosθ + qp sinθ

+ (qp – p + q) cosθ + (q –  – p) cosθ

+ (p – q) cosθ + (p + q) cosθ

+  cosθ – q cosθ –  cosθ +  cosθ – qp.

From the theory of the direction of Neimark-Sacker bifurcation and the stability of the
bifurcating invariant curve (see Sacker [, ], Wiggins [] or Kuznetsov []), we have:
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Theorem . For system (.), if p+ q– q +  =  hold, then a() <  (respectively > ) im-
plies that a unique and stable (respectively, unstable) closed invariant curve bifurcates from
X*, and the Neimark-Sacker bifurcation in X* is supercritical (respectively, subcritical).

5 Numerical simulations
In this section, we give numerical simulations to illustrate our theoretical analysis.

Example  Let p = 
 and f (t) = 

 t + t. In this case q = 
 , c() =  and (p,q) ∈ L,

therefore by Theorem . flip bifurcation occurs. Figures ,  and  show bifurcation dia-
gram.

Example  Let p = 
 and f (t) = –

 t + t. In this case q = –
 , a() = –., and (p,q) ∈

L, therefore by Theorem . Neimark-Sacker bifurcation occurs. Figures ,  and  show
orbits of system when p = 

 , p =

 and p = .

 , respectively.

Figure 2 Period doubling diagram in Example 1, in (p,x,y) space.

Figure 3 Period doubling diagram in Example 1, in (p,x, z) space.
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Figure 4 Period doubling diagram in Example 1, in (p,y, z) space.

Figure 5 Trajectories of system, in Example 2, with p = 9
25 .

Figure 6 Trajectories of system, in Example 2, with p = 11
25 .
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Figure 7 Trajectories of system, in Example 2, with p = 11.9
25 .
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