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Abstract
In this paper, we deal with the relationship between the small function and the
derivative of solutions of higher order linear differential equations

f (k) + Ak–1f
(k–1) + · · · + A0f = 0 (k ≥ 2),

where Aj(z) (j = 0, 1, . . . , k – 1) are entire functions or meromorphic functions. The
theorems of this paper improve the previous results given by Chen, Belaïdi, Liu.
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1 Introduction andmain results
Complex oscillation theory of solutions of linear differential equations in the complex
plane C was started by Bank and Laine [, ]. After their well-known work, many impor-
tant results have been obtained on the complex oscillation theory of solutions of linear
differential equations in C, refer to [, ].
To state those correlated results, we require to give some explanation as follows.
We shall assume that the reader is familiarwith the fundamental results and the standard

notations of the Nevanlinna value distribution theory of meromorphic functions (see [,
, ]). In addition, we will use the notation σ (f ) to denote the order of meromorphic
function f (z), λ(f ) to denote the exponent of convergence of the zero-sequence of f (z)
and λ(f ) to denote exponent of convergence of distinct zero-sequence of meromorphic
function f (z), and τ (f ) to denote the type of an entire function f (z) with  < σ (f ) = σ < +∞,
which is defined to be (see [])

τ (f ) = lim sup
r→∞

logM(r, f )
rσ

.

We use σ(f ) to denote the hyper-order of f (z), σ(f ) is defined to be (see [])

σ(f ) = lim sup
r→∞

log logT(r, f )
log r

.
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We use λ(f ) (λ(f )) to denote the hyper-exponent of convergence of the zero-sequence
(distinct zero-sequence) of meromorphic function f (z), λ(f ), λ(f ) are defined to be (see
[, ])

λ(f ) = lim sup
r→∞

log logN(r, f )
log r

, and λ(f ) = lim sup
r→∞

log logN(r, f )
log r

.

Let ϕ(z) be an entire function with σ (ϕ) < σ (f ) or σ(ϕ) < σ(f ), the hyper-exponent of
convergence of zeros and distinct zeros of f (z) – ϕ(z) are defined to be

λ(f – ϕ) = lim sup
r→∞

log logN(r, 
f –ϕ

)
log r

, λ(f – ϕ) = lim sup
r→∞

log logN(r, 
f –ϕ

)
log r

,

especially if ϕ(z) = z, we use λ(f – z) and λ(f – z) to denote the hyper-exponent of con-
vergence of fixed points and distinct fixed points of f (z), respectively. We use mE =

∫
E dt

to denote the linear measure of a set E ⊂ (, +∞) and use mlE =
∫
E

dt
t to denote the loga-

rithmic measure of a set E ⊂ [, +∞). We denote by S(r, f ) any quantity satisfying

S(r, f ) = o
(
T(r, f )

)
,

as r → +∞, possibly outside of a set with finite measure. A meromorphic function ψ(z)
is called a small function with respect to f if T(r,ψ) = S(r, f ).
For the second order linear differential equation

f ′′ +A(z)f ′ + B(z)f = , ()

where A(z) and B(z) ( �≡ ) are entire functions, it is an interesting problem to investigate
the complex oscillation of solutions of Equation (). Many mathematicians obtained a lot
of important and significant results (see [, , , , ]) by studying the above equation.
In , Shon [] investigated the hyper-order of the solutions of () and obtained the

following result.

TheoremA (see []) Let A(z) and B(z) be entire functions such that σ (A) < σ (B) or σ (B) <
σ (A) < 

 , then every function f �≡  of () satisfies σ(f ) ≥ max{σ (A),σ (B)}.

In , Chen and Shon [] investigated the zeros of the solution concerning small
functions and fixed points of solutions of second order linear differential equations and
obtained some results as follows.

TheoremB (see []) Let Aj(z) �≡  (j = , ) be entire functions with σ (Aj) < , suppose that
a, b are complex numbers and satisfy ab �=  and arga �= argb or a = cb ( < c < ). If ϕ(z) �≡ 
is an entire function of finite order, then every non-trivial solution f of the equation

f ′′ +A(z)eazf ′ +A(z)ebzf = 

satisfies λ(f – ϕ) = λ(f ′ – ϕ) = λ(f ′′ – ϕ) = ∞.
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Theorem C (see []) Let A(z) �≡ , ϕ(z) �≡ , Q(z) be entire functions with σ (A) < ,  <
σ (Q) <∞ and σ (ϕ) < ∞, then every non-trivial solution f of the equation

f ′′ +A(z)eazf ′ +Q(z)f = 

satisfies λ(f – ϕ) = λ(f ′ – ϕ) = λ(f ′′ – ϕ) = ∞, where a �=  is a complex number.

In the same year, Liu and Zhang [] investigated the fixed points when the coefficients
of the equations are meromorphic functions and obtained the following result.

TheoremD (see []) Suppose that k ≥  and A(z) is a transcendental meromorphic func-
tion satisfying δ(∞,A) = limr→∞

m(r,A)
T(r,A) = δ > , σ (A) = σ < +∞. Then every meromorphic

solution f �≡  of the equation

f (k) +A(z)f =  ()

satisfies that f and f ′, f ′′, . . . , f (k) all have infinitely many fixed points and λ(f (j) – z) = σ

(j = , , . . . ,k).

For Equation (), Belaïdi [], Belaïdi and El Farissi [] investigated the fixed points and
the relationship between small functions and differential polynomials of solutions of Equa-
tion () and obtained some results which improve Theorems D and C.
There naturally arises an interesting subject on the problems of fixed points of solutions

of the differential equation

f (k) +Ak–f (k–) + · · · +Af =  (k ≥ ), ()

where Aj(z) (j = , , . . . ,k – ) are entire functions.
In this paper, we will deal with the above equation and investigate the relationship be-

tween small functions and derivative of solutions of Equation () and obtain some theo-
rems which improve the previous results given by Chen, Kwon and etc.

Theorem . Let Aj(z), j = , , . . . ,k– be entire functions with finite order and satisfy one
of the following conditions:

(i) max{σ (Aj) : j = , , . . . ,k – } < σ (A) <∞;
(ii)  < σ (Ak–) = · · · = σ (A) = σ (A) < ∞ and max{τ (Aj) : j = , , . . . ,k – } =

τ < τ (A) = τ ,
then for every solution f �≡  of () and for any entire function ϕ(z) �≡  satisfying σ(ϕ) <
σ (A), we have

λ(f –ϕ) = λ
(
f ′ –ϕ

)
= λ

(
f ′′ –ϕ

)
= λ

(
f ′′′ –ϕ

)
= λ

(
f (i) –ϕ

)
= σ(f ) = σ (A) (i ∈N).

Theorem . Let Aj(z), j = , , . . . ,k –  be polynomials, A(z) be a transcendental entire
function, then for every solution f �≡  of () and for any entire function ϕ(z) of finite order,
we have

(i) λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞;
(ii) λ(f (i) – ϕ) = λ(f (i) – ϕ) = σ (f (i) – ϕ) = ∞ (i≥ , i ∈N).
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Theorem . Let Aj(z), j = , , . . . ,k –  be meromorphic functions satisfying max{σ (Aj) :
j = , , . . . ,k – } < σ (A) and δ(∞,A) > . Then for every meromorphic solution f �≡  of
() and for any meromorphic function ϕ(z) �≡  satisfying σ(ϕ) < σ (A), we have λ(f (i) –
ϕ) = λ(f (i) – ϕ)≥ σ (A) (i = , , . . .), where f () = f .

Remark . The following example shows that Theorem . is not valid when Aj(z), j =
, , . . . ,k –  do not satisfy the condition max{σ (Aj) : j = , , . . . ,k – } < σ (A).

Example . For the equation

f ′′ +
ez + ez – 

 – ez
f ′ +

–ez

 – ez
f = , (�)

we can easily get that Equation (�) has a solution f (z) = eez + ez . And the functions ez+ez–
–ez ,

–ez
–ez aremeromorphic and satisfy δ(∞, –ez–ez ) =


 . Take ϕ(z) = ez , then σ(ϕ) < σ ( –ez–ez ). Thus,

we can get that λ(f ′ – ϕ) = λ(ee
zez) =  �=  = σ ( –ez–ez ).

From Theorems .-., if ϕ(z) = z, we can get the following corollaries easily.

Corollary . Under the assumptions of Theorem ., if ϕ(z) = z, for every solution f �≡ 
of (), we have

λ(f – z) = λ
(
f ′ – z

)
= λ

(
f ′′ – z

)
= λ

(
f (i) – z

)
= σ(f ) = σ (A) (i ∈N).

Corollary . Under the assumptions of Theorem ., if ϕ(z) = z, for every solution f �≡ 
of (), we have

(i) λ(f – z) = λ(f – z) = σ (f ) = ∞;
(ii) λ(f (i) – z) = λ(f (i) – z) = σ (f (i) – z) = ∞ (i≥ , i ∈N).

Corollary . Under the assumptions of Theorem ., if ϕ(z) = z, for every meromorphic
solution f �≡  of (), we have λ(f (i) – z) = λ(f (i) – z) ≥ σ(A) (i = , , . . .), where f () = f .

Remark . In Theorem B, if ab �=  and a = cb ( < c < ), it is easy to see that σ (Aeaz) =
σ (Aebz) =  and τ (Aeaz) = |a| < τ (Aebz) = |b|. By Theorem ., for every solution f �≡ 
of () and for any entire function ϕ(z) �≡  with σ(ϕ) < , we have λ(f – ϕ) = λ(f ′ – ϕ) =
λ(f ′′ – ϕ) = . Therefore, Theorem . is also a partial extension of Theorem B. Theo-
rem . is the improvement of Theorem C. Theorem . and Corollary . are the im-
provements of Theorem D.

2 Some lemmas
To prove our theorems, we require the following lemmas.

Lemma . Assume f �≡  is a solution of Equation (), set g = f – ϕ, then g satisfies the
equation

g(k) +Ak–g(k–) + · · · +Ag = –
[
ϕ(k) +Ak–ϕ

(k–) + · · · +Aϕ
]
. ()
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Proof Since g = f –ϕ, we have g ′ = f ′ –ϕ′, . . . , g(k) = f (k) –ϕ(k). Substituting them into Equa-
tion (), we have (). �

Lemma . Assume f �≡  is a solution of Equation (), set g = f ′ – ϕ, then g satisfies the
equation

g(k) +U
k–g

(k–)
 + · · · +U

g = –
[
ϕ(k) +U

k–ϕ
(k–) + · · · +U

ϕ
]
, ()

where U
j = A′

j+ +Aj –
A′


A
Aj+, j = , , , . . . ,k –  and Ak ≡ .

Proof Since g = f ′ – ϕ, we have

f ′ = g + ϕ, f ′′ = g ′
 + ϕ′, . . . , f (k+) = g(k) + ϕ(k). ()

And the derivation of () is

f (k+) +Ak–f (k) +
(
A′
k– +Ak–

)
f (k–) + · · · + (

A′
 +A

)
f ′ +A′

f = . ()

We can rewrite () as

f = –

A

(
f (k) +Ak–f (k–) + · · · +Af ′). ()

Substituting () into (), we have

f (k+) +
(
Ak– –

A′


A

)
f (k) +

(
A′
k– +Ak– –

A′


A
Ak–

)
f (k–)

+ · · · +
(
A′
 +A –

A′


A
A

)
f ′ = .

()

Substituting () into (), we have

g(k) +
(
Ak– –

A′


A

)
g(k–) +

(
A′
k– +Ak– –

A′


A
Ak–

)
g(k–)

+ · · · +
(
A′
 +A –

A′


A
A

)
g

= –
[
ϕ(k) +

(
Ak– –

A′


A

)
ϕ(k–) +

(
A′
k– +Ak– –

A′


A
Ak–

)
ϕ(k–)

+ · · · +
(
A′
 +A –

A′


A
A

)
ϕ

]
.

()

Set U
j = A′

j+ + Aj –
A′


A
Aj+, j = , , , . . . ,k –  and Ak ≡ . Then from () and (), we

can get

f (k+) +U
k–f

(k) +U
k–f

(k–) + · · · +U
f

′ =  ()

and ().
Thus, we complete the proof of Lemma .. �
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Xu et al. Advances in Difference Equations 2012, 2012:114 Page 6 of 16
http://www.advancesindifferenceequations.com/content/2012/1/114

Lemma . Assume f �≡  is a solution of Equation (), set g = f ′′ – ϕ, then g satisfies the
equation

g(k) +U
k–g

(k–)
 + · · · +U

g = –
[
ϕ(k) +U

k–ϕ
(k–) + · · · +U

ϕ
]
, ()

where U
j =U

j+
′ +U

j –
U

′

U

U

j+, j = , , , . . . ,k –  and U
k ≡ .

Proof Since g = f ′′ – ϕ, we can get

f ′′ = g + ϕ, f ′′′ = g ′
 + ϕ′, . . . , f (k+) = g(k) + ϕ(k). ()

The derivation of () is

f (k+) +U
k–f

(k+) +
(
U

k–
′ +U

k–
)
f (k) + · · · + (

U

′ +U


)
f ′′ +U


′f ′ = . ()

Substituting () into (), we have

f (k+) +
(
U

k– –
U


′

U


)
f (k+) +

(
U

k–
′ +U

k– –
U


′

U

U

k–

)
f (k)

+ · · · +
(
U


′ +U

 –
U


′

U

U



)
f ′′ = .

()

Set U
j =U

j+
′ +U

j –
U

′

U

U

j+, j = , , , . . . ,k –  and U
k ≡ , then from () we have

f (k+) +U
k–f

(k+) +U
k–f

(k) + · · · +U
 f

′′ = . ()

Substituting () into (), we can get ().
Thus, this completes the proof of Lemma .. �

Lemma . Assume f �≡  is a solution of Equation (), set g = f ′′′ –ϕ, then g satisfies the
equation

g(k) +U
k–g

(k–)
 + · · · +U

g = –
[
ϕ(k) +U

k–ϕ
(k–) + · · · +U

ϕ
]
, ()

where U
j =U

j+
′ +U

j –
U


′

U

U

j+, j = , , , . . . ,k –  and U
k ≡ .

Proof Since g = f ′′′ – ϕ, we have

f ′′′ = g + ϕ, f () = g ′
 + ϕ′, . . . , f (k+) = g(k) + ϕ(). ()

The derivation of () is

f (k+) +U
k–f

(k+) +
(
U

k–
′ +U

k–
)
f (k+) + · · · + (

U


′ +U

)
f ′′′ +U


′f ′′ = . ()
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Substituting () into (), we have

f (k+) +
(
U

k– –
U


′

U


)
f (k+) +

(
U

k–
′ +U

k– –
U


′

U

U

k–

)
f (k+)

+ · · · +
(
U


′ +U

 –
U


′

U

U



)
f ′′′ = .

()

Set U
j =U

j+
′ +U

j –
U


′

U

U

j+, j = , , , . . . ,k –  and U
k ≡ , then from () we have

f (k+) +U
k–f

(k+) +U
k–f

(k+) + · · · +U
 f

′′′ = . ()

Substituting () into (), we can get ().
Thus, we complete the proof of Lemma .. �

Lemma . Assume f �≡  is a solution of Equation (), set gi = f (i) – ϕ, then gi satisfies the
equation

g(k)i +Ui
k–g

(k–)
i + · · · +Ui

gi = –
[
ϕ(k) +Ui

k–ϕ
(k–) + · · · +Ui

ϕ
]
, ()

where Ui
j =Ui–

j+
′ +Ui–

j – Ui–


′

Ui–


Ui–
j+ , j = , , , . . . ,k – , Ui–

k ≡  and i ∈N.

Proof The inductive method will be used to prove it.
At first, from Lemmas .-., we get that () holds for i = , , .
Next, suppose that gi = f (i) – ϕ, i ≤ n, n ∈ N satisfy (). Thus, gn = f (n) – ϕ satisfies the

equation

g(k)n +Un
k–g

(k–)
n + · · · +Un

gn = –
[
ϕ(k) +Un

k–ϕ
(k–) + · · · +Un

ϕ
]
, ()

where Un
j =Un–

j+
′ +Un–

j – Un–


′

Un–


Un–
j+ , j = , , , . . . ,k –  and Un–

k ≡ .

Since gn = f (n) – ϕ, we have

f (n+) = g ′
n + ϕ′, f (n+) = g ′′

n + ϕ′′, . . . , f (k+n) = g(k)n + ϕ(k). ()

From () and (), we have

f (k+n) +Un
k–f

(k+n–) +Un
k–f

(k+n–) + · · · +Un
 f

(n) = . ()

Now we will prove that gn+ = f (n+) – ϕ satisfies (). Since gn+ = f (n+) – ϕ, we have

f (n+) = g ′
n+ + ϕ′, f (n+) = g ′′

n+ + ϕ′′, . . . , f (n+k+) = g(k)n+ + ϕ(k). ()

The derivation of () is

f (k+n+) +Un
k–f

(k+n) +
(
Un

k–
′ +Un

k–
)
f (k+n–) + · · · +Un


′f (n) = . ()

http://www.advancesindifferenceequations.com/content/2012/1/114
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Substituting () into (), we have

f (k+n+) +
(
Un

k– –
Un


′

Un


)
f (k+n) +

(
Un

k–
′ +Un

k– –
Un


′

Un

Un

k–

)
f (k+n–)

+ · · · +
(
Un


′ +Un

 –
Un


′

Un

Un



)
f (n) = .

()

From the definition of Ui
j and (), we have

f (k+n+) +Un+
k– f

(k+n) + · · · +Un+
 f (n+) +Un+

 f (n) = , ()

where Un+
j = Un

j+
′ + Un

j – Un


′
Un

Un

j+, j = , , , . . . ,k –  and Un
k ≡ . Substituting () into

(), we have

g(k)n+ +Un+
k– g

(k–)
n+ + · · · +Un+

 gn+ = –
[
ϕ(k) +Un+

k–ϕ
(k–) + · · · +Un+

 ϕ
]
. ()

This completes the proof of Lemma .. �

Similar to the proof of [, Lemma .], we can get the following lemma.

Lemma . Let f (z) be a transcendental meromorphic function with σ (f ) = σ ≥ , then
there exists a set E ⊂ [, +∞) with infinite logarithmic measure such that for all r ∈ E, we
have

lim
r→∞

logT(r, f )
log r

= σ , r ∈ E.

Lemma . Let A(z), A(z), . . . , Ak–(z) be entire functions with finite order and satisfy
max{σ (Aj) : j = , , . . . ,k – } = σ < σ (A) < ∞, and set

U
j = A′

j+ +Aj –
A′


A
Aj+

and

Ui
j =Ui–

j+
′ +Ui–

j –
Ui–


′

Ui–


Ui–
j+ ,

where j = , , , . . . ,k – , Ak ≡ , Ui–
k ≡  and i ∈ N. Then there exists a set E with infinite

logarithmic measure such that

lim
r→∞

logm(r,Ui
)

log r
= σ (A) > lim sup

r→∞

max≤j≤k–{logm(r,Ui
j )}

log r
= σ, r ∈ E. ()

Proof The inductive method will be used to prove it.
First, when i = , i.e., U

j = A′
j+ +Aj –

A′


A
Aj+, j = , , , . . . ,k –  and Ak ≡ .

When j = , that is U
 = A′

 +A –
A′


A
A. Then, we have

m
(
r,U


) ≤ m(r,A) +m(r,A) +m

(
r,
A′


A

)
+m

(
r,
A′


A

)
+O(). ()

http://www.advancesindifferenceequations.com/content/2012/1/114
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From A = –A′
 +U

 +
A′


A
A, we have

m(r,A) ≤ m(r,A) +m
(
r,U


)
+m

(
r,
A′


A

)
+m

(
r,
A′


A

)
+O(). ()

When j �= , j = , , . . . ,k – , from the definitions of U
j , we have

m
(
r,U

j
) ≤ m(r,Aj+) +m(r,Aj) +m

(
r,
A′


A

)
+m

(
r,
A′
j

Aj

)
+O(). ()

Since Aj(z) are entire functions with max{σ (Aj) : j = , , . . . ,k – } < σ (A) < ∞ and (),
we have

max
≤j≤k–

{
m

(
r,U

j
)} ≤ max

≤j≤k–

{
m(r,Aj) + o(m(r,A)) +O(log r)

}
. ()

From (), (), () and Lemma ., there exists a set E ⊂ [, +∞) with infinite loga-
rithmic measure such that

lim
r→∞

logm(r,U
)

log r
= σ (A) > σ = lim sup

r→∞
max≤j≤k–{logm(r,Aj)}

log r

≥ lim sup
r→∞

max≤j≤k–{logm(r,U
j )}

log r
, r ∈ E.

()

Now, suppose that () holds for i ≤ n, n ∈ N, that is, there exists a set E with infinite
logarithmic measure such that

lim
r→∞

logm(r,Un
 )

log r
= σ (A) > lim sup

r→∞

max≤j≤k–{logm(r,Un
j )}

log r
= σ. ()

Next, we prove that () holds for i = n + . Since i = n + , we have Un+
j = Un

j+
′ + Un

j –
Un


′
Un

Un

j+ where j = , , , . . . ,k – , and Un
k ≡ . When j = , When j = , that is Un+

 =

Un


′ +Un
 –

Un


′
Un

Un

 . Then, we have

m
(
r,Un+


) ≤m

(
r,Un


)
+m

(
r,Un


)
+m

(
r,
Un


′

Un


)
+m

(
r,
Un


′

Un


)
+O(). ()

And since Un
 =Un


′ +Un+

 – Un


′
Un

Un

 , we have

m
(
r,Un


) ≤m

(
r,Un+


)
+m

(
r,Un


)
+m

(
r,
Un


′

Un


)
+m

(
r,
Un


′

Un


)
+O(). ()

When j �= , from the definitions of Un+
j , j = , , . . . ,k –  and Un

k ≡ , we have

m
(
r,Un+

j
) ≤m

(
r,Un

j+
)
+m

(
r,Un

j
)
+m

(
r,
Un

j+
′

Un
j+

)
+m

(
r,
Un


′

Un


)
+O(). ()
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From ()-(), there exists a set E with infinite logarithmic measure such that

lim
r→∞

logm(r,Un+
 )

log r
= lim

r→∞
logm(r,Un

 )
log r

= σ (A) > σ

= lim sup
r→∞

max≤j≤k–{logm(r,Un
j )}

log r
()

= lim sup
r→∞

max≤j≤k–{logm(r,Un+
j )}

log r
.

Thus, the proof of Lemma . is completed. �

Lemma . Let Hj(z) (j = , , . . . ,k – ) be meromorphic functions of finite order. If

lim sup
r→∞

max≤j≤k–{logm(r,Hj)}
log r

= β

and there exists a set E with infinite logarithmic measure such that

lim
r→∞

logm(r,H)
log r

= β > β

holds for all r ∈ E, then every meromorphic solution of

f (k) +Hk–f (k–) + · · · +Hf ′ +Hf =  ()

satisfies σ(f ) ≥ β.

Proof Assume that f (z) is a meromorphic solution of (). From (), we have

m(r,H) ≤ m
(
r,
f (k)

f

)
+m

(
r,
f (k–)

f

)
+ · · · +m

(
r,
f ′

f

)
+

k–∑
j=

m(r,Hj) +O(). ()

By the lemma on logarithmic derivative and (), we have

m(r,H) ≤ O
{
log rT(r, f )

}
+

k–∑
j=

m(r,Hj), r /∈ E, ()

whereE ⊂ [, +∞) is a setwith finite linearmeasure. From the assumptions of Lemma.,
there exists a set E with infinite logarithmic measure such that for all |z| = r ∈ E – E we
have

rβ–ε ≤ O
{
log rT(r, f )

}
+ (k – )rβ+ε , ()

where  < ε < β – β. From (), we have σ(f ) ≥ β. �

Lemma . (see []) Let f (z) be a transcendental meromorphic function with σ (f ) = σ <
∞,� = {(k, j), . . . , (km, jm)} be a finite set of distinct pairs of integers which satisfy ki > ji ≥ 
for i = , . . . ,m. And let ε >  be a given constant, then there exists a set E ⊂ (,∞) that has
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finite logarithmic measure such that for all z satisfying |z| = r /∈ [, ]∪E and (k, j) ∈ �, we
have

∣∣∣∣ f
(k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k–j)(σ–+ε).

Lemma. (see []) Let f (z) be an entire functionwith σ (f ) = σ , τ (f ) = τ ,  < σ <∞,  <
τ < ∞, then for any given β < τ , there exists a set E ⊂ [, +∞) that has infinite logarithmic
measure such that for all r ∈ E, we have

logM(r, f ) > βrσ .

Lemma . Let A(z), A(z), . . . , Ak–(z) be entire functions with finite order and satisfy
 < σ (A) = σ (A) = · · · = σ (Ak–) = σ < ∞ andmax{τ (Aj) : j = , , . . . ,k –} = τ < τ (A) =
τ , and let U

j , Ui
j be stated as in Lemma ., then for any given ε ( < ε < τ – τ), there

exists a set E with infinite logarithmic measure such that

∣∣Ui
j
∣∣ ≤ exp

{
(τ + ε)rσ

}
,

∣∣Ui

∣∣ ≥ exp

{
(τ – ε)rσ

}
, ()

where i ∈N and j = , , . . . ,k – .

Proof The inductive method will be used to prove it.
(i) We first prove that Ui

j (j = , , . . . ,k – ) satisfy () when i = . From the definition

of U
j = A′

j+ +Aj –
A′


A
Aj+ (j �= ) and U

 = A′
 +A –

A′


A
A, we have

∣∣U

∣∣ ≥ |A| – |A|

(∣∣∣∣A
′


A

∣∣∣∣ +
∣∣∣∣A

′


A

∣∣∣∣
)

()

and

∣∣U
j
∣∣ ≤ |Aj| + |Aj+|

(∣∣∣∣
A′
j+

Aj+

∣∣∣∣ +
∣∣∣∣A

′


A

∣∣∣∣
)
, j = , , . . . ,k – , Ak ≡ . ()

From Lemma ., Lemma . and ()-(), for any ε ( < ε < τ – τ), there exists a
set E with infinite logarithmic measure such that

∣∣U

∣∣ ≥ exp

{(
τ –

ε



)
rσ

}
–  exp

{(
τ +

ε



)
rσ

}
rM ≥ exp

{(
τ –

ε



)
rσ

}
()

and

∣∣U
j
∣∣ ≤ exp

{(
τ +

ε



)
rσ

}
+  exp

{(
τ +

ε



)
rσ

}
rM

≤ exp

{(
τ +

ε



)
rσ

}
, j �= ,

()

whereM >  is a constant, not necessarily the same at each occurrence.
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(ii) Next, we show that Ui
j (j = , , , . . . ,k – ) satisfy () when i = . From U

 =U

′ +

U
 –

U

′

U

U

 and U
j =U

j+
′ +U

j –
U

′

U

U

j+ (j = , , . . . ,k – ) and U
k ≡ , we have

∣∣U

∣∣ ≥ ∣∣U


∣∣ – ∣∣U


∣∣(

∣∣∣∣U


′

U


∣∣∣∣ +
∣∣∣∣U



′

U


∣∣∣∣
)

()

and

∣∣U
j
∣∣ ≤ ∣∣U

j
∣∣ + ∣∣U

j+
∣∣(

∣∣∣∣
U

j+
′

U
j+

∣∣∣∣ +
∣∣∣∣U



′

U


∣∣∣∣
)
, j = , , . . . ,k – . ()

By the conclusions of (i) and Lemma ., ()-(), for all |z| = r ∈ E,

∣∣U

∣∣ ≥ exp

{(
τ –

ε



)
rσ

}
–  exp

{(
τ +

ε



)
rσ

}
rM ≥ exp

{
(τ – ε)rσ

}
()

and

∣∣U
j
∣∣ ≤ exp

{(
τ +

ε



)
rσ

}
+  exp

{(
τ +

ε



)
rσ

}
rM ≤ exp

{
(τ + ε)rσ

}
, j �= . ()

(iii) Now, suppose that () holds for i≤ n, n ∈N, that is, for any given ε ( < ε < τ –τ),
there exists a set E with infinite logarithmic measure such that

∣∣Ui
j
∣∣ ≤ exp

{
(τ + ε)rσ

}
,

∣∣Ui

∣∣ ≥ exp

{
(τ – ε)rσ

}
(i≤ n, j = , , . . . ,k – ). ()

From Un+
 = Un


′ + Un

 – Un


′
Un

Un

 and Un+
j = Un

j+
′ + Un

j – Un


′
Un

Un

j+ (j = , , . . . ,k – ) and
Un

k ≡ , we have

∣∣Un+


∣∣ ≥ ∣∣Un

∣∣ – ∣∣Un


∣∣(

∣∣∣∣U
n


′

Un


∣∣∣∣ +
∣∣∣∣U

n


′

Un


∣∣∣∣
)

()

and

∣∣Un+
j

∣∣ ≤ ∣∣Un
j
∣∣ + ∣∣Un

j+
∣∣(

∣∣∣∣
Un

j+
′

Un
j+

∣∣∣∣ +
∣∣∣∣U

n


′

Un


∣∣∣∣
)
, j = , , . . . ,k – . ()

Then, from Lemma . and ()-(), for all |z| = r ∈ E,

∣∣Un+
j

∣∣ ≤ exp
{
(τ + ε)rσ

}
+  exp

{
(τ + ε)rσ

}
rM ≤ exp

{
(τ + ε)rσ

}
, j �=  ()

and

∣∣Un+


∣∣ ≥ exp
{
(τ – ε)rσ

}
–  exp

{
(τ + ε)rσ

}
rM ≥ exp

{
(τ – ε)rσ

}
. ()

Thus, we complete the proof of Lemma .. �
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Lemma . Let Bj(z), j = , , . . . ,k –  be meromorphic functions with max{σ (Bj) : j =
, , . . . ,k–} = σ < σ (B) = σ and δ(∞,B) = limr→∞

m(r,B)
T(r,B)

> . Then everymeromorphic
solution f of the equation

f (k) + Bk–f (k–) + · · · + Bf ′ + Bf =  ()

satisfies σ(f ) ≥ σ.

Proof Let f be a meromorphic solution of Equation (), by (), we have

m(r,B)≤ m
(
r,
f (k)

f

)
+m

(
r,
f (k–)

f

)
+ · · · +m

(
r,
f ′

f

)
+

k–∑
j=

m(r,Bj)

≤ O
{
log rT(r, f )

}
+

k–∑
j=

T(r,Bj), r /∈ E,

()

where E ⊂ [, +∞) is a set with finite linear measure. By Lemma ., there exists a set E
with infinite logarithmic measure such that for all |z| = r ∈ E, we have

lim
r→∞

logT(r,B)
log r

= σ, r /∈ E. ()

Since δ(∞,B) > , then for any given ε ( < ε < σ –σ) and for all r ∈ E, by (), we have

m(r,B) ≥ rσ–ε . ()

From () and (), we have

rσ–ε ≤ O
{
log rT(r, f )

}
+ (k – )rσ+ε , r ∈ E – E. ()

From (), we can get σ(f ) ≥ σ = σ (B). �

Lemma . (see []) Let f (z) be a transcendental meromorphic function and α >  be a
given constant, for any given ε > , there exists a set E ⊂ [,∞) that has finite logarithmic
measure and a constant M >  that depends only on α and (m,n) (m,n ∈ {, . . . ,k} with
m < n) such that for all z satisfying |z| = r /∈ [, ]∪ E, we have

∣∣∣∣ f
(n)(z)

f (m)(z)

∣∣∣∣ ≤ M
(
T(αr, f )

r
(
logα r

)
logT(αr, f )

)n–m

.

Lemma. Let Bj(z), j = , , . . . ,k– bemeromorphic functions of finite order. If there ex-
ist positive constants σ, β, β ( < β < β) and a set E with infinite logarithmic measure
such that

max
{∣∣Bj(z)

∣∣ : j = , , . . . ,k – 
} ≤ exp

{
βrσ

}
,

∣∣B(z)
∣∣ ≥ exp

{
βrσ

}

hold for all |z| = r ∈ E, then every meromorphic solution of () satisfies σ(f ) ≥ σ.
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Proof Suppose that f is a meromorphic solution of (), by (), we have

∣∣B(z)
∣∣ ≤

∣∣∣∣ f
(k)

f

∣∣∣∣ +
k–∑
j=

∣∣Bj(z)
∣∣
∣∣∣∣ f

(j)

f

∣∣∣∣. ()

By Lemma ., there exists a set E with finite logarithmic measure such that for all |z| =
r /∈ E, we have

∣∣∣∣ f
(j)

f

∣∣∣∣ ≤ M
[
T(r, f )

]j, j = , , . . . ,k, ()

where M >  is a constant. By (), () and the assumptions of Lemma ., for all |z| =
r ∈ E – E, we have

exp
{
βrσ

} ≤ M
[
T(r, f )

]k
exp

{
βrσ

}
. ()

Since  < β < β, by (), we have σ(f ) ≥ σ. �

Lemma . (see []) Let A,A, . . . ,Ak–,F �≡  bemeromorphic functions, if f is a mero-
morphic solution of the equation

f (k) +Ak–f (k–) + · · · +Af = F ,

then we have the following statements:
(i) if max{σ (F),σ (Aj); j = , , . . . ,k – } < σ (f ) = σ ≤ ∞, then σ (f ) = λ(f ) = λ(f );
(ii) if max{σ(F),σ(Aj); j = , , . . . ,k – } < σ(f ) = σ , then σ(f ) = λ(f ) = λ(f ).

Lemma. (see [, Theorem ]) Let Aj(z) (j = , , . . . ,k–) be entire functions satisfying
 < σ (Ak–) = · · · = σ (A) = σ (A) < ∞, max{τ (Aj) : j = , , . . . ,k – } < τ (A) < ∞, then
every solution f �≡  of () satisfies σ(f ) = σ (A).

3 Proofs of theorems
3.1 The proof of Theorem 1.1
To prove the conclusions of Theorem ., we will consider two cases as follows.
Case . Suppose that max{σ (Aj) : j = , , . . . ,k – } < σ (A) < ∞.
(i) First, we prove that λ(f – ϕ) = σ(f ). Assume that f �≡  is a solution of (), from

ref. [], we have σ(f ) = σ (A). Set g = f – ϕ. Since σ(ϕ) < σ (A), then σ(g) = σ(f ) =
σ (A) and λ(g) = λ(f – ϕ). By Lemma ., we get that g satisfies Equation (). Set F =
ϕ(k) + Ak–ϕ

(k–) + · · · + Aϕ. If F ≡ , from ref. [], we have σ(ϕ) = σ (A), we can get a
contradiction. Then F �≡ , by Lemma ., we have λ(g) = λ(g) = σ(g) = σ (A). Thus,
we have λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (A).
(ii) Second, we prove that λ(f ′ – ϕ) = σ(f ). Set g = f ′ – ϕ, then σ(g) = σ(f ) = σ (A).

From Lemma ., we get that g satisfies Equation (). Set F = ϕ(k) +U
k–ϕ

(k–) + · · ·+U
ϕ,

where U
j (j = , , . . . ,k – ) are stated as in Lemma .. If F ≡ , from Lemma . and

Lemma ., we have σ(ϕ) ≥ σ (A), a contradiction with σ(ϕ) < σ (A). Hence F �≡ . By
Lemma ., we get λ(f ′ – ϕ) = λ(f ′ – ϕ) = σ(f ).
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(iii) Now, we prove that λ(f ′′ – ϕ) = σ(f ). Set g = f ′′ – ϕ, then σ(g) = σ(f ) = σ (A).
FromLemma., we get that g satisfies Equation (). Set F = ϕ(k) +U

k–ϕ
(k–) + · · ·+U

ϕ,
where U

j (j = , , . . . ,k – ) are stated as in Lemma .. If F ≡ , from Lemma . and
Lemma ., we have σ(ϕ) ≥ σ (A), a contradiction with σ(ϕ) < σ (A). Hence F �≡ . By
Lemma ., we get λ(f ′′ – ϕ) = λ(f ′′ – ϕ) = σ(f ).
(iv) Set g = f ′′′–ϕ. FromLemmas ., ., . and Lemma ., using the same argument

as in Case (iii), we can get λ(f ′′′ – ϕ) = λ(f ′′′ – ϕ) = σ(f ) easily.
(v)Wewill prove that λ(f (i) –ϕ) = σ(f ) (i > , i ∈N). Set gi = f (i) –ϕ, then σ(gi) = σ(f ) =

σ (A). From Lemma ., we have gi satisfies Equation (). Set Fi = ϕ(k) + Ui
k–ϕ

(k–) +
· · · + Ui

ϕ, where Ui
j (j = , , . . . ,k – ; i ∈ N) are stated as in Lemma .. If Fi ≡ , from

Lemma . and Lemma ., we have σ(ϕ) ≥ σ (A), a contradiction with σ(ϕ) < σ (A).
Hence Fi �≡ . By Lemma ., we get λ(f (i) – ϕ) = λ(f (i) – ϕ) = σ(f ).
Case . Suppose that  < σ (Ak–) = · · · = σ (A) = σ (A) < ∞ and max{τ (Aj) : j =

, , . . . ,k – } = τ < τ (A) = τ .
(i) We first prove that λ(f – ϕ) = σ(f ). Assume that f �≡  is a solution of (), by

Lemma ., we have σ(f ) = σ (A) > . Set g = f – ϕ. Since ϕ �≡  is an entire func-
tion satisfying σ(ϕ) < σ (A), then we have σ(g) = σ(f ) = σ (A) and λ(g) = λ(f – ϕ).
From Lemma ., we get that g satisfies Equation (). We will affirm F �≡ . If F ≡ , by
Lemma ., we get σ(ϕ) = σ(A), a contradiction. Hence F �≡ . From the assumptions
of Theorem ., we get

max
{
σ(F),σ(Aj) : j = , , . . . ,k – 

}
< σ(g) = σ (A).

From Lemma .(ii), we have λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (A).
(ii) Now we prove that λ(f ′ – ϕ) = σ(f ). Let g = f ′ – ϕ. Since σ(ϕ) < σ (A), we have

σ(g) = σ(f ) = σ (A). By Lemma ., we have g satisfies Equation (). If F ≡ , from
Lemma . and Lemma ., we have σ(ϕ) ≥ σ (A). Then we can get a contradiction
with σ(ϕ) < σ (A). Therefore, we have F �≡ . By () and Lemma ., we have λ(f ′–ϕ) =
λ(f ′ – ϕ) = σ(f ) = σ (A).
Similar to the arguments as in Case (iii)-(v) and by using Lemmas .-., . and

Lemma ., we can get

λ
(
f (i) – ϕ

)
= λ

(
f (i) – ϕ

)
= σ(f ) = σ (A) (i ∈N).

Thus, the proof of Theorem . is completed.

3.2 The proof of Theorem 1.2
SinceAj(z) (j = , , . . . ,k–) are polynomials andA(z) is a transcendental entire function,
then we have that Aj(z) (j = , , , . . . ,k – ) satisfy the condition of Theorem .. By using
the same argument as in Theorem . and Lemma .(i), we can get the conclusions of
Theorem . easily.
Thus, we omit the process of proving Theorem ..

3.3 The proof of Theorem 1.3
According to the conditions of Theorem ., we can easily get the conclusions of Theo-
rem . by using the similar argument as in Theorem . and Lemma ..
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