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Abstract

In this article, a class of impulsive non-autonomous delay difference equations with
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Introduction
Recently, there has been an increasing interest in the study of the asymptotic behavior

and other behaviors of the difference equations with continuous variables in which the

unknown function is a function of a continuous variable. In particular, delay effects on

the asymptotic behavior and other behaviors of this kind of equations have widely

been studied in the literature [1-7].

However, besides delay effects, impulsive effects likewise exist in a wide variety of

evolutionary process, in which states are changed abruptly at certain moments of time.

Recently, impulsive delay difference equations have extensively been studied by many

authors. For example, the reader is referred to [8-13]. Unfortunately, impulsive delay

difference equations with continuous variables are not well developed due to some the-

oretical and technical difficulties. Some sufficient conditions for the existence of the

invariant and attracting sets of impulsive delay difference equations with continuous

variables are obtained in [14,15]. To the best of the authors’ knowledge, there are no

results on the corresponding problems for impulsive non-autonomous delay difference

equations with continuous variables. With motivation from the above discussions, this

article is devoted to the discussion of this problem. By establishing a delay difference

inequality with impulsive initial conditions and using the decomposition approach, we

obtain the attracting and invariant sets of the equations.

Preliminaries
Let Rn(Rn

+) be the space of n-dimensional (non-negative) real column vectors,

Rm×n(Rm×n
+ ) be the set of m×n (non-negative) real matrices, E be the n-dimensional

unit matrix, and |·| be the Euclidean norm of ℝn. For A, B Î ℝm×n or A, B Î ℝn,
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A ≥ B(A ≤ B, A >B, A <B) means that each pair of corresponding elements of A and

B satisfies the inequality “ ≥ (≤, >, <)”. Especially, A is called a non-negative matrix if

A ≥ 0, and z is called a positive vector if z > 0. N � {1, 2, . . . n} and ϱ(A) denotes

the spectral radius of A.

C[X, Y ] denotes the space of continuous mappings from the topological space X to

the topological space Y. Especially, let C ≜ C[[-τ2, 0], ℝ
n], where τ2 > 0.

PC[J,Rn] =
{
ψ : J → R

n

∣∣∣∣ψ(s) is continuous for all but at most countable points s ∈ J

and at these points s ∈ J, ψ(s+) and ψ(s−)exist, ψ(s) = ψ(s+)

}
,

where J ⊂ R is an interval, and ψ(s+) and ψ(s-) denote the right- and left-hand limits

of the the function ψ(s), respectively. Especially, let PC ≜ PC[[-τ2, 0], ℝ
n].

In this article, we consider the following impulsive non-autonomous delay difference

equation with continuous variable
⎧⎪⎪⎨
⎪⎪⎩
xi(t) = ai(t)xi(t − τ1) +

n∑
j=1

aij(t)fj((xj(t − τ2)), t �= tk, t ≥ t0, i ∈ N ,

xi(t) = Jik(xi(t−)), t ≥ t0, t = tk, k = 1, 2, . . . , i ∈ N ,
xi(t0 + θ) = φi(θ), φi ∈ PC[[−τ2, 0], R], θ ∈ [−τ2, 0],

(1)

where ai(t) = aih(t) and aij(t) = aijh(t), ai and aij are real constants, h(t) ≤ 1 is a positive

integral function and satisfies supt≥t0

∫ t
t−τ2

h(s)ds = H2 < ∞ and limt→∞
∫ t
t0
h(s)ds = ∞ .

τ1 and τ2 are positive real numbers such that τ1 < τ2. tk(k = 1, 2,...) is an impulsive

sequence such that t1 < t2 <..., limk®∞ tk = ∞. fj and Jik: ℝ ®ℝ are real-valued functions.

Moreover, we assume that fj (0) = 0 and Jik(0) = 0, then system (1) admits an equilibrium

solution x(t) ≡ 0.

By the solution of (1), we mean a piecewise continuous real-valued function xi(t)

defined on the interval [t0 - τ2, ∞) which satisfies (1) for all t ≥ t0.

By the method of steps, one can easily see that, for any given initial function ji Î PC

[[-τ2, 0], ℝ], there exists a unique solution xi(t), i ∈ N , of (1).

For convenience, we rewrite the system (1) as the following vector form
⎧⎨
⎩
x(t) = h(t)[A0x(t − τ1) + Af (x(t − τ2))], t �= tk, t ≥ t0,
x(t) = Jk(x(t−)), t ≥ t0, t = tk, k = 1, 2, . . . ,
x(t0 + θ) = φ(θ), θ ∈ [−τ2, 0],

(2)

where x(t) = (x1(t),..., xn(t))
T , A0 = diag{a1,..., an}, A = (aij)n×n, f(x) = (f1(x1),..., fn(xn))

T,

Jk(x) = (J1k(x1),..., Jnk(xn))
T , and j = (j1,..., jn)T Î PC.

Definition 2.1. The set S ⊂ PC is called a positive invariant set of (2), if for any

initial value j Î S, the solution xt(t0, j) Î S, t ≥ t0, where xt(t0, j) = x(t + s, t0, j) Î
PC, s Î [-τ2, 0].

Definition 2.2. The set S ⊂ PC is called a global attracting set of (2), if for any initial

value j Î PC, the solution x(t, t0, j) satisfies

dist(x(t, t0, φ), S) → 0, as t → +∞,

where dist(j, S) = infψÎS dist(j, ψ), dist(j, ψ) = supθÎ[-τ2,0] |j(θ) - ψ(θ)|, for ψ Î PC.

Definition 2.3. System (2) is said to be globally exponentially stable if for any solu-

tion x(t, t0, j), there exist constants l0 > 0 and �0 ≥ 0 such that,
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|x(t, t0, φ)| ≤ κ0||φ||e−λ0(t−t0), t ≥ t0,

where ||∅|| = supθ∈[−τ2,0]|∅(s)| .
Following [16], we split the matrices A0, A into two parts, respectively,

A0 = A+
0 − A−

0 , A = A+ − A−

with a+i = max {ai, 0} , a−
i = max{−ai, 0} , a+ij = max{aij, 0} , a−

ij = max{−aij, 0} .
Set y = -x, g(u) = -f(-u). Then, by a similar argument with [15], we can get the fol-

lowing equations from the first equation of (2)

v(t) = h(t)[A0v(t − τ1) + Aξ(v(t − τ2))], (3)

where

v(t) =
{
x(t)
y(t)

}
, ξ(v(t)) =

{
f (x(t))
g(y(t))

}
, A0 =

{
A+
0 A−

0
A−
0 A+

0

}
, A =

{
A+ A−

A− A+

}
.

Set Ik(u) = -Jk(-u); in view of the impulsive part of (2), we have

v(tk) = ωk(v(t−k )), k = 1, 2, . . . , (4)

where ωk(v) = (Jk(x)
T , Ik(y(t)

T)T.

Lemma 2.1. [17,18]If M ∈ Rn×n
+ and ϱ(M) < 1, then (E - M) -1 ≥ 0.

Lemma 2.2. [18]Suppose that M ∈ Rn×n
+ and ϱ(M) < 1, then there exists a positive

vector z such that (E - M) z > 0.

For M ∈ Rn×n
+ and ϱ(M) < 1, we denote


�(M) = {z ∈ Rn|(E − M)z > 0, z > 0}.

In order to discuss the asymptotic behavior of (2), and for the brevity of later discus-

sion, we list all our conditions as follows.

(A1) For any x, y Î ℝn , there exists a non-negative diagonal matrix P̄ and vector

μ = (μ1,..., μn)
T ≥ 0 such that

f (x) − f (y) ≤ P̄(x − y) + μ. (5)

(A2) For any x, y Î ℝn, there exist nonnegative matrices Rk such that

Jk(x) − Jk(y) ≤ Rk(x − y), k = 1, 2, . . . . (6)

(A3) Let �(A0 +AP) < 1 , where P = diag{P̄, P̄} .
(A4) There exists a constant g such that

ln γk∫ tk
tk−l

h(s)ds
≤ γ < λ, k = 1, 2, . . . , (7)

where the scalar l satisfies 0 <l and is determined by the following inequality

(A0eλH1 +APeλH2 − E) z ≤ 0, (8)
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where z = (z1, . . . , z2n)T ∈ 
�(A0 +AP) , and

γk ≥ 1 and γkz ≥ Rkz,Rk = diag{Rk, Rk}, k = 1, 2, . . . . (9)

(A5) Let

σ =
∞∑
k=1

ln σk < ∞, k = 1, 2, . . . , (10)

where sk ≥ 1 satisfy

Rk(E − A0 − AP)−1A� ≤ σk(E − A0 − AP)−1A�, (11)

where Λ = (μT, μT)T.

Main results
In this section, we will give the main results of this article. The proofs of these results

are placed in the following section for the sake of brevity.

Theorem 3.1. Let P = (pij)n×n, W = (wij)n×n ∈ Rn×n
+ , I = (I1, . . . , In)T ∈ Rn

+ , and u(t)

Î ℝn be a solution of the following delay difference inequality with the initial condi-

tion u(t0 + θ) = j(θ), θ Î [-τ2, 0] j Î PC,

u(t) ≤ h(t)[Pu(t − τ1) +Wu(t − τ2) + I], t ≥ t0, (12)

where τ2 > τ1, h(t) ≤ 1 is a positive integral function and

limt→∞
∫ t
t0
h(s)ds = ∞and limt→∞

∫ t
t0
h(s)ds = ∞ .

If ϱ(P + W) < 1, then there exists a positive vector z = (z1, z2,..., zn)
T such that

u(t) ≤ κze−λ
∫ t
t0
h(s)ds + (E − P − W)−1I, t ≥ t0, (13)

provided that the initial condition satisfies

u(t) ≤ κze−λ
∫ t
t0
h(s)ds + (E − P − W)−1I, κ ≥ 0, t ∈ [t0 − τ2, t0], (14)

where the positive number l > 0 is determined by the following inequality

(PeλH1 +WeλH2 − E)z ≤ 0, (15)

where H1supt≥t0

∫ t
t−τ1

h(s)ds . Clearly, H1 <H2 < ∞.

Theorem 3.2. If (A1)-(A5) hold, then S = {φ ∈ PC| − eσN2 ≤ φ ≤ eσN1} is a global

attracting set of (2), where N1,N2 ∈ Rn and (N T
1 , N T

2 )
T = N̂ = (E − A0 − AP)−1A� .

Theorem 3.3. If (A1)-(A3) with Rk ≤ E hold, then S = {φ ∈ PC| − N2 ≤ φ ≤ N1} is

a positive invariant set and also a global attracting set of (2), where N1,N2 ∈ Rn and

(N T
1 , N T

2 )
T = N̂ = (E − A0 − AP)−1A�

For the case I = 0, we easily observe x(t) ≡ 0 is a solution of (2) from (A1) and (A2).

In the following, we give the attractivity of the zero solution and the proof is similar to

that of Theorem 3.2.

Corollary 3.1. If (A1)-(A4) hold with I = 0, then the zero solution of (2) is globally

exponentially stable.
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Proofs of main results

Proof of Theorem 3.1. Since P, W ∈ Rn×n
+ and ϱ(P + W) < 1, by Lemma 2.2, there

exists a positive vector z Î Ωϱ (P + W) such that (E - P - W)) z > 0. By continuity, we

know that (15) has at least one positive solution l, i.e.,

n∑
j=1

[pijeλH1 + wijeλH2 ]zj ≤ zi, i ∈ N . (16)

Set

u(t) = v(t)e−λ
∫ t
t0
h(s)ds +N, t ≥ t0 − τ2, (17)

where N = (E - P - W)-1I; substituting (17) into (12), we have

v(t)e−λ
∫ t
t0
h(s)ds+N ≤ h(t)[P(v(t−τ1)e

−λ
∫ t−τ1
t0

h(s)ds+N)+W(v(t−τ2)e
−λ

∫ t−τ2
t0

h(s)ds+N)+I]. (18)

Then, by (18) and h(t) ≤ 1, we obtain

v(t) ≤ h(t)[Pv(t − τ1)e
λ

∫ t
t−τ1

h(s)ds +Wv(t − τ2)e
λ

∫ t
t−τ2

h(s)ds]. (19)

By (14) and (17), we get that

v(θ) ≤ κz, θ ∈ [t0 − τ2, t0]. (20)

Next, we will prove for any t ≥ t0,

v(t) ≤ κz. (21)

To prove (21), we first prove that for any positive constant ε,

v(t) < (1 + ε)κz, t ≥ t0. (22)

If (22) is not true, then there must be a t* >t0 and some integer r such that

v(t) < (1 + ε)κz, for t ∈ [t0, t∗), vr(t∗) = (1 + ε)κzr . (23)

By using (16) and (19), we obtain that

(1 + ε)κzr = vr(t∗) ≤ h(t∗)
n∑
j=1

[prjvj(t∗ − τ1)e
λ

∫ t∗
t∗−τ1

h(s)ds + wrjvj(t∗ − τ2)e
λ

∫ t∗
t∗−τ2

h(s)ds]

< h(t∗)
n∑
j=1

[prje
λ

∫ t∗
t∗−τ1

h(s)ds + wrje
λ

∫ t∗
t∗−τ2

h(s)ds](1 + ε)κzj

≤ h(t∗)
n∑
j=1

[prjeλH1 + wrje
λH2 ](1 + ε)κzj

≤ (1 + ε)κzr

which is a contradiction. Hence, (22) holds for all numbers ε > 0; it follows immedi-

ately that (21) is always satisfied, which can easily be led to (13). This completes the

proof. □
Proof of Theorem 3.2. Since �(A0 +AP) < 1, by Lemma 2.2, there exists a posi-

tive vector z ∈ 
�(A0 +AP) such that (E − (A0 +AP))z > 0 . Using continuity, we

obtain that inequality (8) has at least one positive solution l.
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From (5) and Condition (6), we can claim that for any v Îℝ2n,

ξ(v) ≤ Pv + �, (24)

and

ωk(v) ≤ Rkv(t−k ), k = 1, 2, . . . , (25)

where Λ = (μT, μT)T.

So by using (3) and (4) and taking into account (24) and (25), we get

v(t) ≤ h(t)[A0v(t − τ1) +APv(t − τ2) +A�], (26)

and

v(tk) ≤ Rkv(t−k ), k = 1, 2, . . . , (27)

respectively.

Noting �(A0 +AP) < 1 and A0 , AP ∈ Rn×n
+ , then, by Lemma 2.1, we can get

(E − A0 − AP)−1 ≥ 0 and N̂ � (E − A0 − AP)−1A� ≥ 0 .

For the initial conditions: x(t0 + θ) = j(θ), θ Î [-τ2, 0], where j Î PC, we have

v(t) ≤ κ0ze
−λ

∫ t
t0
h(s)ds ≤ κ0ze

−λ
∫ t
t0
h(s)ds + N̂, t ∈ [t0 − τ2, t0], (28)

where

κ0 =
||φ||

min1≤i≤2n{zi} , z ∈ 
�(A0 +AP).

Then, all the conditions of Theorem 3.1 are satisfied by (26), (28), and Condition

(A3), we derive that

v(t) ≤ κ0ze
−λ

∫ t
t0
h(s)ds + N̂, t ∈ [t0, t1). (29)

Suppose for all ι = 1,..., k, the inequalities

v(t) ≤ γ0 · · · γι−1κ0ze
−λ

∫ t
t0
h(s)ds + σ0 · · · σι−1N̂, t ∈ [tι−1, tι), (30)

hold, where g0 = s0 = 1. Then, from (9), (11), (30), and (A2), the impulsive part of (2)

satisfies that

v(tk) ≤ Rkv(t−k )

≤ Rk[γ0 · · · γk−1κ0ze
−λ

∫ tk
t0

h(s)ds + σ0 · · · σk−1N̂]

≤ γ0 · · · γk−1γkκ0ze
−λ

∫ tk
t0

h(s)ds + σ0 · · · σk−1σkN̂.

(31)

This, together with (30) and gk, sk ≥ 1, leads to

v(t) ≤ γ0 · · · γk−1γkκ0ze
−λ

∫ t
t0
h(s)ds + σ0 · · · σk−1σkN̂, t ∈ [tk − τ2, tk]. (32)

On the other hand,

v(t) ≤ h(t)[A0v(t − τ1) +APv(t − τ2) + σ0, · · · σkA�], t �= tk. (33)
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It follows from (32)-(33) and Theorem 3.1 that

v(t) ≤ γ0 · · · γk−1γkκ0ze
−λ

∫ t
t0
h(s)ds + σ0 · · · σk−1σkN̂, t ∈ [tk, tk+1). (34)

By the mathematical induction, we can conclude that

v(t) ≤ γ0 · · · γk−1κ0ze
−λ

∫ t
t0
h(s)ds + σ0 · · · σk−1N̂, t ∈ [tk−1, tk), k = 1, 2, . . . . (35)

From (7) and (10),

γk ≤ e
γ

∫ tk
tk−1

h(s)ds
, σ0 · · ·σk−1 ≤ eσ ,

we can use (35) to conclude that

v(t) ≤ eγ
∫ t1
t0

h(s)ds · · · eγ
∫ tk−1
tk−2

h(s)ds
κ0ze

−λ
∫ t
t0
h(s)ds + σ0 · · · σk−1N̂

≤ κ0ze
γ

∫ t
t0
h(s)dse−λ

∫ t
t0
h(s)ds + eσ N̂

= κ0ze
−(λ−γ )

∫ t
t0
h(s)ds + eσ N̂, t ∈ [tk−1, tk), k = 1, 2, . . . .

This implies that the conclusion of the theorem holds and the proof is complete. □
Proof of Theorem 3.3. Similarly, the inequality (8) holds by (A3). For the initial con-

ditions: x(t0 + s) = j(s), s Î [-τ2, 0], where j ÎS, we have

v(t) ≤ (E − A0 − AP)−1A�, t ∈ [t0 − τ2, t0]. (36)

By (36) and Theorem 3.1 with � = 0, we have

v(t) ≤ (E − A0 − AP)−1A�, t ∈ [t0, t1). (37)

Then, from (27) and Rk ≤ E,

v(t1) ≤ R1v(t−1 ) ≤ Ev(t−1 ) ≤ (E − A0 − AP)−1A�. (38)

Thus,

v(t) ≤ (E − A0 − AP)−1A�, t ∈ [t1 − τ2, t1]. (39)

Using Theorem 3.1 again, we obtain

v(t) ≤ (E − A0 − AP)−1A�, t ∈ [t1, t2). (40)

By introduction, we have

v(t) ≤ (E − A0 − AP)−1A�, t ∈ [tk−1, tk), k = 1, 2, . . . . (41)

Therefore, S = {φ ∈ PC| − N2 ≤ φ ≤ N1} is a positive invariant set. Since ℛk ≤ E, a

direct calculation shows that gk = sk = 1 and s = 0 in Theorem 3.2. It follows from

Theorem 3.2 that the set S is also a global attracting set of (2). The proof is complete.

□

Illustrative example
The following illustrative example will demonstrate the effectiveness of our results.
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Example 4.1 Consider the following impulsive delay difference equation:

{
x1(t) = (1 + cos2t)[ 14x1(t − 1) + 1

3x2(t − 2) + 2]
x2(t) = (1 + cos2t)[− 1

4x2(t − 1) + 1
5x1(t − 2) + 2]

, t �= tk, (42)

with
{
x1(tk) = α1kx1(t

−
k ) − β1kx2(t

−
k )

x2(tk) = β2kx1(t
−
k ) + α2kx2(t

−
k )

,

where aik and bik are non-negative constants, and the impulsive sequence tk(k = 1,

2,...) satisfy: t1 <t2 <· · · , limk®∞ tk = ∞.

The parameters of (A1)-(A3) are as follows:

A0 =
( 1

40
0 − 1

4

)
, A =

(
01
3

1
50

)
, P̄ =

(
10
01

)
, μ =

(
2
2

)
, Rk =

(
α1k β1k

β2k α2k

)
,

A0 =

⎛
⎜⎜⎝

1
4000
0001

4
001

40
01
400

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝
01
300

1
5000
0001

3
001

50

⎞
⎟⎟⎠ , Rk =

⎛
⎜⎜⎝

α1k β1k 0 0
β2k α2k 0 0
0 0 α1k β1k

0 0 β2k α2k

⎞
⎟⎟⎠ ,

and P = diag{ 1,1,1,1} .
It is easy to prove that �(A0 +AP) = 0.5082 < 1 and


�(A0 +AP) =

⎧⎪⎪⎨
⎪⎪⎩
(z1, z2, z3, z4)

T
> 0

∣∣∣∣∣∣∣∣

⎧⎪⎪⎨
⎪⎪⎩

3
4z1 − 1

3z2 > 0
− 1

5z1 + z2 − 1
4 z4 > 0

3
4z3 − 1

3z4 > 0
− 1

4z2 − 1
5z3 + z4 > 0

⎫⎪⎪⎬
⎪⎪⎭

.

Let z = (1, 1, 1, 1)T ∈ 
�(A0 +AP) and l = 0.05 which satisfies the inequality

(A0eλH1 +APλH2 − E)z ≤ 0,

where, 1 ≤ H1 =
∫ t

t−1
(1 + cos2t)ds ≤ 2 , 2 ≤ H2 =

∫ t

t−2
(1 + cos2t)ds ≤ 4 .

Let gk = 3 max{a1k + b1k, a2k + b2k }, then gk satisfy gkz ≥ Rkz, k = 1, 2,....

Case 4.1. Let α1k = α2k = 1
9e

1
25k , β1k = β2k = 2

9e
1
25k and tk - tk-1 = 2k, then

γk = e
1
25k ≥ 1 and

ln γk∫ tk
tk−l

h(s)ds
=

ln γk∫ tk
tk−1

(1 + cos2t)ds
≤ ln e

1
25k

2k
=

1

25k × 2k
≤ 0.02 = γ < λ.

By simple computation, we know that σk = e
1
25k ≥ 1,

Rk(E − A0 − AP)−1A� = e
1
25k (0.3361, 0.3810, 0.3361, 0.3810)T , Rk(E − A0 − AP)−1A� = e

1
25k (0.3361, 0.3810, 0.3361, 0.3810)T ,

σk(E − A0 − AP)−1A� = e
1
25k (1.2773, 0.8739, 1.2773, 0.8739)T .

Clearly, all conditions of Theorem 3.2 are satisfied. So

S = {φ ∈ PC| − (1.2773e

1
24 , 0.8739e

1
24 )T ≤ φ ≤ (1.2773e

1
24 , 0.8739e

1
24 )T

is a global

attracting set of (42).
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Case 4.2. Let α1k = α2k = 1
9e

1
2k and b1k = b2k = 0, then Rk = 1

9 e
1
2k E ≤ E . Therefore,

by Theorem 3.3, S = {j Î PC| - (1.2773, 0.8739)T ≤ j ≤ (1.2773, 0.8739)T is a positive

invariant set and also a global attracting set of (42).

Case 4.3. If μ = 0 and let α1k = α2k = 1
3e

0.04k and β1k = β2k = 2
3e

0.04k , then gk = e0.04k ≥ 1

and

ln γk∫ tk
tk−l

h(s)ds
=

ln γk∫ tk
tk−1

(1 + cos2t)ds
≤ ln e0.04k

2k
= 0.02 = γ < λ.

Clearly, all conditions of Corollary 3.1 are satisfied. Therefore, by Corollary 3.1, the

zero solution of (42) is globally exponentially stable.
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