
Fang and Sun Advances in Difference Equations 2012, 2012:115
http://www.advancesindifferenceequations.com/content/2012/1/115

RESEARCH Open Access

Existence and uniqueness of solutions to
complex-valued nonlinear impulsive
differential systems
Tao Fang1,2 and Jitao Sun1*

*Correspondence: sunjt@sh163.net
1Department of Mathematics,
Tongji University, Shanghai, 200092,
China
Full list of author information is
available at the end of the article

Abstract
Since the quantum system, a classical example of complex-valued system, is one of
the foci of ongoing research, in this paper, the issue of existence and uniqueness of
solutions to nonlinear impulsive differential systems defined in complex fields, to be
brief, complex-valued nonlinear impulsive differential systems, is addressed. The
existence and uniqueness conditions of solutions of such systems are established by
fixed point theory.
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1 Introduction
Impulsive differential equations have become more important in recent years in some
mathematical models of real processes and phenomena studied in physics, chemical tech-
nology, population dynamics, biotechnology and economics. Nowadays, there has been
increasing interest in the analysis and synthesis of impulsive systems, or impulsive con-
trol systems, due to their theoretical and practical significance, for example [–] and the
references therein.
As the fundamental issues of modern impulse theory, the existence and uniqueness of

solutions to impulsive differential systems have been studied extensively in recent years,
especially in the area of impulsive differential equations with fixed moments, see the
monographs of Lakshmikantham et al. [], Samoilenko and Perestyuk [], the literature [,
] and references therein. However, the common setting adopted in the above-mentioned
works is always in real number fields. In fact, equations of many classical systems such as
Schrödinger equation [], Ginzburg-Landau equation [], Riccati equation [] andOrr-
Sommerfeld equation [] are considered in the complex number fields. But, there have
been few reports about the analysis and synthesis of complex dynamical systems, for ex-
ample, [–] and references therein. More complex than the real system, the study on
complex dynamical systems has many potential applications in science and engineering.
For example, recently, research on the control theory of quantum systems has attracted
considerable attention [–]. Quantum systems are a class of complex dynamical sys-
tems which take values in a Banach space in a complex field. Another example of complex
dynamical systems is complex-valued neural networks. Complex-valued neural networks
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have been found highly useful in extending the scope of applications in optoelectronics,
filtering, imaging, speech synthesis, computer vision, remote sensing, quantum devices,
spatio-temporal analysis of physiological neural devices and systems, and artificial neural
information processing [, ].
Although the controllability and observability of complex-valued differential systems

have been discussed in the papers [] and [], to the best of our knowledge, there has
been no result so far about the existence and uniqueness of solutions to complex-valued
nonlinear impulsive differential systems. The issue of the existence and uniqueness of so-
lutions to complex-valued differential system, which is the premise and foundation when
discussing this system, is one of the most fundamental ones. So it is very important and
necessary to study the existence and uniqueness of solutions to complex-valued nonlin-
ear impulsive differential systems. Due to these reasons, in this paper, we consider the
fundamental concepts of solutions of the complex-valued nonlinear impulsive differen-
tial systems by an algebraic approach. The main difficulty is to investigate the conditions
for existence and uniqueness of solution of complex-valued nonlinear impulsive differ-
ential systems in the context of complex fields. Explicit characterization for existence and
uniqueness of this kind of system is presented by Banach’s fixed point theorem. This prob-
lem is meaningful and challenging.
The paper is organized as follows. In Section , the complex-valued nonlinear impulsive

differential systems to be dealt with are formulated and several results about the space
of the complex-valued continuous functions are presented. The conditions for existence
and uniqueness of solution of complex-valued nonlinear impulsive differential systems are
also established in Section . An example that illustrates the main points of the paper is
presented in Section . Finally, some conclusions are drawn in Section .

2 Existence and uniqueness results
In this section, we will give the existence and uniqueness of solutions to complex-valued
nonlinear impulsive differential systems. First, we introduce notations, definitions, and
preliminary facts which are used throughout this paper.
By C(J ,R) we denote the Banach space of all continuous functions from interval J into

R with the norm

∥∥x(t)∥∥ = sup
{∣∣x(t)∣∣ : t ∈ J

}
.

By C(J ,Rn) we denote the Banach space of all continuous functions from interval J into
R

n with the norm

∥∥x(t)∥∥JR =

{ n∑
i=

∥∥xi(t)∥∥
}/

,

where xi(t) is the ith component of x(t). By C(J ,Cn) we denote the space of all complex
functions defined by

C
(
J ,Cn) = {

x(t)|xk(t) = Re
(
xk(t)

)
+ i Im

(
xk(t)

)
: Re

(
xk(t)

)
, Im

(
xk(t)

) ∈ C(J ,R)
}
,

where k = , , . . . ,n, i =
√
–, xk(t) denotes the kth component of x(t), Re(xk(t)) and

Im(xk(t)) are the real part and imaginary part of xk(t), respectively.
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By PC(J ,Cn) we denote the space of all complex piecewise functions defined by

PC
(
J ,Cn) = {

x(t)|x(t) = Re
(
x(t)

)
+ i Im

(
x(t)

)
: Re

(
x
(
t–k

))
,Re

(
x
(
t+k

))
,

Im
(
x
(
t–k

))
and Im

(
x
(
t+k

))
exist with Re

(
x
(
t–k

))
= Re

(
x(tk)

)
,

Im
(
x
(
t–k

))
= Im

(
x(tk)

)
, and Re

(
xk(t)

)
, Im

(
xk(t)

) ∈ C
(
Jk ,Rn)},

where k = , , , . . . ,m, t ∈ J = [t,T], t < t < t < · · · < tm < T , and J = [t, t], Jl = (tl, tl+],
l = , , . . . ,m – , Jm = (tm,T].
We are now able to define a complex-valued nonlinear impulsive differential system on

the interval J = [t,T],

⎧⎪⎪⎨
⎪⎪⎩
ż(t) = f (t, z(t)), t ∈ J , t �= tk ,

z(t+k ) – z(tk) = Ik(z(t–k )), t = tk ,

z(t+) = z,

()

where t < t < t < · · · < tm < T , z(t) ∈ PC(J ,Cn), f : J×� �→C
n is a given function,� ⊂C

n

is a closed set. Ik ∈ C(Cn,Cn), k = , , . . . ,m.
The solution of the complex-valued nonlinear impulsive differential system can be de-

fined as follows.

Definition . A function z(t) ∈ PC([t, t + T],Cn) is said to be a solution of (), if z(t)
satisfies

⎧⎪⎪⎨
⎪⎪⎩
ż(t) = f (t, z(t)), t ∈ [t, t + T], t �= tk ,

z(t+k ) – z(tk) = Ik(z(t–k )), t = tk ,

z(t+) = z.

()

In the sequel we shall need the properties of a complex-valued function space, which we
prove for reader’s convenience.

Lemma . C(J ,Cn) is a Banach space in the field R with the norm

∥∥x(t)∥∥JC =
(∥∥Re(x(t))∥∥

JR +
∥∥Im(

x(t)
)∥∥

JR

)/.
Proof Let x(t) and y(t) be arbitrary two functions of C(J ,Cn), α ∈ R.
Step  ‖ · ‖JC is a norm of C(J ,Cn).
(i) ‖x(t)‖JC ≥ , and ‖x(t)‖JC =  ⇐⇒ ‖Re(x(t))‖JR = ‖ Im(x(t))‖JR =  ⇐⇒ Re(x(t)) =

Im(x(t)) =  ⇐⇒ x(t) = .
(ii) ‖αx(t)‖JC = (‖Re(αx(t))‖JR + ‖ Im(αx(t))‖JR)/ =

(‖αRe(x(t))‖JR + ‖α Im(x(t))‖JR)/ = |α|‖x(t)‖JC .
(iii)

∥∥x(t) + y(t)
∥∥
JC =

(∥∥Re(x(t) + y(t)
)∥∥

JR +
∥∥Im(

x(t) + y(t)
)∥∥

JR

)/
=

(∥∥Re(x(t)) +Re
(
y(t)

)∥∥
JR +

∥∥Im(
x(t)

)
+ Im

(
y(t)

)∥∥
JR

)/
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≤ [(∥∥Re(x(t))∥∥JR +
∥∥Re(y(t))∥∥JR

)
+

(∥∥Im(
x(t)

)∥∥
JR +

∥∥Im(
y(t)

)∥∥
JR

)]/
≤ (∥∥Re(x(t))∥∥

JR +
∥∥Im(

x(t)
)∥∥

JR

)/
+

(∥∥Re(y(t))∥∥
JR +

∥∥Im(
y(t)

)∥∥
JR

)/
=

∥∥x(t)∥∥JC +
∥∥y(t)∥∥JC .

So ‖ · ‖JC is a norm of C(J ,Cn).
Step  (C(J ,Cn),‖ · ‖JC) is a complete space.
Let {x(s)} be an arbitrary Cauchy series, then for arbitrary ε > , exists N > , when

s, l >N ,

∥∥x(s) – x(l)
∥∥
JC < ε,

namely

(∥∥Re(x(s)) –Re
(
x(l)

)∥∥
JR +

∥∥Im(
x(s)

)
– Im

(
x(l)

)∥∥
JR

)/ < ε.

So

∥∥Re(x(s)) –Re
(
x(l)

)∥∥
JR < ε,

∥∥Im(
x(s)

)
– Im

(
x(l)

)∥∥
JR < ε, ()

the inequality () shows that Re({x(s)}) and Im({x(s)}) are the Cauchy series of C(J ,Rn),
since C(J ,Rn) is a Banach space, Re({x(s)}) and Im({x(s)}) must be convergent. Hence {x(s)}
is convergent. The proof is completed. �

Lemma . PC(J ,Cn) is a Banach space in the field R with the norm

∥∥x(t)∥∥PC =max
{∥∥x(t)∥∥JkC

,k = , , . . . ,m
}
,

where ‖x(t)‖JkC is the norm of x(t) which is restricted in Jk .

Proof Let x(t) and y(t) be arbitrary two functions of PC(J ,Cn), α ∈R.
Step  ‖ · ‖PC is a norm of PC(J ,Cn).
(i) ‖x(t)‖PC ≥ , and ‖x(t)‖PC =  ⇐⇒ ‖x(t)‖JkC = ,k = , , . . . ,m ⇐⇒ x(t) = .
(ii) ‖αx(t)‖PC =max{‖αx(t)‖JkC} =max{|α|‖x(t)‖JkC} = |α|max{‖x(t)‖JkC} =

|α|‖x(t)‖PC .
(iii)

∥∥x(t) + y(t)
∥∥
PC = max

{∥∥x(t) + y(t)
∥∥
JkC

} ≤ max
{∥∥x(t)∥∥JkC

+
∥∥y(t)∥∥JkC

}
≤ max

{∥∥x(t)∥∥JkC

}
+max

{∥∥y(t)∥∥JkC

}
=

∥∥x(t)∥∥PC +
∥∥y(t)∥∥PC .

So ‖ · ‖PC is a norm of PC(J ,Cn).
Step  (PC(J ,Cn),‖ · ‖PC) is a complete space.
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Let {x(s)} be an arbitrary Cauchy series in PC(J ,Cn), then for arbitrary ε > , existsN > ,
when s, l >N ,

∥∥x(s) – x(l)
∥∥
PC < ε,

namely

max
{∥∥x(s) – x(l)

∥∥
JkC

}
< ε. ()

So, for every k, we have

{∥∥x(s) – x(l)
∥∥
JkC

}
< ε,

the inequality () shows that the restriction functions of x(s) in Jk are the Cauchy series of
C(J ,Cn). By Lemma ., C(J ,Cn) is a Banach space, the restriction functions of x(s) in Jk
must be convergent. Hence {x(s)} is convergent. The proof is completed. �

Theorem. Let f : J×� →Cn be a continuous function. Then z(t) is the unique solution
of the initial value problem () if and only if z(t) is a solution of impulsive integral equation

z(t) = z +
∫ t

t
f
(
s, z(s)

)
ds +

∑
t<tk<t

Ik
(
z
(
t–k

))
. ()

Proof Let z(t) be a possible solution of the complex impulsive system (), then z(t) is a
solution to

ż(t) = f
(
t, z(t)

)
,

for t ∈ J := [t,T], t �= tk . Assume that tk < t < tk+, k = , , . . . ,m. The integration of above
equality yields

z
(
t–

)
– z

(
t+

)
=

∫ t

t
f
(
s, z(s)

)
ds,

z
(
t–

)
– z

(
t+

)
=

∫ t

t
f
(
s, z(s)

)
ds,

z
(
t–

)
– z

(
t+

)
=

∫ t

t
f
(
s, z(s)

)
ds,

...

z(t) – z
(
t+k

)
=

∫ t

tk
f
(
s, z(s)

)
ds.

Adding these together, we get

z(t) = z +
∫ t

t
f
(
s, z(s)

)
ds +

[(
z
(
t+

)
– z

(
t–

))
+

(
z
(
t+

)
– z

(
t–

))
+ · · · + (

z
(
t+k

)
– z

(
t–k

))]
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= z +
∫ t

t
f
(
s, z(s)

)
ds +

k∑
i=

Ii
(
z
(
t–i

))

= z +
∫ t

t
f
(
s, z(s)

)
ds +

∑
t<tk<t

Ik
(
z
(
t–k

))
.

The above equality shows that z(t) is a solution to ().
Assume that z(t) satisfies the integration equation (), obviously

ż(t) = f
(
t, z(t)

)
,

for t ∈ J := [t,T], t �= tk .
When t = t, by ()

z(t) = z +
∫ t

t
f
(
s, z(s)

)
ds +

∑
t<tk<t

Ik
(
z
(
t–k

))

= z +
∫ t

t
f
(
s, z(s)

)
ds +

∫ t

t
f
(
s, z(s)

)
ds + I

(
z
(
t–

))
= z + z

(
t–

)
– z + z

(
t–

)
– z

(
t+

)
+ I

(
z
(
t–

))
.

Thus z(t+ ) – z(t– ) = I(z(t– )). By the same way, we can easily prove that z(t+k ) – z(tk) =
Ik(z(t–k )), k = , , . . . ,m. The proof is completed. �

We are now in a position to state and prove the existence and uniqueness result of the
complex impulsive system ().

Theorem . Assume that the following hypotheses hold:
(i) There exists m(t) ∈ L([t,T],R+) such that

∣∣f (t, z) – f (t, z)
∣∣ ≤ m(t)|z – z|,

for all t ∈ [t, t + T], z, z ∈ � ⊂C
n.

(ii) There exist constants ck ≥ , k = , , . . . ,m, such that

∣∣Ik(z) – Ik(z)
∣∣ ≤ ck|z – z|,

for each z, z ∈ � ⊂C
n, and

∑m
k= ck < ,

where | · | is the Euclid norm of Cn. Then the complex impulsive system () has a unique
solution in [t, t + T].

Proof Transform the problem () into a fixed point problem. Consider the map H :
PC(J ,Cn) → PC(J ,Cn) defined by

H
(
z(t)

)
= z

(
t+

)
+

∫ t

t
f
(
s, z(s)

)
ds +

∑
t<tk<t

Ik
(
z
(
t–k

))
.
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We shall show that H is a contraction. For arbitrary z(t), z(t) ∈ PC(J ,Cn), then we have
for each t ∈ J

∣∣H(
z(t)

)
–H

(
z(t)

)∣∣
≤

∫ t

t

∣∣f (s, z(s)) – f
(
s, z(s)

)∣∣ds + ∑
t<tk<t

∣∣Ik(z(tk)) – Ik
(
z(tk)

)∣∣

≤
∫ t

t
m(s)

∣∣z(s) – z(s)
∣∣ds + ∑

t<tk<t
ck

∣∣z(tk) – z(tk)
∣∣

≤
∫ t

t
m(s)eτM(s)e–τM(s)∣∣z(s) – z(s)

∣∣ds + ∑
t<tk<t

ckeτM(t)e–τM(t)∣∣z(tk) – z(tk)
∣∣

≤
∫ t

t
m(s)eτM(s)∥∥z(s) – z(s)

∥∥
BPC ds +

∑
t<tk<t

ckeτM(t)∥∥z(t) – z(t)
∥∥
BPC

≤
∫ t

t


τ

(
eτM(s))′∥∥z(s) – z(s)

∥∥
BPC ds +

∑
t<tk<t

ckeτM(t)∥∥z(t) – z(t)
∥∥
BPC

≤
(

τ
eτM(t) +

∑
t<tk<t

ckeτM(t)
)∥∥z(t) – z(t)

∥∥
BPC .

Thus

∥∥H(
z(t)

)
–H

(
z(t)

)∥∥
PC ≤

(

τ
eτM(t) +

∑
t<tk<t

ckeτM(t)
)∥∥z(t) – z(t)

∥∥
BPC ,

where M(t) =
∫ t
t
m(s)ds and τ is sufficiently large and ‖ · ‖BPC is the norm on PC(J ,Cn)

defined by

∥∥z(t)∥∥BPC =
∥∥e–τM(t)z(t)

∥∥
PC .

Therefore,

∥∥H(
z(t)

)
–H

(
z(t)

)∥∥
BPC ≤

(

τ
+

∑
t<tk<t

ck
)∥∥z(t) – z(t)

∥∥
BPC .

We can always choose τ , such that /τ +
∑

t<tk<t ck < , so H is a contraction. By the
Lemma ., Theorem . and the Banach contraction principle,H has a unique fixed point
which is a solution to (). The proof is completed. �

3 Example
Example . LetW = {z||z| ≤ ρ}, ρ > , J = [,π/], J = (π/,π ], J = J ∪ J, the existence
and uniqueness of complex-valued nonlinear impulsive system

⎧⎪⎪⎨
⎪⎪⎩
ż(t) = zcost, t ∈ J , t �= π/,

z(π/+) – z(π/) = , t = π/,

z(+) = i,

()

are considered on J ×W .

http://www.advancesindifferenceequations.com/content/2012/1/115
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Obviously the condition (ii) of Theorem . is satisfied.Moreover, for arbitrary z,w ∈W

∣∣f (t, z) – f (t,w)
∣∣ = |cost|∣∣z –w∣∣ ≤ ρ|z –w|,

so the hypothesis of the Theorem . holds. By Theorem ., the complex-valued impul-
sive system () has a unique solution. In fact, the solution of the system () is

z(t) =

⎧⎪⎪⎨
⎪⎪⎩

i – sin t
 + sin t

, t ∈ J,

 – sin t + i
 + (sin t – )

, t ∈ J.

4 Conclusion
In this paper, the issue on the existence and uniqueness of the complex-valued nonlinear
impulsive system has been addressed for the first time. Taking advantage of the differen-
tial equation theory in complex fields, the existence and uniqueness conditions for such
systems have been established without imposing extra conditions.
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