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Abstract
The main goal of this paper is to study the Hyers-Ulam-Rassias stability of the
following Euler-Lagrange type additive functional equation:

m∑
j=1

f
(
–rjxj +

∑
1≤i≤m,i �=j

rixi
)
+ 2

m∑
i=1

rif (xi) =mf

( m∑
i=1

rixi

)
,

where r1, . . . , rm ∈R,
∑m

i=k rk �= 0, and ri , rj �= 0 for some 1≤ i < j ≤ m, in
non-Archimedean Banach spaces.
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1 Introduction and preliminaries
A valuation is a function | · | from a field K into [,∞) such that  is the unique ele-
ment having the  valuation, |rs| = |r||s| and the triangle inequality is replaced by |r + s| ≤
max{|r|, |s|}.
The field K is called a valued field if K carries a valuation. The usual absolute values of

R and C are the examples of valuations.
Let us consider the valuation which satisfies a stronger condition than the triangle in-

equality. If the triangle inequality is replaced by |r + s| ≤ max{|r|, |s|} for all r, s ∈ K, then
the function | · | is called a non-Archimedean valuation and the field is called a non-
Archimedean field. Clearly, || = | – | =  and |n| ≤  for all integers n ≥ . A trivial ex-
ample of a non-Archimedean valuation is the function | · | taking everything except for 
into  and || = .

Definition . Let X be a vector space over a field K with a non-Archimedean valua-
tion | · |. A function ‖ · ‖ : X → [,∞) is called a non-Archimedean norm if the following
conditions hold:
(a) ‖x‖ =  if and only if x =  for all x ∈ X ;
(b) ‖rx‖ = |r|‖x‖ for all r ∈K and x ∈ X ;
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(c) the strong triangle inequality holds:

‖x + y‖ ≤ max
{‖x‖,‖y‖}

for all x, y ∈ X .
Then (X,‖ · ‖) is called a non-Archimedean normed space.

Definition . Let {xn} be a sequence in a non-Archimedean normed space X.
(a) A sequence {xn}∞n= in a non-Archimedean space is a Cauchy sequence iff the

sequence {xn+ – xn}∞n= converges to zero;
(b) The sequence {xn} is said to be convergent if, for any ε > , there is a positive integer

N and x ∈ X such that ‖xn – x‖ ≤ ε, for all n ≥ N . Then the point x ∈ X is called the
limit of the sequence {xn}, which is denoted by limn→∞ xn = x;

(c) If every Cauchy sequence in X converges, then the non-Archimedean normed space
X is called a non-Archimedean Banach space.

Example . Fix a prime number p. For any nonzero rational number x, there exists a
unique integer nx ∈ Z such that x = a

bp
nx , where a and b are integers not divisible by p.

Then |x|p := p–nx defines a non-Archimedean norm on Q. The completion of Q with re-
spect to the metric d(x, y) = |x – y|p is denoted by Qp which is called the p-adic number
field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx akp

k where |ak| ≤ p –  are inte-
gers. The addition and multiplication between any two elements of Qp are defined natu-
rally. The norm |∑∞

k≥nx akp
k|p = p–nx is a non-Archimedean norm onQp and it makesQp

a locally compact field.

Theorem . Let (X,d) be a complete generalized metric space and J : X → X be a strictly
contractive mapping with Lipschitz constant L < . Then, for all x ∈ X, either d(Jnx, Jn+x) =
∞ for all nonnegative integers n or there exists a positive integer n such that:
(a) d(Jnx, Jn+x) < ∞ for all n ≥ n;
(b) the sequence {Jnx} converges to a fixed point y* of J ;
(c) y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) < ∞};
(d) d(y, y*) ≤ 

–Ld(y, Jy) for all y ∈ Y .

In this paper, we prove the generalized Hyers-Ulam stability of the following functional
equation:

m∑
j=

f
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

rif (xi) =mf

( m∑
i=

rixi

)
, (.)

where r, . . . , rm ∈R,
∑m

k= rk �= , and ri, rj �=  for some ≤ i < j ≤ m, in non-Archimedean
Banach spaces. A classical question in the theory of functional equations is the following:
‘When is it true that a functionwhich approximately satisfies a functional equationDmust
be close to an exact solution of D?’.
If the problem accepts a solution, we say that the equation D is stable. The first stability

problem concerning group homomorphisms was raised by Ulam [] in .
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In the next yearD.H.Hyres [], gave a positive answer to the above question for additive
groups under the assumption that the groups are Banach spaces. In , Th. M. Rassias
[] proved a generalization of Hyres’ theorem for additive mappings.
The result of Th. M. Rassias has influenced the development of what is now called the

Hyers-Ulam-Rassias stability theory for functional equations. In , a generalization of
Rassias’ theorem was obtained by Gǎvruta [] by replacing the bound ε(‖x‖p + ‖y‖p) by
a general control function ϕ(x, y).
The stability problems of several functional equations have been extensively investigated

by a number of authors and there are many interesting results concerning this problem
(see [–]).

2 Non-Archimedean stability of the functional equation (1.1): a fixed point
approach

In this section, using a fixed point alternative approach, we prove the generalized Hyers-
Ulam stability of the functional equation (.) in non-Archimedean normed spaces.
Throughout this section, let X be a non-Archimedean normed space and Y be a non-
Archimedean Banach space. Also || �= .

Lemma. LetX andY be linear spaces and let r, . . . , rn be real numbers with
∑n

k= rk �= 
and ri, rj �=  for some  ≤ i < j ≤ n. Assume that a mapping f : X → Y satisfies the func-
tional equation (.) for all x, . . . ,xn ∈ X . Then the mapping f is Cauchy additive. More-
over, f (rkx) = rkf (x) for all x ∈X and all  ≤ k ≤ n.

Proof Since
∑n

k= rk �= , putting x = · · · = xn =  in (.), we get f () = . Without loss of
generality, we may assume that r, r �= . Letting x = · · · = xn =  in (.), we get

f (–rx + rx) + f (rx – rx) + rf (x) + rf (x) = f (rx + rx) (.)

for all x,x ∈X . Letting x =  in (.), we get

rf (x) = f (rx) – f (–rx) (.)

for all x ∈X . Similarly, by putting x =  in (.), we get

rf (x) = f (rx) – f (–rx) (.)

for all x ∈X . It follows from (.), (.) and (.) that

f (–rx + rx) + f (rx – rx) + f (rx) + f (rx)

– f (–rx) – f (–rx) = f (rx + rx) (.)

for all x,x ∈X . Replacing x and x by x
r
and y

r
in (.), we get

f (–x + y) + f (x – y) + f (x) + f (y) – f (–x) – f (–y) = f (x + y) (.)

for all x, y ∈ X . Letting y = –x in (.), we get that f (–x) + f (x) =  for all x ∈ X . So the
mapping L is odd. Therefore, it follows from (.) that themapping f is additive.Moreover,

http://www.advancesindifferenceequations.com/content/2012/1/111
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let x ∈ X and  ≤ k ≤ n. Setting xk = x and xl =  for all  ≤ l ≤ n, l �= k, in (.) and using
the oddness of f , we get that f (rkx) = rkf (x). �

Using the same method as in the proof of Lemma ., we have an alternative result of
Lemma . when

∑n
k= rk = .

Lemma . Let X and Y be linear spaces and let r, . . . , rn be real numbers with ri, rj �=
 for some  ≤ i < j ≤ n. Assume that a mapping f : X → Y with f () =  satisfying the
functional equation (.) for all x, . . . ,xn ∈ X . Then the mapping f is Cauchy additive.
Moreover, f (rkx) = rkf (x) for all x ∈X and all  ≤ k ≤ n.

Remark . Throughout this paper, r, . . . , rm will be real numbers such that ri, rj �=  for
fixed  ≤ i < j ≤ m and ϕi,j(x, y) := ϕ(, . . . , , x︸︷︷︸

ith

, , . . . , , y︸︷︷︸
jth

, , . . . , ) for all x, y ∈ X and

all  ≤ i < j ≤ m.

Theorem . Let ϕ : Xm → [,∞) be a function such that there exists an L <  with

ϕ

(
x

, . . . ,

xm


)
≤ Lϕ(x, . . . ,xm)

|| (.)

for all x, . . . ,xm ∈ X. Let f : X → Y be a mapping with f () =  satisfying the following
inequality:

∥∥∥∥∥
m∑
j=

f
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

rif (xi) –mf

( m∑
i=

rixi

)∥∥∥∥∥
≤ ϕ(x, . . . ,xm) (.)

for all x, . . . ,xm ∈ X. Then there is a unique Euler-Lagrange type additive mapping EL :
X → Y such that

∥∥f (x) – EL(x)
∥∥ ≤ L

|| – ||L max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈ X.

Proof For each  ≤ k ≤ m with k �= i, j, let xk =  in (.). Then we get the following in-
equality:

∥∥f (–rixi + rjxj) + f (rixi – rjxj) – f (rixi + rjxj) + rif (xi) + rjf (xj)
∥∥

≤ ϕi,j(xi,xj) (.)

for all xi,xj ∈ X. Letting xi =  in (.), we get

∥∥f (–rjxj) – f (rjxj) + rjf (xj)
∥∥ ≤ ϕi,j(,xj) (.)
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for all xj ∈ X. Similarly, letting xj =  in (.), we get

∥∥f (–rixi) – f (rixi) + rif (xi)
∥∥ ≤ ϕi,j(xi, ) (.)

for all xi ∈ X. It follows from (.), (.) and (.) that for all xi,xj ∈ X

∥∥f (–rixi + rjxj) + f (rixi – rjxj) – f (rixi + rjxj) + rif (xi) + rjf (xj)

–
(
f (–rixi) – f (rixi) + rif (xi)

)
–

(
f (–rjxj) – f (rjxj) + rjf (xj)

)∥∥
≤ max

{
ϕi,j(xi,xj),ϕi,j(,xj),ϕi,j(xi, )

}
. (.)

Replacing xi and xj by x
ri
and y

rj
in (.), we get that

∥∥f (–x + y) + f (x – y) – f (x + y) + f (x) + f (y) – f (–x) – f (–y)
∥∥

≤ max

{
ϕi,j

(
x
ri
,
y
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

y
rj

)}
(.)

for all x, y ∈ X. Putting y = x in (.), we get

∥∥f (x) – f (–x) – f (x)
∥∥ ≤ 

|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}
(.)

for all x ∈ X. Replacing x and y by x
 and – x

 in (.) respectively, we get

∥∥f (x) + f (–x)
∥∥ ≤ max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
(.)

for all x ∈ X. It follows from (.) and (.) that

∥∥f (x) – f (x)
∥∥

=
∥∥f (x) + f (–x) + f (x) – f (–x) – f (x)

∥∥
≤ max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈ X. Replacing x by x
 in (.), we obtain

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
≤ max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri

,
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,

x
rj

)}}
. (.)
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Consider the set S := {g : X → Y ; g() = } and the generalized metric d in S defined
by

d(f , g) = inf
μ∈R+

{∥∥g(x) – h(x)
∥∥ ≤ μmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,

ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
,∀x ∈ X

}
,

where inf∅ = +∞. It is easy to show that (S,d) is complete (see [], Lemma .). Now, we
consider a linear mapping J : S → S such that

Jh(x) := h
(
x


)

for all x ∈ X. Let g,h ∈ S be such that d(g,h) = ε. Then

∥∥g(x) – h(x)
∥∥ ≤ εmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

for all x ∈ X, and so

∥∥Jg(x) – Jh(x)
∥∥ =

∥∥∥∥g
(
x


)
– h

(
x


)∥∥∥∥
≤ ||εmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri

,
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,

x
rj

)}}

≤ ||Lε

|| max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

for all x ∈ X. Thus d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S. It follows from (.) that

d(f , Jf ) ≤ L
|| .

By Theorem ., there exists a mapping EL : X → Y satisfying the following:
() EL is a fixed point of J , that is,

EL
(
x


)
=


EL(x) (.)
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for all x ∈ X. The mapping EL is a unique fixed point of J in the set

� =
{
h ∈ S : d(g,h) < ∞}

.

This implies that EL is a unique mapping satisfying (.) such that there exists μ ∈ (,∞)
satisfying

∥∥f (x) – EL(x)
∥∥ ≤ μmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈ X.
() d(Jnf ,EL) →  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
= EL(x)

for all x ∈ X.
() d(f ,EL) ≤ d(f ,Jf )

–L with f ∈ �, which implies the inequality

d(f ,EL) ≤ L
|| – ||L .

This implies that the inequality (.) holds.
By (.) and (.), we obtain

∥∥∥∥∥
m∑
j=

EL
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

riEL(xi) –mEL

( m∑
i=

rixi

)∥∥∥∥∥
= lim

n→∞||n
∥∥∥∥∥

m∑
j=

f
(
–rjxj
n

+
∑

≤i≤m,i�=j

rixi
n

)
+ 

m∑
i=

rif
(
xi
n

)
–mf

( m∑
i=

rixi
n

)∥∥∥∥∥
≤ lim

n→∞||nϕ
(
x
n

, . . . ,
xm
n

)

≤ lim
n→∞||n · Ln

||n ϕ(x, . . . ,xm)

for all x, . . . ,xm ∈ X and n ∈ N. So EL satisfies (.). Thus, the mapping EL : X → Y is
Euler-Lagrange type additive, as desired. �

Corollary . Let θ ≥  and r be a real number with  < r < . Let f : X → Y be a mapping
with f () =  satisfying the inequality

∥∥∥∥∥
m∑
j=

f
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

rif (xi) –mf

( m∑
i=

rixi

)∥∥∥∥∥
≤ θ

( m∑
i=

‖xi‖r
)

(.)
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for all x, . . . ,x ∈ X. Then, the limit EL(x) = limn→∞ nf ( x
n ) exists for all x ∈ X and EL :

X → Y is a unique Euler-Lagrange additive mapping such that

∥∥f (x) – EL(x)
∥∥ ≤ ||

||r+ – || max

{
max

{ ||rθ‖x‖r(|ri|r + |rj|r)
||r|rirj|r ,

θ‖x‖r
||r|ri|r ,

θ‖x‖r
||r|rj|r

}
,


|| max

{
θ‖x‖r(|ri|r + |rj|r)

|rirj|r ,
θ‖x‖r
|ri|r ,

θ‖x‖r
|rj|r

}}

≤ θ‖x‖r(|ri|r + |rj|r)
|rirj|r(||r+ – ||)

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, . . . ,xm) = θ (
∑m

i= ‖xi‖r) for all
x, . . . ,xm ∈ X. In fact, if we choose L = ||–r , then we get the desired result. �

Theorem . Let ϕ : Xm → [,∞) be a function such that there exists an L <  with

ϕ(x, . . . ,xm) ≤ ||Lϕ

(
x

, . . . ,

xm


)
(.)

for all x, . . . ,xm ∈ X. Let f : X → Y be a mapping with f () =  satisfying the inequality
(.). Then, there is a unique Euler-Lagrange additive mapping EL : X → Y such that

∥∥f (x) – EL(x)
∥∥ ≤ 

|| – ||L max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
. (.)

Proof By (.), we have

∥∥∥∥ f (x)
– f (x)

∥∥∥∥ ≤ 
|| max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈ X . Let (S,d) be the generalizedmetric space defined in the proof of Theorem..
Now, we consider a linear mapping J : S → S such that

Jh(x) :=


h(x)

for all x ∈ X. Let g,h ∈ S be such that d(g,h) = ε. Then

∥∥g(x) – h(x)
∥∥ ≤ εmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

http://www.advancesindifferenceequations.com/content/2012/1/111


Azadi Kenary et al. Advances in Difference Equations 2012, 2012:111 Page 9 of 17
http://www.advancesindifferenceequations.com/content/2012/1/111

for all x ∈ X, and so

∥∥Jg(x) – Jh(x)
∥∥ =

∥∥∥∥g(x)
–
h(x)


∥∥∥∥
≤ 

||εmax

{
max

{
ϕi,j

(
x
ri
, –

x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

≤ ||L ε

|| max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

for all x ∈ X . Thus d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g,h)

for all g,h ∈ S. It follows from (.) that

d(f , Jf ) ≤ 
|| .

By Theorem ., there exists a mapping EL : X → Y satisfying the following:
() EL is a fixed point of J , that is,

EL(x) = EL(x) (.)

for all x ∈ X. The mapping EL is a unique fixed point of J in the set

� =
{
h ∈ S : d(g,h) < ∞}

.

This implies that EL is a uniquemapping satisfying (.) such that there existsμ ∈ (,∞)
satisfying

∥∥g(x) – h(x)
∥∥ ≤ μmax

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

for all x ∈ X.
() d(Jnf ,EL) →  as n→ ∞. This implies the equality

lim
n→∞

f (nx)
n

= EL(x)

for all x ∈ X.

http://www.advancesindifferenceequations.com/content/2012/1/111
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() d(f ,EL) ≤ d(f ,Jf )
–L with f ∈ �, which implies the inequality

d(f ,EL) ≤ 
|| – ||L .

This implies that the inequality (.) holds. The rest of the proof is similar to the proof
of Theorem .. �

Corollary . Let θ ≥  and r be a real number with r > . Let f : X → Y be a mapping
with f () =  satisfying (.). Then, the limit EL(x) = limn→∞ f (nx)

n exists for all x ∈ X and
EL : X → Y is a unique cubic mapping such that

‖f (x) – EL(x)‖ ≤ 
|| – ||r max

{
max

{ ||rθ‖x‖r(|ri|r + |rj|r)
||r|rirj|r ,

θ‖x‖r
||r|ri|r ,

θ‖x‖r
||r|rj|r

}
,


|| max

{
θ‖x‖r(|ri|r + |rj|r)

|rirj|r ,
θ‖x‖r
|ri|r ,

θ‖x‖r
|rj|r

}}
≤ θ‖x‖r(|ri|r + |rj|r)

|rirj|r(||r+ – ||r+)

for all x ∈ X .

Proof The proof follows from Theorem . by taking ϕ(x, . . . ,xm) = θ (
∑m

i= ‖xi‖r) for all
x, . . . ,xm ∈ X. In fact, if we choose L = ||r–, then we get the desired result. �

3 Non-Archimedean stability of the functional equation (1.1): a direct method
In this section, using a direct method, we prove the generalized Hyers-Ulam stability of
the cubic functional equation (.) in non-Archimedean normed spaces. Throughout this
section, we assume that G is an additive semigroup and X is a non-Archimedean Banach
space.

Theorem . Let ϕ :Gm → [, +∞) be a function such that

lim
n→∞||nϕ

(
x
n

, . . . ,
xm
n

)
=  (.)

for all x, . . . ,xm ∈ G and let for each x ∈G the limit

�(x) = lim
n→∞max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,–

x
k+rj

)}
,

|| max

{
ϕi,j

(
x

k+ri
,

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,

x
k+rj

)}}∣∣∣ ≤ k < n
}

(.)

exist. Suppose that f :G → X is amapping with f () =  satisfying the following inequality:

∥∥∥∥∥
m∑
j=

f
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

rif (xi) –mf

( m∑
i=

rixi

)∥∥∥∥∥
≤ ϕ(x, . . . ,xm) (.)

http://www.advancesindifferenceequations.com/content/2012/1/111
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for all x, . . . ,xm ∈ X. Then, the limit EL(x) := limn→∞ nf ( x
n ) exists for all x ∈Gand defines

an Euler-Lagrange type additive mapping EL :G → X such that

∥∥f (x) – EL(x)
∥∥ ≤ �(x). (.)

Moreover, if

lim
p→∞ lim

n→∞max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,–

x
k+rj

)}
,

|| max

{
ϕi,j

(
x

k+ri
,

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,

x
k+rj

)}}∣∣∣p ≤ k < n + p
}

then EL is the unique mapping satisfying (.).

Proof By (.), we know

∥∥∥∥f (x) – f
(
x


)∥∥∥∥ ≤ max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri

,
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈G. Replacing x by x
n in (.), we obtain

∥∥∥∥nf
(

x
n

)
– n+f

(
x

n+

)∥∥∥∥
≤ ||nmax

{
max

{
ϕi,j

(
x

n+ri
, –

x
n+rj

)
,ϕi,j

(
x

n+ri
, 

)
,ϕi,j

(
,–

x
n+rj

)}
,


|| max

{
ϕi,j

(
x

n+ri
,

x
n+rj

)
,ϕi,j

(
x

n+ri
, 

)
,ϕi,j

(
,

x
n+rj

)}}
. (.)

It follows from (.) and (.) that the sequence {nf ( x
n )}n≥ is a Cauchy sequence. Since

X is complete, so {nf ( x
n )}n≥ is convergent. Set

EL(x) := lim
n→∞nf

(
x
n

)
.

Using induction on n, one can show that

∥∥∥∥nf
(

x
n

)
– f (x)

∥∥∥∥
≤ max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,ϕi,j

(
,–

x
k+rj

)}
,


|| max

{
ϕi,j

(
x

k+ri
,

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,ϕi,j

(
,

x
k+rj

)}}∣∣∣≤ k < n
}

(.)
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for all n ∈ N and all x ∈ G. By taking n to approach infinity in (.) and using (.), one
obtains (.). By (.) and (.), we get

∥∥∥∥∥
m∑
j=

EL
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

riEL(xi) –mEL

( m∑
i=

rixi

)∥∥∥∥∥
= lim

n→∞||n
∥∥∥∥∥

m∑
j=

f
(
–rjxj
n

+
∑

≤i≤m,i�=j

rixi
n

)
+ 

m∑
i=

rif
(
xi
n

)
–mf

( m∑
i=

rixi
n

)∥∥∥∥∥
≤ lim

n→∞||nϕ
(
x
n

, . . . ,
xm
n

)
= 

for all x, . . . ,xm ∈ X. Therefore the function EL :G → X satisfies (.).
To prove the uniqueness property of EL, let A : G → X be another function satisfying

(.). Then

∥∥EL(x) –A(x)
∥∥

= lim
j→∞||j

∥∥∥∥EL
(
x
j

)
–A

(
x
j

)∥∥∥∥
≤ lim

j→∞||jmax

{∥∥∥∥EL
(
x
j

)
– f

(
x
j

)∥∥∥∥,
∥∥∥∥f

(
x
j

)
–A

(
x
j

)∥∥∥∥
}

≤ lim
j→∞ lim

n→∞max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,–

x
k+rj

)}
,

|| max

{
ϕi,j

(
x

k+ri
,

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,

x
k+rj

)}}∣∣∣j ≤ k < n + j
}

= 

for all x ∈G. Therefore A = EL, and the proof is complete. �

Corollary . Let ξ : [,∞)→ [,∞) be a function satisfying

ξ

(
t

||
)

≤ ξ

(

||

)
ξ (t) (t ≥ ) ξ

(

||

)
< ||–. (.)

Let κ >  and f :G → X be a mapping with f () =  satisfying the following inequality:

∥∥∥∥∥
m∑
j=

f
(
–rjxj +

∑
≤i≤m,i�=j

rixi
)
+ 

m∑
i=

rif (xi) –mf

( m∑
i=

rixi

)∥∥∥∥∥
≤ κ

( m∑
k=

ξ
(|xk|)

)
(.)
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for all x, . . . ,xm ∈ G. Then there exists a unique Euler-Lagrange type additive mapping
EL :G → X such that

∥∥f (x) – EL(x)
∥∥ ≤ κ

||
{
ξ

(∣∣∣∣ xri
∣∣∣∣
)
+ ξ

(∣∣∣∣ xrj
∣∣∣∣
)}

. (.)

Proof Defining ζ :Gm → [,∞) by ϕ(x, . . . ,xm) := κ(
∑m

k= ξ (|xk|)), then we have

lim
n→∞||nϕ

(
x
n

, . . . ,
xm
n

)
≤ lim

n→∞

(
||ξ

(

||

))n

ϕ(x, . . . ,xm) = 

for all x, . . . ,xm ∈G. On the other hand,

�(x) = lim
n→∞max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,–

x
k+rj

)}
,

|| max

{
ϕi,j

(
x

k+ri
,

x
n+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,

x
k+rj

)}}∣∣∣ ≤ k < n
}

= max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri

,
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,

x
rj

)}}

=
κ

||
{
ξ

(∣∣∣∣ xri
∣∣∣∣
)
+ ξ

(∣∣∣∣ xrj
∣∣∣∣
)}

for all x ∈G, exists. Also

lim
p→∞ lim

n→∞max

{
||k max

{
max

{
ϕi,j

(
x

k+ri
, –

x
k+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,–

x
k+rj

)}
,

|| max

{
ϕi,j

(
x

k+ri
,

x
n+rj

)
,ϕi,j

(
x

k+ri
, 

)
,

ϕi,j

(
,

x
k+rj

)}}∣∣∣p≤ k < n + p
}

= lim
p→∞||pmax

{
max

{
ϕi,j

(
x

p+ri
, –

x
p+rj

)
,ϕi,j

(
x

p+ri
, 

)
,ϕi,j

(
,–

x
p+rj

)}
,


|| max

{
ϕi,j

(
x

p+ri
,

x
p+rj

)
,ϕi,j

(
x

p+ri
, 

)
,ϕi,j

(
,

x
p+rj

)}}
= .

Applying Theorem ., we get the desired result. �

Theorem . Let ϕ :Gm → [, +∞) be a function such that

lim
n→∞

ϕ(nx, . . . , nxm)
||n =  (.)

http://www.advancesindifferenceequations.com/content/2012/1/111
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for all x, . . . ,xm ∈ G and let for each x ∈G the limit

�(x) = lim
n→∞max

{


||k max

{
max

{
ϕi,j

(
k–x
ri

, –
k–x
rj

)
,

ϕi,j

(
k–x
ri

, 
)
,ϕi,j

(
,–

k–x
rj

)}
,


|| max

{
ϕi,j

(
kx
ri

,
kx
rj

)
,ϕi,j

(
kx
ri

, 
)
,ϕi,j

(
,

kx
rj

)}}∣∣ ≤ k < n
}

(.)

exist. Suppose that f : G → X is a mapping with f () =  satisfying (.). Then, the limit
EL(x) := limn→∞ f (nx)

n exists for all x ∈Ganddefines an Euler-Lagrange type additivemap-
ping EL :G → X, such that

∥∥f (x) – EL(x)
∥∥ ≤ 

||�(x). (.)

Moreover, if

lim
p→∞ lim

n→∞max

{


||k max

{
max

{
ϕi,j

(
k–x
ri

, –
k–x
rj

)
,

ϕi,j

(
k–x
ri

, 
)
,ϕi,j

(
,–

k–x
rj

)}
,


|| max

{
ϕi,j

(
kx
ri

,
kx
rj

)
,ϕi,j

(
kx
ri

, 
)
,ϕi,j

(
,

kx
rj

)}}∣∣∣p ≤ k < n + p
}
= 

then EL is the unique Euler-Lagrange type additive mapping satisfying (.).

Proof It follows from (.) that

∥∥∥∥ f (x)
– f (x)

∥∥∥∥
≤ 

|| max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}
(.)

for all x ∈G. Replacing x by nx in (.), we obtain

∥∥∥∥ f (n+x)n+
–
f (nx)
n

∥∥∥∥
≤ 

||n+ max

{
max

{
ϕi,j

(
n–x
ri

, –
n–x
rj

)
,ϕi,j

(
n–x
ri

, 
)
,ϕi,j

(
,–

n–x
rj

)}
,


|| max

{
ϕi,j

(
nx
ri

,
nx
rj

)
,ϕi,j

(
nx
ri

, 
)
,ϕi,j

(
,

nx
rj

)}}
. (.)
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It follows from (.) and (.) that the sequence { f (nx)n }n≥ is convergent. Set

EL(x) := lim
n→∞

f (nx)
n

.

On the other hand, it follows from (.) that

∥∥∥∥ f (px)p
–
f (qx)
q

∥∥∥∥
=

∥∥∥∥∥
q–∑
k=p

f (k+x)
k+

–
f (kx)
k

∥∥∥∥∥
≤ max

{∥∥∥∥ f (k+x)k+
–
f (kx)
k

∥∥∥∥;p ≤ k ≤ q – 
}

≤ max

{


||k+ max

{
max

{
ϕi,j

(
k–x
ri

, –
k–x
rj

)
,ϕi,j

(
k–x
ri

, 
)
,ϕi,j

(
,–

k–x
rj

)}
,


|| max

{
ϕi,j

(
kx
ri

,
kx
rj

)
,ϕi,j

(
kx
ri

, 
)
,ϕi,j

(
,

kx
rj

)}}∣∣∣p ≤ k < q
}

for all x ∈G and all nonnegative integers p, q with q > p ≥ . Letting p =  and passing the
limit q → ∞ in the last inequality and using (.), we obtain (.). The rest of the proof
is similar to the proof of Theorem .. �

Corollary . Let ξ : [,∞)→ [,∞) be a function satisfying

ξ
(|t|) ≤ ξ

(||)ξ (t) (t ≥ ) ξ
(||) < ||. (.)

Let κ >  and f :G → X be amapping with f () =  satisfying the following inequality (.).
Then there exists a unique Euler-Lagrange type additive mapping EL :G → X such that

∥∥f (x) – EL(x)
∥∥ ≤ κ

|| max

{
ξ

(∣∣∣∣ x
ri

∣∣∣∣
)
+ ξ

(∣∣∣∣ x
rj

∣∣∣∣
)
,

||ξ

(∣∣∣∣ xri
∣∣∣∣
)
+ ξ

(∣∣∣∣ xrj
∣∣∣∣
)}

=
κ

||
[
ξ

(∣∣∣∣ x
ri

∣∣∣∣
)
+ ξ

(∣∣∣∣ x
rj

∣∣∣∣
)]

. (.)

Proof Defining ζ :Gm → [,∞) by ϕ(x, . . . ,xm) := κ(
∑m

k= ξ (|xk|)), then, we have

lim
n→∞

ϕ(nx, . . . , nxm)
||n ≤ lim

n→∞

(
ξ (||)
||

)n

ϕ(x, . . . ,xm) = 

for all x, . . . ,xm ∈G. On the other hand,

�(x) = lim
n→∞max

{


||k max

{
max

{
ϕi,j

(
k–x
ri

, –
k–x
rj

)
,

ϕi,j

(
k–x
ri

, 
)
,ϕi,j

(
,–

k–x
rj

)}
,


|| max

{
ϕi,j

(
kx
ri

,
kx
rj

)
,ϕi,j

(
kx
ri

, 
)
,ϕi,j

(
,

kx
rj

)}}∣∣∣ ≤ k < n
}
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= max

{
max

{
ϕi,j

(
x
ri

, –
x
rj

)
,ϕi,j

(
x
ri

, 
)
,ϕi,j

(
,–

x
rj

)}
,


|| max

{
ϕi,j

(
x
ri
,
x
rj

)
,ϕi,j

(
x
ri
, 

)
,ϕi,j

(
,

x
rj

)}}

for all x ∈G, exists. Also

lim
p→∞ lim

n→∞max

{


||k max

{
max

{
ϕi,j

(
k–x
ri

, –
k–x
rj

)
,

ϕi,j

(
k–x
ri

, 
)
,ϕi,j

(
,–

k–x
rj

)}
,


|| max

{
ϕi,j

(
kx
ri

,
kx
rj

)
,ϕi,j

(
kx
ri

, 
)
,ϕi,j

(
,

kx
rj

)}}∣∣∣p ≤ k < n + p
}
= .

Applying Theorem ., we get the desired result. �

Remark . We remark that if ξ (||) = , then ξ =  identically, and so f is itself additive.
Thus, for the nontrivial ξ , we observe that ξ (||) �=  and

 ≤ ξ
(||) ≤ ξ

(||)ξ(

||

)
≤ ||ξ

(

||

)

implies that 
|| ≤ ξ ( 

|| ).
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