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Abstract

We establish some new dynamic Opial-type diamond alpha inequalities in time
scales. Our results in special cases yield some of the recent results on Opial’s
inequality and also provide new estimates on inequalities of this type. Also, we
introduce an example to illustrate our result.
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1. Introduction and Preliminaries
In 1960, the Polish Mathematician Zdzidlaw Opial [1] published an inequality invol-

ving integrals of functions and their derivatives;

h∫
0

| x(t)x′(t)|dt ≤ h
4

h∫
0

| x′(t)|2dt (1:1)

where x Î C1[0, h], x(0) = x(h) = 0 and x(t) >0 in (0, h), and the constant h/4 is the

best possible.

Inequalities which involve integrals of functions and their derivatives are of great

importance in mathematics with applications in the theory of differential equations,

approximations and probability. It has been shown that inequalities of the form (1.1)

can be deduced from those of Wirtinger and Hardy type, but the importance of Opial’s

result is in the establishment of the best possible constant. The monograph [2] is the

first book dedicated to the theory of Opial type inequalities.

The positivity requirement of x(t) in the original proof of Opial was shown to be

unnecessary later by Olech [3] where he proved that the inequality (1.1) holds even for

functions x(t) which are only absolutely continuous in [0, h]. Moreover, Olech’s proof

is simpler than that of Opial.

Theorem 1.1. (Olech): Let x(t) be absolutely continuous in [0, h] and x(0) = x(h) = 0.

Then the following inequality holds;

h∫
0

| x(t)x′(t)|dt ≤ h
4

h∫
0

(x′(t))2dt (1:2)
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Works containing discrete analogues of Opial-type inequalities started in 1967-69

with the articles of Lasota [4], Wong [5], and Beesack [6] which provided discrete

versions of the inequality (1.1).

The next result is the discrete analogue of the above theorem.

Theorem 1.2. (Lasota’s Inequality): Let {xi}Ni=0 be a sequence of numbers, and x0 =

xN = 0. Then the following inequality holds

N−1∑
i=1

| xi�xi| ≤ 1
2

[[
N + 1
2

]] N−1∑
i=0

|�xi|2 (1:3)

where Δ is the forward difference operator, and [[·]] is the greatest integer function.

Now, if we consider Olech’s result under weaker conditions, we get the following

estimate with a bound which is less sharp.

Theorem 1.3. Let x(t) be absolutely continuous in [0, a] and x(0) = 0. Then the fol-

lowing inequality holds.

a∫
0

| x(t)x′(t)|dt ≤ a

2

a∫
0

(x′(t))2dt (1:4)

In (1.4) equality holds if and only if x(t) = ct.

The following theorem is a non-trivial generalization of Theorem 1.3 and is given in

Hua [7].

Theorem 1.4. (Hua’s generalization) Let x(t) be absolutely continuous on [0, a], and

x(0) = 0. Further let � be a positive integer. Then the following inequality holds

|xε(t)x′(t)|dt ≤ aε

ε + 1
|x′(t)|ε+1dt (1:5)

with equality being valid in (1.5) if and only if x(t) = ct.

Finally we give a discrete analogue of Theorem 1.4 due to Wong [5].

Theorem 1.5. (Wong’s inequality) Let {xi}τi=0 be a non-decreasing sequence of non-

negative numbers, and x0 = 0. Then for � ≥ 1, the following inequality holds

τ∑
i=1

xε
i ∇xi ≤ (τ + 1)ε

ε + 1

τ∑
i=1

(∇xi)ε+1. (1:6)

where ∇ is the backward difference operator, that is ∇xi = xi - xi-1.

Remark 1.6. In terms of the forward difference operator, Δxi, above Wong’s inequality

(1.6) can be restated as follows;

{xi}τi=0is a non-decreasing sequence of non-negative numbers with x0 = 0, for � ≥ 1, the

inequality

τ−1∑
i=0

xε
i+1�xi ≤ (σ (τ ))ε

ε + 1

τ−1∑
i=0

(�xi)ε+1. (1:7)

holds where Δ is the forward difference operator.

1.1. Time-scale set-up of basic Opial type inequality

For convenience we now recall the following easiest versions of Opial’s inequality.
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Theorem 1.7. [Continuous Opial inequality, [[2], Theorem 1.4.1]] For absolutely

continuous x: [0, h] ® ℝ with x(0) = 0 we have

h∫
0

|xx′| (t)dt ≤ h
2

h∫
0

|x′|2(t)dt,

with equality when x(t) = ct.

Theorem 1.8. [Discrete Opial inequality, [[2], Theorem 5.2.2]] For x0 = 0 and a

sequence {xi}0≤i≤h ⊂ R , we have

h−1∑
i=1

|xi(xi+1 − xi)| ≤ h − 1
2

h−1∑
i=0

|xi+1 − xi|2,

with equality when xi = ci.

In [8], a dynamic Opial inequality is proven that contains both Theorems 1.7 and 1.8

as special cases. For details of time-scale calculus we refer to [9,10]. We now give this

simplest version of Opial’s inequality on time scales as presented in [8].

2. Main results
Theorem 2.1. [Delta Dynamic Opial inequality] Let T be a time scale. For delta differ-

entiable x : [0, h] ∩ T → R with x(0) = 0 we have

h∫
0

|(x + xσ )x�| (t)�t ≤ h
h∫
0

|x�|2(t)�t,

with equality when x(t) = ct, provided all Δ-anti derivatives exist.

We refer to [8] for the proof of Theorem 2.1.

Next a generalization of Theorem 2.1 is offered where x(0) does not need to be equal

to 0. This result is not found in the book [2] (neither a continuous nor a discrete ver-

sion of it), but both a weaker version of Theorem 2.1 (with x(0) = 0) and the subse-

quent Corollary 2.3 (with x(0) = x(h) = 0) are corollaries of Theorem 2.2, and

continuous [[2], Theorem 1.3.1] and discrete [2, Theorem 5.2.1, “Lasota’s inequality‘]

versions of Theorem 2.3 can be found in the book by Agarwal and Pang [2].

Theorem 2.2. Let x : [0, h] ∩ T → R be Δ-differentiable and rd-continuous function.

Then

h∫
0

|(x + xσ )x�| (t)�t ≤ α
h∫
0

|x�(t)|2�t + 2β
h∫
0

|x�(t)| �t,

where

α ∈ T, dist(h/2, α) = dist(h/2, T) (2:1)

b = max{|x(0)|, |x(h)|}.

Corollary 2.3. Let x : [0, h] ∩ T → R be Δ-differentiable and rd-continuous function

with x(0) = x(h) = 0. Then

h∫
0

|(x + xσ )x�| (t)�t ≤ α

h∫
0

|x�(t)|2�t,
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where a is given in (2.1).

Proof. This follows easily from Theorem 2.2 since in this case we have b = 0. □

2.1. Improved diamond-alpha Opial inequalities

The diamond-alpha derivative of f : T → R is defined by

f♦α(t) = αf�(t) + (1 − α)f∇(t),

where a Î [0, 1]. A function f: [0, h] ® ℝ is said to be in C1
♦α

if f is ◊a-differentiable

such that afΔ is rd-continuous, (1 - a)f∇ is ld-continuous, and α(1 − α)f♦α is continu-

ous. Note that C1
♦α

is, for a Î (0, 1), the class of functions that are Δ-differentiable

and ∇-differentiable such that fΔ is rd-continuous, f∇ is ld-continuous, and f ◊a is con-

tinuous. Moreover, C1
♦0

coincides with the class of functions that are ∇-differentiable

such that f∇ is ld-continuous, and likewise C1
♦1

is equal the class of functions that are

Δ-differentiable such that fΔ is rd-continuous.

First we introduce a set of Opial type Diamond-alpha Inequalities obtained by Boh-

ner-Duman [11]

Theorem 2.4. Let a Î [0, 1] and h ∈ T with h > 0. For any f ∈ C1
♦α

with f(0) = 0

and a(1 - a)fΔf∇ ≥ 0, we have

α3

h∫
0

|(f + f σ )f�| (t)�t + (1 − α)3
h∫

0

|(f + f ρ)f∇| (t)∇t

≤ h

h∫
0

(f�)2(t)♦αt.

(2:2)

Theorem 2.5. Let a Î [0, 1] and h ∈ T with h > 0. For any f ∈ C1
♦α

with afΔ ≥ 0

and (1 - a)f∇ ≥ 0, we have

α3

h∫
0

|(f + f σ )f�| (t)�t + (1 − α)3
h∫

0

|(f + f ρ)f∇|(t)∇t

≤ hβ

h∫
0

(f♦α)
2
(t)♦αt + 2γ (1 − 3α + 3α2) (f (h) − f (0)),

where β := minu∈[0,h]∩T max{u, h − u} and g: = max {|f (0)|, |f (h)|}.

Corollary 2.6. Let a Î [0,1] and h ∈ T with h > 0. For any f ∈ C1
♦α

with afΔ ≥ 0,

(1 - a)f∇ ≥ 0, and f(0) = f(h) = 0, we have

α3

h∫
0

|(f + f σ )f�| (t)�t + (1 − α)3
h∫

0

|(f + f ρ)f∇| (t)∇t ≤ β

h∫
0

(f φα)
2
(t)♦αt,

where b is as in Theorem 2.5.

Theorem 2.7. Let a Î [0, 1] and h ∈ T with h >0. Assume that g: [0, h] ® ℝ+ is a

non increasing continuous function. For any f ∈ C1
♦α

with a(1 - a)fΔf∇ ≥ 0, we have

α3

h∫
0

[gσ |(f + f σ )f�|] (t)�t+(1 − α)3
h∫

0

[gρ |(f + f ρ)f∇|] (t)∇t ≤ h

h∫
0

g(t) (f♦α )2(t)♦αt.
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In this article, the above given Theorem 2.4 is improved in the sense of removing the

restriction given by the condition a(1-a)fΔf∇ ≥ 0 as well as the left hand side of

inequality (2.2) refined to a compact form, being composed of a single diamond-alpha

integral. In this sense, the next theorem and its consequences extend and unify the

previously obtained delta and nabla Opial dynamic inequalities in a more accurate way

than that given by Theorem 2.4.

Theorem 2.8. Let T be a time scale. For ◊a differentiable x : [ρ(0), σ (h)]T → R

with x Î C1 and x(0) = 0 we have

h∫
0

|(x2)♦α | (t)♦αt ≤ h

h∫
0

|x♦α |2(t)♦αt, (2:3)

with equality when x(t) = ct.

Proof. Starting with the left side of (2.3)and using the fact that

xx♦α = αxx� + (1 − α)xx∇

we get,

h∫
0

|(x2)♦α | (t)♦α t =

h∫
0

|xx♦α + αxσ x� + (1 − α)xρx∇|(t)♦α t

= α

h∫
0

|xx♦α | + αxσ x� + (1 − α)xρx∇|(t)�t

+ (1 − α)

h∫
0

|xx♦α | + αxσ x� + (1 − α)xρx∇|(t)∇t

≤ α

h∫
0

|xx♦α | (t)�t + α2

h∫
0

|xσ x�| (t)�t + α(1 − α)

h∫
0

|xρx∇| (t)�t

+ (1 − α)

h∫
0

|xx♦α | (t)∇t + α(1 − α)

h∫
0

|xσ x�| (t)∇t

+ (1 − α)2
h∫

0

|xρx∇| (t)∇t

= α

h∫
0

|αxx� + (1 − α)xx∇|(t)�t + α2

h∫
0

|xσ x�| (t)�t

+ α(1 − α)

h∫
0

|xρx∇| (t)�t + (1 − α)

h∫
0

|αxx�| + (1 − α)xx∇|(t)∇t

+ α(1 − α)

h∫
0

|xσ x�| (t)∇t + (1 − α)2
h∫

0

|xρx∇| (t)∇t

= α2

h∫
0

(|x| + |xσ |)|x�|(t)�t + α(1 − α)

h∫
0

(|x| + |xρ |)|x∇|(t)�t

+ α(1 − α)

h∫
0

(|x| + |xσ |)x�(t)�t + (1 − α)2
h∫

0

(|x| + |xρ |)x∇|(t)�t

= α2

h∫
0

[(|x| + |xσ |)|x�|] (t)�t + (1 − α)2
h∫

0

[(|x| + |xρ |)|x∇|](t)∇t

+ α(1 − α)

h∫
0

[(|x| + |xσ |)|x�|] (t)∇t + α(1 − α)

h∫
0

[(|x| + |xρ |)|x∇|](t)�t
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Letting y(t) =
∫ t

0
|x♦α (s)| ♦αs , we then have yΔ = |xΔ|, y∇ = |x∇| and since

y(t) =

t∫
0

|x♦α (s)| ♦αs ≥ |
t∫

0

|x♦α (s)| ♦αs| = |x(t) − x(0)| = |x(t)|

yielding |x| ≤ y as long as ◊a-anti derivative of x exists. So

≤ α2

h∫
0

[(y + yσ )y�] (t)�t + (1 − α)2
h∫

0

[(y + yρ)y∇] (t)∇t

+ α(1 − α)

h∫
0

[(y + yσ )y�] (t)∇t + α(1 − α)

h∫
0

[(y + yρ)y∇] (t)�t

=

h∫
0

(y2)♦α (t)♦αt

= y2(h) − y2(0)

=

⎡
⎣ h∫

0

|x♦α(s)| ♦αs

⎤
⎦

2

≤ h

h∫
0

|x♦α (s)|2♦αs.

where we have used Hölder’s inequality for h(x) = 1 and p = 2. □
We illustrate the result obtained in Theorem 2.8 with an example.

Example 2.9. Let T = [−1, 4] ∩ Z be the time scale and x : T → R with α = 1
2 ,

x(t) =

⎧⎨
⎩

−1 if t = ±1
0 if t = 0
5 if t ≥ 2.

Then,

h∫
0

|(x2)♦α | (t)♦α t =
1
2

3∫
0

|(x2)�(t) + (x2)∇(t)|♦αt

=
1
4

⎡
⎣ 3∫

0

|(x2)�(t) + (x2)∇(t)|�(t)+

3∫
0

|(x2)�(t) + (x2)∇(t)|∇(t)

⎤
⎦

=
1
4

[
2∑
t=0

|(x(t + 1) + x(t)) (x(t + 1) − x(t)) + (x(t) + x(t − 1)) (x(t) − x(t − 1))|

+
3∑
t=1

|(x(t + 1) + x(t)) (x(t + 1) − x(t)) + (x(t) + x(t − 1)) (x(t) − x(t − 1))|
]

=
1
4

[
2∑
t=0

|(x2(t + 1) − x2(t − 1))| +
3∑
t=1

|(x2(t + 1) − x2(t − 1))|
]
=
49
2
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and similarly,

h∫
0

|(x♦α )
2| (t)♦α t =

1
4

3∫
0

(x�(t) + (x∇(t)))2♦αt

=
1
8

⎡
⎣ 3∫

0

(x�(t) + (x∇(t)))2�t +

3∫
0

(x�(t) + (x∇(t)))2∇t

⎤
⎦

=
1
8

[
2∑
t=0

(x(t + 1) − (x(t − 1)))2 +
3∑
t=1

(x(t + 1) − (x(t − 1)))2
]
=
63
4

and so we obtain 3. 634 = 189
4 .

Therefore the inequality in Theorem 2.8 holds.

The next two theorems are extensions of Theorem 2.8.

Theorem 2.10. Let x : [p(0), σ (h)]T → R be ◊a-differentiable. Then

h∫
0

|(x2)♦α | (t)♦α t ≤ γ
h∫
0

|x♦α |2 ♦α + 2β
h∫
0

|x♦α | ♦αt,

where b = max {|x(0), |x(h)|} γ = min
u∈[0,h]∩T

max{u, h − u}

Proof. We consider y(t) =
∫ t
0 |x♦α (s)|♦αs and z(t) =

∫ h
t |x♦α (s)|♦αs . Then we have,

z♦α = −|x♦α | , z♦α = −|x♦α | , yΔ =|xΔ|, yΔ =|xΔ|, y∇ =|x∇|, y∇ =|x∇| yielding

|x(t)| ≤ |x(t) − x(0)| + |x(0)|

=

∣∣∣∣∣∣
t∫

0

x♦α (s)♦αs

∣∣∣∣∣∣ + |x(0)|

≤
t∫

0

|x♦α (s)|♦αs + |x(0)|

= y(t) + |x(0)|
and similarly, |x(t)| ≤ z(t) + |x(h)|.

Let u ∈ [ρ(0), σ (h)]T . Then

h∫
0

|(x2)♦α| (t)♦αt ≤
u∫

0

[(y + |x(0)|)y♦α + α(yσ + |x(0)|)y�

+ (1 − α) (yρ + |x(0)|)y∇]♦αt

= y2(u) − y2(0) + 2|x(0)|y(u)

≤ u

u∫
0

|x♦α |2♦αt + 2|x(0)|
u∫

0

|x♦α (t)| ♦αt,

where we have used Hölder’s inequality for h(x) = 1 and p = 2. Therefore we get

h∫
u

|(x2)♦α|(t)♦αt ≤ z2(u) − z2(h) + 2|x(h)|z(u)

≤ (h − u)

h∫
u

|x♦α |2♦αt + 2|x(h)|
h∫

u

|x♦α | ♦αt.
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By putting γ = min
u∈[0,h]∩T

max{u, h − u} , b = max{|x(0), |x(h)|} and adding the above

two inequalities, we find

h∫
0

|(x2)♦α|(t)♦αt ≤ γ

h∫
0

|x♦α |2♦α + 2β

h∫
0

|x♦α | ♦αt.

□
Theorem 2.11. Let x : [p(0), σ (h)]T → R be ◊a-differentiable with x(0) = x(h) = 0.

Then

h∫
0

| (x2)♦α ≤ γ

h∫
0

|x♦α |2♦α , (2:4)

where g is given in Theorem 2.10.

Proof. We consider y(t) =
∫ t
0 |x♦α (s)|♦αs and z(t) =

∫ h
t |x♦α (s)|♦αs .

Then, y♦α = |x♦α |, z♦α = −|x♦α | , yΔ = |xΔ|, y∇ = |x∇| and

|x(t)| ≤ | x(t)− x(0) |+ |x(0)| = |
∫ t

0
x♦α (s)| ♦αs+ |x(0)| ≤

∫ t

0
|x♦α (s)| ♦αs+ |x(0)| = y(t) + |x(0)| and simi-

larly |x(t)| ≤ z(t) + |x(h)|.

Let u ∈ [ρ(0), σ (h)]T , then

h∫
0

|(x2)♦α | (t)♦αt ≤
u∫

0

[(y + |x(0)|)y♦α + α(yσ + |x(0)|)y�

+ (1 − α)(yρ + |x(0)|)y∇]♦α

= y2(u) − y2(0) + 2|x(0)|y(u)

≤ u

u∫
0

|x♦α |2♦αt + 2|x(0)|
u∫

0

|x♦α (t)|♦α t

where we have used Hölder’s inequality for h(x) = 1 and p = 2.

Therefore we get

h∫
u

|(x2)♦α |(t)♦α t ≤ z2(u) − z2(h) + 2|x(h)|z(u)

≤ (h − u)

h∫
u

|x♦α |2♦αt + 2|x(h)|
h∫

u

|x♦α |♦αt.

By putting γ = min
u∈[0,h]∩T

max{u, h − u} and adding the above two inequalities, we

find

h∫
0

|(x2)♦α |(t)♦αt ≤ γ

h∫
0

|x♦α |2♦α
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