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Abstract
In this paper, we study the attracting and invariant sets for a class of nonlinear neutral
differential equations with delays. By using the properties ofM-matrix, a new delay
differential-difference inequality is established. Based on the new inequality, we get
the global attracting and invariant sets and the sufficient condition ensuring the
exponential stability in Lyapunov sense of nonlinear neutral differential equations
with delays. Our results are independent of time delays and do not require the
differentiability, boundedness of the derivative of delay functions and the
boundedness of activation functions. Two examples are presented to illustrate the
effectiveness of our conclusion.
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Introduction
Delay effects exist widely inmany real-worldmodels such as the SEIRS epidemicmodel []
and neural networks [–]. The existence of time delays may destroy a stable system and
cause sustained oscillations, bifurcation or chaos and thus could be harmful. Therefore, it
is of prime importance to consider the effect of delays on the dynamical behaviors of the
system. Recently, there are many authors who consider the effect of delays on the stability
in Lyapunov sense of the system with time delays [–]. In addition, another type of time
delays, namely neutral-type time delays, has recently drawn much attention in research
[–]. In fact, many practical delay systems can be modeled as differential systems of
neutral type whose differential expression includes not only the derivative term of the
current state but also the derivative of the past state, such as partial element equivalent
circuits and transmission lines in electrical engineering, controlled constrained manipu-
lators in mechanical engineering, neural networks models, and population dynamics (see
[] and references therein).
The works [–] mentioned above are focused on studying the stability in Lyapunov

sense of the neutral differential equations, which requires the existence and uniqueness
of equilibrium points. However, in many real physical systems, especially in nonlinear
and non-autonomous dynamical systems, the equilibriumpoint sometimes does not exist.
Therefore, an interesting subject is to discuss the stability in Lagrange sense. Basically, the
goal of the study on global stability in Lagrange sense is to determine global attracting
sets. Once a global attracting set is found, a rough bound of periodic states and chaotic
attractors can be estimated. For this reason, some significant works have been done on the
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techniques and methods of determining the invariant set and attracting set for various
differential systems [–]. In these works mentioned before, there is only one paper
[] that considers a positive invariant set and a global attracting set for nonlinear neutral
differential systems with delays, but the boundedness of activation functions is required.
It is well known that differential inequalities are very important tools for investigating

the dynamical behavior of differential equations (see [, , , , , –]). Xu et al.
developed a delay differential inequality with the impulsive initial conditions and derived
some sufficient conditions to determine the invariant set and the global attracting set for a
class of nonlinear non-autonomous functional differential systems with impulsive effects
[]. In [], Eduardo Liz et al. developed a generalized Halanay inequality and derived
some sufficient conditions for the existence and stability of almost periodic solutions for
quasilinear delay systems. In [], Xu et al. developed the singular impulsive delay differ-
ential inequality and transformed the n-dimensional impulsive neutral differential equa-
tion to a n-dimensional singular impulsive delay differential equation and derived some
sufficient conditions ensuring the global exponential stability in Lyapunov sense of a non-
linear impulsive neutral differential equation with time-varying delays, but they assumed
that the discontinuous points of the derivative of the solution belonged to the first kind.
As we all know, the discontinuous points of the derivative of continuous functions may
not be the first kind. In addition, we know that LMI method is another effective tool for
investigating the dynamical behavior of a differential system [, , ]. The results given
in the LMI form are dependent on time delays, so we must give additional constraint con-
ditions such as differentiability or boundedness of the derivative of delay functions on the
time-varying delays. However, the conditions given in the form of M-matrix are usually
independent of the time delays, thus, the time delays are harmless. Motivated by the be-
fore discussions, our objective in this paper is to improve the inequality established in []
and [] so that it is effective for neutral differential equation. By establishing a new delay
differential-difference inequality, without assuming that the discontinuous points of the
derivative of the solution belong to the first kind, the global attracting and invariant sets
and the sufficient condition ensuring the global exponential stability in Lyapunov sense
of a nonlinear neutral differential equations with delays are obtained. Our results are in-
dependent of the time delays, and do not require the differentiability, boundedness of the
derivative of delay functions and the boundedness of activation functions. Two examples
are presented to illustrate the effectiveness of our conclusion.

Model description and preliminaries
Throughout this paper, we use the following notations. Let Rn

+ be the space of n-
dimensional nonnegative real column vectors, Rn be the space of n-dimensional real col-
umn vectors, N �= {, , . . . ,n}, and Rm×n denote the set of m × n real matrices. Usually
E denotes an n × n unit matrix. For A,B ∈ Rm×n, the notation A ≥ B (A > B) means that
each pair of corresponding elements of A and B satisfies the inequality ‘≥ (>)’. Especially,
A ∈ Rm×n is called a nonnegative matrix if A ≥ , and z is called a positive vector if z > .
Ar denotes the rth row vector of the matrix A.
C[X,Y ] denotes the space of continuous mappings from the topological space X to the

topological space Y . Especially, C �= C[[–τ , ],Rn] denotes the family of all continuous Rn-
valued functions, where τ > .
PC[J ,Rn] = {ϕ : J → Rn is continuous for all but at most a finite number of points t ∈

J , and at these points t ∈ J , ϕ(t+) and ϕ(t–) exist, ϕ(t+) = ϕ(t)}, where J ⊂ R is a bounded
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interval, ϕ(t+) and ϕ(t–) denote the right-hand and left-hand limits of the function ϕ(t),
respectively. Especially, let PC �= PC[[–τ , ],Rn].
For A ∈ Rn×n, x ∈ Rn, φ ∈ C and ϕ is a continuous function on [t – τ , +∞), we define

|A| = (|aij|)n×n, [x]+ =
(|x|, . . . , |xn|)T ,

[φ]+τ =
[
[φ]+

]
τ
, [φi]τ = sup

–τ≤s≤

{
φi(t + s)

}
,

[
ϕ(t)

]
τ
=

([
ϕ(t)

]
τ
, . . . ,

[
ϕn(t)

]
τ

)T , [
ϕ(t)

]+
τ
=

[[
ϕ(t)

]+]
τ
,[

ϕi(t)
]
τ
= sup

–τ≤s≤

{
ϕi(t + s)

}
, t ≥ t, i ∈N ,

and D+ϕ(t) denotes the upper-right-hand derivative of ϕ(t) at time t.
For ϕ ∈ C, we introduce the following norm:

‖ϕ‖τ = max
≤i≤n

{
max

–τ≤s≤

∣∣ϕi(s)
∣∣}.

In this paper, we consider the following nonlinear neutral differential equation with
time-varying delays:

⎧⎪⎪⎨
⎪⎪⎩
(xi(t) –

∑n
j= cijxj(t – rij(t)))′ = –dixi(t) +

∑n
j= aijfj(xj(t))

+
∑n

j= bijgj(xj(t – τij(t))) + Ji, t ≥ t,

xi(t + s) = φi(s), –τ ≤ s ≤ , i ∈N ,

()

where τ , aij, bij, cij, di and Ji are constants, τij(t), rij(t), fj(t), gj(t) ∈ C[R,R], i, j ∈ N , rij(t) is
differentiable, and τij(t), rij(t) satisfy

 ≤ τij(t) ≤ τ ,  < rij(t)≤ τ , ()

the initial function φ(s) = (φ(s), . . . ,φn(s))T ∈ C.
Throughout this paper, the solution x(t) of () with the initial condition φ ∈ C is denoted

by x(t, t,φ) or xt(t,φ), where xt(t,φ) = x(t + s, t,φ), s ∈ [–τ , ].

Definition  The set S ⊂ C is called a positive invariant set of () if, for any initial value
φ ∈ S, we have the solution xt(t,φ) ∈ S for t ≥ t.

Definition  The set S ⊂ C is called a global attracting set of () if, for any initial value
φ ∈ C, the solution xt(t,φ) converges to S as t → +∞. That is,

dist
(
xt(t,φ),S

) →  as t → +∞,

where dist(ϕ,S) = infψ∈S dist(ϕ,ψ), dist(ϕ,ψ) = sups∈[–τ ,] |ϕ(s) –ψ(s)|, for ϕ ∈ C.

Definition  The zero solution of () is said to be globally exponentially stable in Lya-
punov sense if there exist constants λ >  and M ≥  such that for any solution x(t, t,φ)
with the initial condition φ ∈ C,

∥∥xt(t,φ)∥∥τ
≤ M‖φ‖τ e–λ(t–t), t ≥ t. ()
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Definition  ([]) Let the matrix D = (dij)n×n have non-positive off-diagonal elements
(i.e., dij ≤ , i 
= j), then each of the following conditions is equivalent to the statement ‘D
is a nonsingularM-matrix’.

(i) All the leading principle minors of D are positive.
(ii) D = C –M and ρ(C–M) < , whereM ≥ , C = diag{c, . . . , cn}.
(iii) The diagonal elements of D are all positive and there exists a positive vector d such

that Dd >  or DTd > .
For a nonsingularM-matrix D, we denote 	M(D) �= {z ∈ Rn|Dz > , z > }.

For a nonnegative matrix A ∈ Rn×n, let ρ(A) be the spectral radius of A. Then ρ(A) is an
eigenvalue of A and its eigenspace is denoted by

	ρ(A)
�=

{
z ∈ Rn|Az = ρ(A)z

}
,

which includes all positive eigenvectors of A provided that the nonnegative matrix A has
at least one positive eigenvector (see Ref. []).

Lemma  ([]) If A≥  and ρ(A) < , then
(a) (E –A)– ≥ ;
(b) there is a positive vector z ∈ 	ρ(A) such that (E –A)z > .

Main results
Based on Lemma  in [] and Theorem . in [], we develop the following delay
differential-difference inequalitywith the PC-value initial condition such that it is effective
for neutral differential equation with delays.

Theorem  Let σ < b≤ +∞, and u ∈ C[[σ ,b),Rn
+], ω ∈ C[[σ ,b),Rp

+] satisfy

⎧⎪⎪⎨
⎪⎪⎩
D+u(t) ≤ Pu(t) +Q[u(t)]τ +Gω(t) +H[ω(t)]τ + η,

ω(t)≤ Mu(t) +N[u(t)]τ + R[ω(t)]τ + I, t ∈ [σ ,b),

u(t) = φ(t), ω(t) = ϕ(t), t ∈ [σ – τ ,σ ],

()

where φ ∈ PC[[σ – τ ,σ ],Rn
+], ϕ ∈ PC[[σ – τ ,σ ],Rp

+], P = (pij)n×n,pij ≥ , for i 
= j, Q =
(qij)n×n ≥ , G = (gij)n×p ≥ , H = (hij)n×p ≥ , M = (mij)p×n ≥ , N = (nij)p×n ≥ , R =
(rij)p×p ≥ , η = (η, . . . ,ηn)T ≥  and I = (I, . . . , Ip)T ≥ . Suppose that ρ(R) <  and

 = –(P + Q + (G + H)(E – R)–(M + N)) is an M-matrix, then the solution of () has
the following property:

⎧⎨
⎩u(t)≤ kze–λ(t–σ ) + η̂,

ω(t)≤ kz̃e–λ(t–σ ) + Î, t ∈ [σ ,b),
()

provided that the initial conditions satisfy

⎧⎨
⎩u(t)≤ kze–λ(t–σ ) + η̂,

ω(t)≤ kz̃e–λ(t–σ ) + Î, t ∈ [σ – τ ,σ ],
()
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where

k ≥ , z ∈ 	M(
), z̃ �=
(
E – Reλτ

)–(M +Neλτ
)
z,

η̂
�= 
–η +
–(G +H)(E – R)–I,

Î �= (E – R)–(M +N)
–η +
(
(E – R)–(M +N)
–(G +H)(E – R)– + (E – R)–

)
I,

and the positive constant λ is determined by the following inequalities:

ρ
(
eλτR

)
<  and

(
λE + P +Qeλτ +

(
G +Heλτ

)(
E – Reλτ

)–(M +Neλτ
))
z < . ()

Proof Since 
 is an M-matrix, there exists a vector z ∈ 	M(
) such that 
z > , that is
(P +Q + (G +H)(E – R)–(M +N))z < . By using continuity and combining with ρ(R) < ,
we know there exists a positive constant λ satisfying ().
We at first shall prove that for any positive ε

⎧⎨
⎩u(t) < (k + ε)ze–λ(t–σ ) + η̂

�= ξ (t),

ω(t) < (k + ε)z̃e–λ(t–σ ) + Î �= ζ (t), t ∈ [σ ,b).
()

If inequality () is not true, from () and u ∈ C[[σ ,b),Rn
+], ω ∈ C[[σ ,b),Rp

+], then there
must be a constant t* > σ and some integer m, r such that

um
(
t*

)
= ξm

(
t*

)
, D+um

(
t*

) ≥ ξ ′(t*),
ui(t) ≤ ξi(t), t ∈ [

σ – τ , t*
]
, i = , . . . ,n

()

or

ωr
(
t*

)
= ζr

(
t*

)
, ωj(t) ≤ ζj(t), t ∈ [

σ – τ , t*
]
, j = , . . . ,p. ()

By using (), (), () and (), we have

D+um
(
t*

) ≤ Pmu
(
t*

)
+Qm

[
u
(
t*

)]
τ
+Gmω

(
t*

)
+Hm

[
ω

(
t*

)]
τ
+ ηm

≤ Pm
[
(k + ε)ze–λ(t*–σ ) + η̂

]
+Qm

[
(k + ε)zeλτ e–λ(t*–σ ) + η̂

]
+Gm

[
(k + ε)z̃e–λ(t*–σ ) + Î

]
+Hm

[
(k + ε)z̃eλτ e–λ(t*–σ ) + Î

]
+ ηm

= (k + ε)
[
P +Qeλτ +

(
G +Heλτ

)(
E – Reλτ

)–(M +Neλτ
)
z
]
me

–λ(t*–σ )

+
[(
P +Q + (G +H)(E – R)–(M +N)

)

–η

]
m + ηm

+
[
(P +Q)
–(G +H)(E – R)–I

]
m +

[
(G +H)(E – R)–)I

]
m

+
[
(G +H)(E – R)–(M +N)
–(G +H)(E – R)–I

]
m

< –λ(k + ε)zme–λ(t*–σ ) +
[
–

–η

]
m + ηm +

[
(G +H)(E – R)–)I

]
m

+
[(
–
 – (G +H)(E – R)–(M +N)

)

–(G +H)(E – R)–I

]
m

+
[
(G +H)(E – R)–(M +N)
–(G +H)(E – R)–I

]
m

= –λ(k + ε)zme–λ(t*–σ ) = ξ ′(t*). ()
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This contradicts the second inequality in (), so the first inequality in () holds. Therefore,
we have to assume that () holds and we shall obtain another contradiction. Next, we
consider three cases.
Case . The elements of theMr andNr are not all zero. Without loss of generality, we let

mrl > ,  ≤ l ≤ n. Then, by using (), () and the first inequality in (), we have

ωr
(
t*

) ≤ Mru
(
t*

)
+Nr

[
u
(
t*

)]
τ
+ Rr

[
ω

(
t*

)]
τ
+ Ir

= mrlul
(
t*

)
+

∑
j 
=l

mrjuj
(
t*

)
+Nr

[
u
(
t*

)]
τ
+ Rr

[
ω

(
t*

)]
τ
+ Ir

< mrlξl
(
t*

)
+

∑
j 
=l

mrjξj
(
t*

)
+Nr

[
u
(
t*

)]
τ
+ Rr

[
ω

(
t*

)]
τ
+ Ir

≤ Mr
[
(k + ε)ze–λ(t*–σ ) + η̂

]
+Nr

[
(k + ε)zeλτ e–λ(t*–σ ) + η̂

]
+ Rr

[
(k + ε)z̃eλτ e–λ(t*–σ ) + Î

]
+ Ir

= (k + ε)
[(
M +Neλτ + Reλτ

(
E – Reλτ

)–(M +Neλτ
))
z
]
re

–λ(t*–σ )

+
[(
M +N + R(E – R)–(M +N)

)

–η

]
r +

[
R(E – R)–I

]
r + Ir

+
[(
(M +N)
–(G +H)(E – R)–

+ R(E – R)–(M +N)
–(G +H)(E – R)–
)
I
]
r

= (k + ε)
[(
E – Reλτ

)–(M +Neλτ
)
z
]
re

–λ(t*–σ )

+
[
(E – R)–(M +N)
–η

]
r

+
[(
(E – R)–(M +N)
–(G +H)(E – R)– + (E – R)–

)
I
]
r

= (k + ε)z̃re–λ(t*–σ ) + Îr = ζr
(
t*

)
. ()

Which contradicts the first equality in (), so under this case, the second inequality in ()
holds.
Case . The elements of theMr and Nr are all zero, but the elements of the Rr are not all

zero.Without loss of generality, we let rrh > ,  ≤ h≤ p. Combining with ω ∈ C[[σ ,b),Rp
+]

and the monotonicity of ζ (t), from () and [ω(t)]τ = sup–τ≤s≤ ω(t + s), we know there
must exist t* – τ ≤ t, . . . , tp ≤ t* such that

[
ω

(
t*

)]
τ
= sup

t*–τ≤t≤t*
ω(t) =

(
ω(t), . . . ,ωp(tp)

)T <
(
ζ

(
t* – τ

)
, . . . , ζp

(
t* – τ

))T . ()

By using () and (), we have

ωr
(
t*

) ≤ Rr
[
ω

(
t*

)]
τ
+ Ir

= rrh
[
ωh

(
t*

)]
τ
+

∑
j 
=h

rrj
[
ωj

(
t*

)]
τ
+ Ir

< rrhζh
(
t* – τ

)
+

∑
j 
=h

rrjζj
(
t* – τ

)
+ Ir

= Rrζ
(
t* – τ

)
+ Ir

= Rr
[
(k + ε)z̃eλτ e–λ(t*–σ ) + Î

]
+ Ir
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= (k + ε)
[
Reλτ

(
E – Reλτ

)–(M +Neλτ
)
z
]
re

–λ(t*–σ )

+
[
R(E – R)–(M +N)
–η

]
r

+
[
R(E – R)–(M +N)
–(G +H)(E – R)–I

]
r +

[
R(E – R)–I

]
r + Ir

= (k + ε)
[(
E – Reλτ

)–(M +Neλτ
)
z
]
re

–λ(t*–σ ) +
[
(E – R)–(M +N)
–η

]
r

+
[
(E – R)–(M +N)
–(G +H)(E – R)–I

]
r +

[
(E – R)–I

]
r

– (k + ε)
[(
E – Reλτ

)(
E – Reλτ

)–(M +Neλτ
)
z
]
re

–λ(t*–σ )

–
[
(E – R)(E – R)–(M +N)
–η

]
r

–
[
(E – R)(E – R)–(M +N)
–(G +H)(E – R)–I

]
r

= (k + ε)z̃re–λ(t*–σ ) + Îr = ζr
(
t*

)
, ()

which contradicts the first equality in (); so under this case, the second inequality in ()
holds.
Case . The elements of theMr ,Nr and Rr are all zero, then the conclusion of the second

inequality in () is trivial.
From the above analysis, we know () is true for all t ∈ [σ ,b). Letting ε →  in (), we

can get ().
The proof is complete. �

Remark  Suppose that M = N = , R = , I =  in Theorem , then we get Lemma  in
[]. Suppose that J = , I =  in Theorem , then we get Theorem . in [].

For the model (), we introduce the following assumptions:
(A) The functions fj(·), gj(·) are Lipschitz continuous, i.e., there are positive constants

kj, lj, j ∈N such that for all s, s ∈ R

∣∣fj(s) – fj(s)
∣∣ ≤ kj|s – s|,

∣∣gj(s) – gj(s)
∣∣ ≤ lj|s – s|.

(A) Let ‖C‖ <  and 
̂ = –(–D + (D + Â + B̂)(E – |C|)–) be a nonsingular M-
matrix, where D = diag{d, . . . ,dn} > , Â = (|aij|kj)n×n, B̂ = (|bij|lj)n×n. Let Ĵ = |A|[f ()]+ +
|B|[g()]+ + [J]+.

Theorem  Assume that (A), (A) hold. Then S = {φ ∈ C|[φ]+τ ≤ (E – |C|)–
̂– Ĵ} is a
global attracting set of ().

Proof Under the conditions (A), (A), from [, ], we know the solution x(t, t,φ) of ()
exists globally. We denote

u(t) =

⎧⎨
⎩[x(t) –Cx(t – r(t))]+, t ≥ t,

W [(E – |C|)[φ]+τ ]+, t – τ ≤ t ≤ t,

ω(t) =
[
x(t)

]+, t ≥ t – τ ,

()

whereW = diag{w, . . . ,wn} ≥  such that [φ(t) –Cφ(–r(t))]+ =W [(E – |C|)[φ]+τ ]+.

http://www.advancesindifferenceequations.com/content/2012/1/113
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Then, for t ≥ t, from () and (A), we calculate the upper-right-hand derivative D+u(t)
along the solutions of (),

D+ui(t) = sgn

(
xi(t) –

n∑
j=

cijxj
(
t – rij(t)

)){
–di

(
xi(t) –

n∑
j=

cijxj
(
t – rij(t)

))

–
n∑
j=

dicijxj
(
t – rij(t)

)
+

n∑
j=

aij
[
fj
(
xj(t)

)
– fj()

]

+
n∑
j=

bij
[
gj
(
xj

(
t – τij(t)

))
– gj()

]
+

n∑
j=

(
aijfj() + bijgj()

)
+ Ji

}

≤ –di

∣∣∣∣∣xi(t) –
n∑
j=

cijxj
(
t – rij(t)

)∣∣∣∣∣ +
n∑
j=

|aij|kj
∣∣xj(t)∣∣ + n∑

j=

|bij|lj
∣∣xj(t – τij(t)

)∣∣

+
n∑
j=

di|cij|
∣∣xj(t – rij(t)

)∣∣ + n∑
j=

(|aij|∣∣fj()∣∣ + |bij|
∣∣gj()∣∣) + |Ji|

≤ –diui(t) +
n∑
j=

|aij|kjωj(t) +
n∑
j=

(|bij|lj + di|cij|
)[

ωj(t)
]
τ

+
n∑
j=

(|aij|∣∣fj()∣∣ + |bij|
∣∣gj()∣∣) + |Ji|, i ∈N , t ≥ t. ()

So, from () and (A), we get

D+u(t) ≤ –Du(t) + Âω(t) +
(
B̂ +D|C|)[ω(t)]+

τ
+ Ĵ , t ≥ t. ()

On the other hand, we have

ωi(t) =
∣∣xi(t)∣∣ =

∣∣∣∣∣
(
xi(t) –

n∑
j=

cijxj
(
t – rij(t)

))
+

n∑
j=

cijxj
(
t – rij(t)

)∣∣∣∣∣
≤

∣∣∣∣∣
(
xi(t) –

n∑
j=

cijxj
(
t – rij(t)

))∣∣∣∣∣ +
n∑
j=

|cij|
∣∣xj(t – rij(t)

)∣∣

≤ ui(t) +
n∑
j=

|cij|
[
ωj(t)

]
τ
, t ≥ t. ()

That is,

ω(t) ≤ u(t) + |C|[ω(t)]+
τ
, t ≥ t. ()

From (A), Definition  and Lemma , we have (E – |C|)– ≥ , 
̂– ≥ , and so

�
�= 
̂– Ĵ ≥ , υ

�=
(
E – |C|)–
̂– Ĵ ≥ . ()

Furthermore, for z ∈ 	M(
̂), we have

(
–D + (D + Â + B̂)

(
E – |C|)–)z < .

http://www.advancesindifferenceequations.com/content/2012/1/113
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By using continuity, we can find a positive constant λ such that

ρ
(
eλτ |C|) <  and(

λE – D +
(
D + Â + B̂eλτ

)(
E – |C|eλτ

)–)z <  for z ∈ 	M(
̂),
()

and we know

z̃ �=
(
E – |C|eλτ

)–z > .

From () and the initial conditions in (): x(t + s) = φ(s), s ∈ [–τ , ], where φ ∈ C, we
can get

u(t) ≤ kz, ω(t) ≤ kz̃, k =
max≤i≤n{wi

∑n
j= ςij‖φ‖τ }

min≤i≤n,≤j≤n{zi, z̃j} , t – τ ≤ t ≤ t, ()

where (ςij)n×n = |(E – |C|)|. From (), (), we know

u(t) ≤ kze–λ(t–t) + �,ω(t) ≤ kz̃e–λ(t–t) + υ, t – τ ≤ t ≤ t. ()

From (), (), (), (A) and Theorem , we get

u(t) ≤ kze–λ(t–t) + �, ω(t) ≤ kz̃e–λ(t–t) + υ, t ≥ t. ()

From (), we know the conclusion is true. The proof is complete. �

If J = , f () = g() =  in the model (), then we know the model () has an equilibrium
point zero. From Theorem , we get the following conclusion.

Corollary  Assume that (A), (A) with Ĵ =  hold. Then the zero solution of () is globally
exponentially stable in Lyapunov sense and the exponential convergence rate is determined
by ().

Theorem  Assume that (A), (A) hold. Then S = {φ ∈ C|[φ]+τ ≤ (E – |C|)–
̂– Ĵ , [φ(t) –
Cφ(–r(t))]+ = [(E – |C|)[φ]+τ ]+} is a positive invariant set and also a global attracting set
of ().

Proof Since [φ]+τ ≤ (E – |C|)–
̂– Ĵ and [φ(t) –Cφ(–r(t))]+ = [(E – |C|)[φ]+τ ]+, then from
the definition of u(t) and ω(t), we get

u(t) ≤ 
̂– Ĵ and ω(t)≤ (
E – |C|)–
̂– Ĵ , t – τ ≤ t ≤ t. ()

We choose k =  in Theorem ; the remaining proof is similar to the proof of Theorem ,
and we omit it here. So we get the conclusion. �

If we further assume that cij = , i, j ∈N , then the system () becomes

⎧⎨
⎩x′

i(t) = –dixi(t) +
∑n

j= aijfj(xj(t)) +
∑n

j= bijgj(xj(t – τij(t))) + Ji, t ≥ t,

xi(t + s) = φi(s), –τ ≤ s ≤ , i ∈N .
()

http://www.advancesindifferenceequations.com/content/2012/1/113
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Therefore, we can get the following corollary.

Corollary  Assume that (A) and (A) with cij = , i, j ∈ N hold. Then S = {φ ∈ C|[φ]+τ ≤
(D – Â – B̂)– Ĵ} is a positive invariant set and also a global attracting set of ().

Remark The authors in [] consider the special case of themodel (), but they require
that the activation functions are continuous and monotonically nondecreasing, and the
delay functions are satisfying dτij(t)

dt ≤ .

Examples
Example  Consider the nonlinear neutral differential equation with delays

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
(t) = –x(t) + g(x(t – τ(t))) – 

g(x(t – τ(t)))

+ 
 ( +


 cost)x

′
(t – r(t)) + J,

x′
(t) = –x(t) – 

g(x(t – τ(t))) + g(x(t – τ(t)))

+ 
 ( +


 cost)x

′
(t – r(t)) + J, t ≥ ,

()

where g(s) = |s+|–|s–|
 , g(s) = s,  < r(t) = 

 –

 sint ≤ 

 <  �= τ , τij(t) = | sin(i+ j)t| ≤  �= τ

for i, j = , .

By simple computation, we get

D =

(
 
 

)
, Â =

(
 
 

)
,

B̂ =

(
 



 

)
, |C| =

(

 
 



)
,


̂ = –
(
–D + (D + Â + B̂)

(
E – |C|)–) =

(
 –
–





)
,

(
E – |C|)–
̂– =

(












)
.

We can easily observe that ρ(|C|) = 
 < , 
̂ is a nonsingularM-matrix and

	M(
̂) =
{
(z, z)T > 

∣∣∣ z < z < z
}
.

Let z = (, )T ∈ 	M(
̂), and λ = ., which satisfies the inequalities

ρ
(
eλτ |C|) = . < ,(

λE – D +
(
D + Â + B̂eλτ

)(
E – |C|eλτ

)–)z = (–.,–.)T < .

Case  Let J = , J = –, so by Theorem , we know S = {φ ∈ C|[φ]+τ ≤ (E– |C|)–
̂– Ĵ =
( ,


 )

T } is a global attracting set of (), and by Theorem , we know S* = {φ ∈ C|[φ]+τ ≤

http://www.advancesindifferenceequations.com/content/2012/1/113
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Figure 1 The state trajectory of x1(t), x2(t) of the model (27) with J1 = 2, J2 = –2 and initial conditions
φ1(s) = 5 + 3sin 2

3πs, φ2(s) = –6 + 4| cos 2
3πs|, s ∈ [–1, 0].

Figure 2 The state trajectory of x1(t), x2(t) of the model (27) with J1 = 0, J2 = 0 and initial conditions
φ1(s) = 4 + 4sin 2

3πs, φ2(s) = 3 + 2| cos 2
3πs|, s ∈ [–1, 0].

(  ,

 )

T and φ() = φ(– 
 ) = ±[φ]+τ } is a positive invariant and global attracting set of ().

(See Figure .)

Remark  The authors in [] considered the global attracting set of neutral type sys-
tem, but the boundedness of activation functions is required, so the Theorem  in [] is
ineffective for the model ().

Case  If J = J = , from Corollary , we know the zero solution of () is globally
exponentially stable in Lyapunov sense and the exponential convergence rate is equal to
.. (See Figure .)

Remark  It is evident that the delay functions r(t) = 
 – 

 sint, τij(t) = | sin(i + j)t| do
not satisfy the condition supt∈R ṙ(t) < , supt∈R τ̇ij(t) < , i, j = , , so the results in [, ]
are invalid for the model ().

http://www.advancesindifferenceequations.com/content/2012/1/113
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Figure 3 The state trajectory of x1(t), x2(t) of the model (28) with initial conditions φ1(s) = 3 + 2cosπs,
φ2(s) = –3 + 2sinπs, s ∈ [–1, 0].

Example  Consider the nonlinear differential equation with delays

⎧⎨
⎩x′

(t) = –x(t) + g(x(t – τ(t))) – 
g(x(t – τ(t))) + ,

x′
(t) = –x(t) – 

g(x(t – τ(t))) + g(x(t – τ(t))) + , t ≥ ,
()

where g(s) = |s+|–|s–|
 , g(s) = sin s, τij(t) = | sin(i + j)t| ≤  �= τ for i, j = , .

Similarly to the computation of Example , from Corollary , we can get the set S = {φ ∈
C|[φ]+τ ≤ (D – Â – B̂)– Ĵ = (  ,


 )

T } is an invariant and global attracting set of the model
(). (See Figure .)

Remark  It is evident that the activation function g(s) = sin s is not monotonically non-
decreasing and the delay functions τij(t) = | sin(i + j)t| do not satisfy dτij(t)

dt ≤ , i, j = , , so
the results in [] are invalid for the model ().
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